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Abstract

We provide guarantees for approximate Gaussian Process (GP)
regression resulting from two common low-rank kernel ap-
proximations: based on random Fourier features, and based
on truncating the kernel’s Mercer expansion. In particular, we
bound the Kullback–Leibler divergence between an exact GP
and one resulting from one of the afore-described low-rank
approximations to its kernel, as well as between their corre-
sponding predictive densities, and we also bound the error
between predictive mean vectors and between predictive co-
variance matrices computed using the exact versus using the
approximate GP. We provide experiments on both simulated
data and standard benchmarks to evaluate the effectiveness of
our theoretical bounds.

1 Introduction
Gaussian processes (GPs) have long been studied in probabil-
ity and statistics; see e.g. Rasmussen and Williams (2006). In
Bayesian inference, they provide a canonical way to define
a probability distribution over functions, which can be used
as a prior to build probabilistic frameworks for quantifying
uncertainty in prediction. Among many applications, they
have been a method of choice for hyperparameter tuning in
deep learning (Snoek, Larochelle, and Adams 2012).

In the simplest setting of GP regression, which is the focus
of this paper, a measure over functions f : x 7→ y is defined
such that, for any collection X = (x1, . . . ,xN ) of feature
vectors, their corresponding responses y = (y1, . . . , yN )
are jointly Gaussian, with zero mean and covariance ma-
trix K(kθ, X) := (kθ(xi,xj))ij , where kθ(·, ·) is a positive
semidefinite kernel indexed by some parameter vector θ. A
common inferential practice is to assume that we do not ob-
serve the Gaussian sample directly but additional noise drawn
from a zero-mean isotropic Gaussian is added to it prior to
our observation. Bayesian inference then proceeds by estimat-
ing θ and the noise variance as well as computing predictive
distributions of unobserved responses y∗ corresponding to a
collection of new feature vectors X∗ of interest. These infer-
ence tasks require computing the inverse and determinant of
the covariance matrix K(kθ, X), which naively costs O(N3)
operations (or more precisely matrix multiplication time),
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making the inferential framework hard to scale computation-
ally beyond a few thousand observations.

The computational burden of GP inference has moti-
vated a large body of work on faster, approximate inference
frameworks, as surveyed in Liu et al. (2020). Many rely
on the Nyström method, identifying for this purpose a set
of “inducing inputs” on the input (i.e. feature vector) do-
main (Quiñonero-Candela and Rasmussen 2005; Snelson and
Ghahramani 2006; Titsias 2009; Williams and Seeger 2001;
Hensman, Fusi, and Lawrence 2013), or the spectral domain
(Lázaro-Gredilla et al. 2010; Gal and Turner 2015; Hensman,
Durrande, and Solin 2017). Other approaches are based on
approximating the kernel by truncating its Mercer expan-
sion (Ferrari-Trecate, Williams, and Opper 1999; Solin and
Särkkä 2020), or using random features (Cutajar et al. 2017).
For more discussion see Section 2.

The motivating question for this work is that, while there
is substantial work providing approximation guarantees for
various low-rank kernel approximations with respect to dif-
ferent metrics, the impact of such approximation guarantees
to the quality of approximate GP inference is not sufficiently
understood. E.g. many works provide entry-wise approxima-
tion guarantees between a given kernel and an approximate
one constructed via the Nyström method, random features,
Mercer expansion truncation, or other approximation tech-
nique; see e.g. Rahimi and Recht (2008); Cortes, Mohri, and
Talwalkar (2010); Yang et al. (2012). However, it is unclear
how to translate such entry-wise guarantees to meaningful ap-
proximation guarantees relating GP inference using an exact
kernel to inference using an approximate kernel.

Recent work by Burt, Rasmussen, and van der Wilk (2020)
pursued an investigation similar to ours for the sparse vari-
ational GP regression framework (Titsias 2009; Hensman,
Matthews, and Ghahramani 2015). They provide bounds for
the Kullback–Leibler (KL) divergence between the true pos-
terior distribution and one obtained using inducing inputs in
the above framework.

