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six-manifolds theory for nearly the construction Spin(7)-instantons  Seiberg-Witten
[Jakob Stein] K&hler instantons  and approximate [Yuuji Tanaka] equations
[Derek Harland] solutions [Jacob Gross]
[Peter Panagiotis
Angelinos]
12:40-12:50 Take group photo
(meet in hostel
lobby)
14:00-15:00 13.00 Earliest 1.3 Reductive 2.1 Basics on ASD 3.1 Hyperkahler 3.5 SW-equations
check-in homogeneous instanton moduli structures and the  with multiple
spaces space ADHM construction spinors; Fueter
[Yang Li] [Luya Wang] [Christoff Kriiger] ~ maps and G2-
instantons
[Greg Parker]
16:00-17:00 19:00 Welcome 1.4 Instantonson 2.2 Joyce's 3.2 Explicit 3.6 The blow-up set
nearly Kahler six-  examples of examples for the SW-
manifolds compact Spin(7)- [Yuan Yao] equations with 2
[Corvin Paul] manifolds spinors

[Holly Mandel]

[Andriy Haydys]




Derek Harland: Nearly Kahler instantons and
their deformations

In this course we will learn what nearly Kahler 6-manifolds and their instan-
tons are, why people care about them, and how to develop a deformation
theory. Along the way we will learn some useful techinques from harmonic
analysis applied to homogeneous manifolds.

1. Spinors [3, 6, 9, T3] [Matt Turner]|

Definition of Clifford algebra and relation with exterior algebra.
Isomorphisms with matrix algebras, spinors.

Spin groups and their Lie algebras as subsets of Clifford algebras.

The case of dimension 6 (Clifford algebra isomorphic to 8 x 8 real matrices,
spin group isomorphic to SU(4), stabiliser of any spinor is SU(3)...)

Spin manifolds, spin structures, spin bundles.

2. Nearly Kahler six-manifolds [I} [5] 6, &8, 14} 17] [Jakob Stein]
Definitions (via Killing spinors, via SU(3)-structures, via almost complex
structures, via G cones) and their equivalence.

Example: S% as a submanifold of the imaginary octonions.

The canonical/characteristic connection on a nearly Kéhler six-manifold.

If time allows: the canonical nearly Kahler structure on a twistor space, or
results of Foscolo, Haskins, Moroianu-Semmelmann, Nagy.

3. Reductive homogeneous spaces [3, 5l 12] [Yang Li

Definition of a reductive homogeneous space G/H, the canonical bundle
G — G/H, tangent bundle as an associated bundle.

The canonical connection, its curvature and torsion, the Levi-Civita connec-
tion.

Symmetric spaces and 3-symmetric spaces.

The four homogeneous nearly Kéhler six-manifolds, their almost complex
structures and metrics.

4. Instantons on nearly Kéahler six-manifolds [6l [10, [15] 17, [16] [Corvin
Paul]

Definitions (via spinors, via SU(3)-structures, via Gg-cones).

Example: the canonical connection.

Instantons are Yang-Mills.

Instantons are critical points of a Chern-Simons functional.

(If time/interest allows) Yang-Mills connections on n-spheres [4], or the
twistor lift of an instanton on S* as an example of a nearly Kéhler instanton.



5. Harmonic analysis [3, [7, [11] [Udhav Fowdar]

The Peter-Weyl theorem and Frobenius reciprocity.

The Laplace operator as a Casimir and the Freudenthal formula.
Example: spectrum of the Laplacian on S2.

Example: spectrom of the Dirac operator on S2.

6. Deformation theory for nearly Kéahler instantons [6] [Derek Har-
land]

I will outline deformation theory for nearly Kahler instantons, focusing on
the homogeneous examples, and describe some ongoing and related work.
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Yuuji Tanaka: A construction of Spin(7)-instantons

Summary: Spin(7)-instantons on 8-dimensional manifolds with holonomy
contained in Spin(7) are one of the higher-dimensional analogues of anti-self-
dual instantons in four dimensions. The moduli spaces of them on Calabi-Yau
four-folds were recently studied by Borisov-Joyce and Cao-Leung to define
DT4 invariants. In this course, we look into a construction of these instantons
on Joyce’s second examples of compact Spin(7)-manifolds.