The goal of our work is to provide bounds for the impact
to GP inference of two other prominent low-rank kernel
approximation methods, based on random features (Thm 2)
and on truncating the kernel’s Mercer expansion (Thm 3). In
particular, we provide bounds on the KL divergence between
the marginal likelihood of an idealized GP with covariance
matrix K(kθ, X) and the marginal likelihood of a GP with a



low-rank covariance matrix Σ obtained from kθ and X using
random features, or truncating kθ’s Mercer expansion. We
quantify the KL divergence in terms of the rank of Σ. We
show that moderate values of the rank suffice to bring the KL
divergence below any desired threshold εN , where ε > 0.
We obtain similar bounds for the KL divergence between the
predictive densities of the exact and approximate GP, and
we also bound the error between the predictive mean vectors
and between the predictive covariance matrices computed
using the exact vs using the approximate GP. In the balance,
our work provides theoretical grounding for the use of two
common low-rank kernel approximations in GP regression,
quantifying the inferential loss suffered in exchange for the
computational benefit of working with a low-rank kernel, as
discussed in Sec 3.2.

In Sec 5.1, we provide experiments investigating the ef-
fectiveness of our theoretical bounds in capturing the depen-
dence of the KL approximation on the dimension of the input
features and the rank of Σ. In particular, by comparing the
blue and green curves of Fig 1 we validate our theoretical
results suggesting that the Gaussian kernels require lower
rank approximations to achieve a desired threshold εN when
compared with Matérn kernels with the same feature vector
dimensions. Similarly, by comparing the solid and dotted
curves of Fig 1 we validate our theoretical results suggesting
that the Mercer approximations require lower rank kernels
to achieve a desired threshold εN when compared with a
random feature approximations with the same feature vector
dimensions. Moreover, our theoretical bounds suggest that,
for a fixed rank of Σ, approximating the Gaussian kernel
using random features results in worst KL approximation
compared to approximating it by truncating its Mercer expan-
sion. This is indeed reflected in our experiments on simulated
data, when comparing the blue curves of the two panels of
Fig 2. Similarly, our theoretical bounds suggest that truncat-
ing the Mercer expansion of the Gaussian kernel provides
better approximation compared to truncating the expansion
of the Matérn kernel, and this is indeed reflected when com-
paring the blue and green curves of the right panel of Fig 2.

In a series of real data experiments in Sec 5.2, we illus-
trate how low-rank approximations perform with different
kernels and different ranks. The results indicate that Mercer
approximations outperform random Fourier features and they
perform similarly with the sparse Gaussian process regres-
sion (SGPR) of Titsias (2009), analyzed theoretically by Burt,
Rasmussen, and van der Wilk (2020). The better performance
of Mercer compared to Fourier is consistent with our theoret-
ical bounds. The similar performance of Mercer and SGPR
is also consistent with theory, as per our comparison to Burt,
Rasmussen, and van der Wilk (2020) in Sec 2.

Paper Roadmap. Sec 2 discusses further related work.
Sec 3 presents the basic GP regression setting, and well-
known facts about the computational benefits of using low-
rank kernel approximations. In Sec 4, we provide our the-
oretical results for the inferential impact to GP regression
of using low-rank kernel approximations, based on random
features (in Sec 4.1) and based on truncating the Mercer ex-
pansion of the kernel (in Sec 4.2). In both cases, we provide

bounds on the KL divergence between a GP and one obtained
by a low-rank approximation to its kernel. In Sec 4.3 we
state that these approximate guarantees are extended for the
corresponding predictive densities. In Sec 5, we provide ex-
periments whose goal is two-fold: to illustrate our theoretical
guarantees in simulated data scenarios and to investigate the
practical performance of our studied kernel approximations,
as suggested by our theoretical bounds, on a broad collection
of standard benchmarks.

2 Related work
The challenge of scaling up GP inference is well-recognized
and well-explored. We have already provided several refer-
ences on approximate GP inference using inducing inputs
and kernel approximations. Theoretical guarantees for GP
approximations with finite models, have been provided in
(Zhu et al. 1997; Ferrari-Trecate, Williams, and Opper 1999),
where the notion of Mercer truncation is utilized to provide
similar results over the choice of the approximating rank r.
In both cases, the quality of their approximation is expressed
in terms of expected mean squared error. However, note that
their bounds crucially depend on a “large N” assumption,
as several sums are approximated by integrals in their de-
velopment. Thus their bounds on mean squared error are
only approximate and they do not quantify what is the loss
resulting from their large N assumption.

The approximation error resulting from low-rank approxi-
mations based on random Fourier features has been recently
studied by Hoang et al. (2020). In comparison to their results,
our bound of Thm 2 is much more general as their guaran-
tees require that the input feature vectors are sampled from
a Gaussian mixture and also that the mixture components
are (i) well-separated and (ii) they contribute exponentially
decaying proportions of the points. In contrast, Thm 2 makes
no distributional assumption about the input points.

Finally, a similar to ours theoretical investigation has been
pursued by Burt, Rasmussen, and van der Wilk (2020) for the
different method of sparse variational GP regression of Titsias
(2009); Hensman, Matthews, and Ghahramani (2015). They
provide bounds on the number of inducing inputs necessary
to bring the KL divergence between the true GP posterior and
the variational distribution obtained by the use of inducing
inputs below a desired threshold. For the Gaussian kernel, the
required number of inducing inputs scales logarithmically in
the number N of training inputs, while for the Matérn kernel
it scales polynomially. While their paper and ours bound
different quantities, our bounds from Thm 3 are quantitatively
similar to their bounds in Cor 22 for the Gaussian kernel, and
our bounds have a better dependence on N compared to their
bounds for the Matérn kernel in Cor 25. (To compare set
ε = γ/N in our bounds or γ = εN in their bounds.)

3 Preliminaries
3.1 GP regression
In GP regression, we assume that response variables
y = (yi)

N
i=1 ∈ RN corresponding to a collection of D-

dimensional feature vectors X = (xi)
N
i=1 ∈ RN×D are

noisy evaluations of some random function f(·), i.e. yi is a



noisy observation of f(xi). We take the noise, yi − f(xi),
for each data entry i to be independent Gaussian with mean
0 and variance σ2. Moreover, we place a GP prior over
f(·), with zero mean and kernel kθ(·, ·), so that the col-
lection of function values f(X) := (f(xi))

N
i=1 has a joint

Gaussian distribution with zero mean and covariance matrix
K(kθ, X) := (kθ(xi,xj))ij .

The afore-described assumptions on the data generation
process can be used in a regression setting in order to
make predictions as follows. Suppose that we are given
a collection of train feature vectors Xtrain ∈ RNtrain×D

and corresponding responses ytrain and our goal is to use
this training data to predict the responses ytest on a col-
lection of test feature vectors Xtest ∈ RNtest×D. Setting
Atrain = K(kθ, Xtrain) + σ2INtrain

, the log-marginal like-
lihood of the training data becomes log p(ytrain|Xtrain) =
− 1

2y
>
trainA

−1
trainytrain− 1

2 log |Atrain|− Ntrain

2 log(2π). Con-
ditioning on the training data, the distribution of ytest is
normal with mean and variance given by the following:
• E(ytest|ytrain) = K(kθ, Xtest, Xtrain)A−1

trainy

• Var(ytest|ytrain) = K(kθ, Xtest) + σ2INtest

−K(kθ, Xtest, Xtrain)A−1
trainK(kθ, Xtest, Xtrain)>

where K(kθ, Xtest, Xtrain) := (kθ(xtest,i,xtrain,j))ij .

3.2 Low-rank GP regression
Consider the setting of Sec 3.1, and additionally suppose
that the kernel function kθ(·, ·) is low-rank in the sense that
there exists a feature map φ : RD → Rr such that for
all x,x′ ∈ RD: kθ(x,x′) = 〈φ(x), φ(x′)〉, where 〈·, ·〉 is
the Euclidean inner product. It follows that the kernel ma-
trix K(kθ, X) computed on a collection of feature vectors
X = (xi)

N
i=1 can be written as K(kθ, X) = ΞΞ>, where

Ξ is an N × r matrix whose rows are the vectors φ(xi), for
i = 1, . . . N . As such, we get that the covariance matrix of
the training data ytrain is Atrain = ΞtrainΞ>train + σ2INtrain

.
We can then use the Woodbury matrix inversion lemma
and the Sylvester determinant theorem to obtain explicit
forms for the inverse of Atrain and its determinant: A−1

train =
σ−2INtrain

− σ−2Ξtrain(σ2Ir + Ξ>trainΞtrain)−1Ξ>train, and
|Atrain| = σ2(Ntrain−r)|σ2Ir + Ξ>trainΞtrain|. Since these
identities involve inversion or determinant calculations of
r× r matrices, by plugging them into the expressions for the
log-marginal likelihood of observations y and the mean and
variance of the predictive density of future observations y∗,
we can, with the right ordering of operations, compute the
log-likelihood and the predictive density in O(r3 + r2Ntrain)
time, i.e. linear in Ntrain, when r is a constant.