The structure of talks:

1. Basics on ASD instanton moduli space [Luya Wang|

Introduce ASD instantons and describe the linearisation of ASD
instanton equation, the deformation complex and so on. Refer-
ences are e.g. [DK90, Chapters 2 and 4];

2. Joyce’s examples of compact Spin(7)-manifolds [Holly Mandel

Section 2 of [Tanl2], sketch the construction, mention examples
of the ingredients, more details are in the original paper [Joy99)
by Joyce and his book [Joy00];

3. Spin(7)-instantons, complex ASD, Hermitian-Einstein connections [Ma-
teo Galdeano Solans|

Section 3 of [Tanl2|, define them, and describe the linearisations
and deformation complexes for them, other references are [Kim87,

Kob8&7, Lew9ds, [LT95, RCIR, Wall7;

4. Ingredients for the construction and approximate solutions [Peter Pana-
giotis Angelinos]

Section 4 of [Tan12]; describe the ingredients for the construction,
approximate solutions out of them, and the estimate;

5. Weighted Sobolev spaces, Fredholm properties of the linearised opera-
tor, and estimates [Vasileios Ektor Papoulias]

Section 5 of [Tanl2|, introduce weighted Sobolev spaces, discuss
Fredholm properties of the linearised operator, and sketch the
proof of Prop. 5.8. References for analysis on non-compact man-
ifolds dealt in this part are [Loc87] and [LMS5];

6. Construction [Yuuji Tanaka]
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Andriy Haydys: (G5 instantons and the Seiberg-
Witten monopoles

In this series of talks we want to learn about a conjectural relation between
(G, instantons and the Seiberg-Witten monopoles in dimension three. This
relation essentially boils down to the observation that degenerations both of
G5 instantons and certain Seiberg-Witten monopoles are modeled on certain
Fueter sections, which will be introduced in one of the talks. A somewhat
more formal way to phrase this, is via the notion of the compactification of
moduli spaces. This will be central for all talks in the series.

1. [Christoff Krger| Hyperkaehler reduction, the ADHM construction of
instantons on R*, and the hyperKaehler structure on the moduli space
of instantons on R*.

e Recall the hyperKaehler quotient construction following [HKLRS&T,
3(D)] or [Poh]. We need only the statement and the construction
of the hK structure on the quotient.

e Describe the moduli spaces of anti-self-dual instantons on R* (equiv-
alently, on the four-sphere) both as an infinite-dimensional hK
quotient and a finite-dimensional one [DK90], [Ati79].

e Describe some explicit examples, for instance the framed moduli
space of SU(n) charge 1 instantons on R%.

2. [Yuan Yao| The Uhlenbeck compactification of the moduli space of
instantons on four-manifolds and a compactness theorem for moduli
spaces of instantons in higher dimensions.

Describe compactifications of the relevant moduli spaces following [DK90),
Sect. 4.4] and [Tia00, Tia02]. This includes in particular the notions
of GGy instantons, calibration, associative submanifold of a G, mani-
fold etc. We are less interested in the technique here, more on the
qualitative picture.

3. [Joe Driscoll] Introduction to the Seiberg-Witten theory in dimen-
sion three. Basic constructions, compactness of the moduli space, the
Seiberg-Witten invariant, equivalence to the Milnor’s torsion [Lim00]
(despite the title this can be partially used for 3-manifolds with b1 > 1),
[Mar99, Ch. 6], [Sal96. Ch. 10]. One can also use [Mor96] but the con-
structions have to be adapted to dimension 3.



This talk should serve mainly as a basis for the next ones. We are
mainly interested in the compactness property of the moduli space.
The cases by < 2 can be only briefly mentioned. Also, only the for-
mulation of the equivalence between the Seiberg-Witten invariant and
the Milnor’s torsion would be enough for our purposes and this may be
even done witthout going into the details of definition of the Milnor’s
torsion.

. [Jacob Gross| Generalized Seiberg-Witten equations, Fueter maps (sec-
tions), the generalized Seiberg-Witten equations and the hyperkaehler
reduction.

e Decribe the notion of Fueter section (beware: these have many
names, in particular 'generalized harmonic spinors’, triholomor-
phic maps’, ’aquaternionic maps’...), the generalized Seiberg-Witten
equations following [Hay17, Sec. 2] and [Tau99].

e Describe the relation between Fueter maps into the hK quotient
and generalized Seiberg-Witten equations following [Hay17].

e Describe G5 instanton equations as an instance of the Seiberg-
Witten equations following [Hay17, Sec. 4] and references therein.

. |Greg Parker| A compactness theorem for the Seiberg-Witten equations
with multiple spinors; Fueter maps and G4 instantons.

e Formulate the compactness theorem for the Seiberg-Witten equa-
tions with multiple spinors [HW14].

e Describe the results of Walpuski [Wall7] and Walpuski-Doan [DW17]
on deformations of the Fueter sections.

e Discuss [Hay17, Sec. 5].
. [Andriy Haydys| On a blow up set for the Seiberg-Witten equations

with 2 spinors. I will discuss some properties of the blow up set for the
Seiberg-Witten equations with 2 spinors.
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