4 Approximation guarantees
We consider the setting of Sec 3.1. In particular, we suppose
that f(·) is sampled from a GP with mean zero and kernel
function kθ : RD × RD → R, and suppose that a collection
X = (xi)

N
i=1 of feature vectors maps to a collection of

responses y = (yi)
N
i=1 sampled as follows

y ∼ N (0,K + σ2IN ), (1)

where K := K(kθ, X) ≡ (kθ(xi,xj))ij .

A well-studied topic in mathematics, statistics, and ma-
chine learning is approximating kernels with low-rank ker-
nels. Given a kernel function kθ, a long line of research has
aimed to identify feature maps φθ,ε : RD → Rr satisfying
that, for a collection of features vectors X = (xi)

N
i=1,

K(kθ, X) ≈ε Σ(φθ,ε, X), (2)

where Σ(φθ,ε, X) = (φθ,ε(xi)
>φθ,ε(xj))ij . In (2), we have

left the notion of approximation “≈ε” intentionally vague,
for now, as there are many notions of approximation that
have been pursued in the literature. We will soon discuss
some instantiations. The parameter ε is a tunable parameter
controlling the quality of the approximation.

The goal of this paper is to quantify the loss of using the
approximate kernel Σ(φθ,ε, X) in place of the original kernel
K(kθ, X) for the purposes of GP regression. In particular,
we want to compare, in some precise sense, doing inference
using the “idealized model” (1) versus an approximate model,
which samples responses y = (yi)

N
i=1 for a collection of

feature vectors X = (xi)
N
i=1 as follows:

y ∼ N (0,Σ + σ2IN ), (3)

where Σ := Σ(φθ,ε, X). Notice that Σ can be written as Σ =
ΞΞ>, where Ξ is a N ×r matrix whose rows are φθ,ε(xi) for
i = 1, . . . , N . Thus, Σ is a rank-r matrix and, as discussed
in Sec 3.2, GP regression under (3) is computationally cheap
when r is small. Our goal is to quantify the inferential loss
suffered in exchange for the computational benefit of working
with a low-rank kernel.

The sense in which we aim to quantify the inferential loss
is by bounding the KL divergence between the marginal likeli-
hood under (3) and under (1). In Secs 4.1 and 4.2, we provide
such bounds for two common low-rank kernel approximation
methods, based on random features and Mercer expansion
truncation respectively. In Sec 4.3, we show that our bounds
also bound the KL divergence between the predictive densi-
ties, as well as the prediction error.

We start with a generic result, providing bounds on the KL
divergence between Gaussians whose covariance matrices
have special structure.
Proposition 1 (Proof in the supplementary material). Sup-
pose that Σ1 and Σ2 are N ×N positive definite (symmetric)
matrices, such that (1 + γ)Σ1 − Σ2 is positive semi-definite
for some γ ≥ 0. Then

KL(N (0,Σ1) ‖ N (0,Σ2)) ≤
1

2
Tr(Σ

−1/2
2 (Σ1 − (1− γ)Σ2)Σ

−1/2
2 ). (4)

If additionally Σ2 � (1 + γ)−1Σ1, then we obtain

KL(N (0,Σ1) ‖ N (0,Σ2)) ≤ γN. (5)

If Σ1 = σ2IN +K1 and Σ2 = σ2IN +K2, whereK1 and
K2 are positive semi-definite, σ2 > 0, and (1 + γ)Σ1 − Σ2

is positive semi-definite, then

KL(N (0,Σ1) ‖ N (0,Σ2)) ≤
1

2σ2
Tr(K1 − (1− γ)K2 + γσ2IN ). (6)



In the next sections we will instantiate Prop 1 by taking
K1 = K(kθ, X) and K2 = Σ(φθ,ε, X), resulting respec-
tively in the idealized data generation process of (1) and the
approximate one of (3). Our theorem states that the KL diver-
gence between these two processes is controlled by (4)–(6),
which as we will see next can become smaller than any de-
sired εN for relatively modest values of the rank r, namely
poly-logarithmic in N (Thm 2), or even an absolute constant
(Thm 3), whenever the dimension D is an absolute constant.

4.1 Guarantees for random feature
approximation

A common framework for low-rank kernel approximations
defines a parametric family of functions eη : RD → R and
a distribution p(η) over η, picking a random feature map
φ(x) = (eη1

(x), . . . , eηr (x)) by sampling η1, . . . ,ηr ∼
p(η). The goal is that the resulting feature map φ results in
a good approximation of some target kernel matrix K(k,X)
by Σ(φ,X), as discussed earlier in this section.

For example, the celebrated work by (Rahimi and Recht
2008) exploits Bochner’s theorem for shift invariant kernels
to derive from it a kernel-specific density p(η) that it uses in
conjunction with the family of cosine functions eη(·) with fre-
quency and phase determined by η. Specifically eη(·) is de-
rived from a random Fourier feature with spectral frequency
η; see also (Cutajar et al. 2017).

However, the kernel approximation guarantees obtained
by (Rahimi and Recht 2008) (as well as by much work in
this literature) only bound the element-wise distance between
the kernel matrices K(k,X) and Σ(φ,X). To bound the KL
divergence between (1) and (3) such entry-wise bounds are
insufficient. Rather, we need a spectral approximation of
K(k,X) + σ2I by Σ(φ,X) + σ2I , as per Prop 1. Making
use of spectral approximations by (Avron et al. 2018) for
modified Fourier features, we show that the KL divergence
between (1) and (3) can indeed be controlled for the Gaussian
kernel. We provide our statement for the Gaussian kernel
with the same fixed scaling in every direction for notational
simplicity. It extends to the general Gaussian kernel with
different scaling per direction in an obvious way (namely by
rescaling coordinates).

Theorem 2 (Proof in the supplementary material). Con-
sider the D-dimensional Gaussian kernel k(x,x′) =
exp(−2π2||x − x′||22), and the kernel matrix K =
K(k,X) = (k(xi,xj))ij , where X = (x1, . . . ,xN ) is
a collection of points in RD such that, for some R > 0,
||xi − xj ||∞ ≤ R,∀i, j. Suppose D ≤ 5 log(N/σ2) + 1
and ε ∈ (0, 0.5). There exists (a samplable in O(D)-
time) distribution p(η) and a parameterized family eη(·)
of modified Fourier Features such that, if we take r ≥
Ω
(
RD

ε2 (log N
σ2 )2D log(Nδ )

)
random η1, . . . ,ηr ∼ p(η) and

define the rank-r matrix Σ = Σ(φ,X) using the feature map
φ(x) = (eη1

(x), . . . , eηr (x)), then with probability at least
1 − δ, the KL divergence from distribution (3) to distribu-
tion (1) is at most εN .

4.2 Guarantees for Mercer truncation
approximation

In this section, we discuss an alternative approach for obtain-
ing low-rank kernel approximations, based on truncating the
Mercer expansion of the kernel (Mercer 1909), and our asso-
ciated approximation guarantees when this low-rank kernel
approximation is used in GP regression.

Suppose that kθ is a Mercer kernel on some probability
space X ⊆ RD with probability measure µ, which means
that kθ(·, ·) can be written as:

kθ(x,x
′) =

∞∑
t=1

λtet(x)et(x
′), (7)

where (λt)t∈N is a sequence of summable non-negative, non-
increasing numbers, i.e. eigenvalues, and (et)t∈N is a family
of mutually orthogonal unit-norm functions with respect to
the inner product 〈f, g〉 =

∫
X f(x)g(x)dµ(x), defined by

µ, i.e. eigenfunctions. Now suppose that X = (xi)
N
i=1 is a

collection of vectors xi ∈ X . It follows from Eq. (7) that the
kernel matrix K(kθ, X) can be written as:

K(kθ, X) ≡
∞∑
t=1

λtωtω
>
t , (8)

where ωt = (et(x1), et(x2), . . . , et(xN )), for all t ∈ N.
Recall that the sequence (λt)t is summable so λt → 0 as
t→∞. The rate of decay is very fast for many kernels. For
example, the decay is exponentially fast for the Gaussian
kernel, and polynomially fast for the Matérn kernel when
the input distribution is compact or concentrated. These are
standard facts (see e.g. (Rasmussen and Williams 2006)), but
for completeness we illustrate how to derive the eigendecom-
position of the high-dimensional Gaussian kernel under a
Gaussian input density in Sec B of the supplement.

The fast decay of the eigenvalues motivates approximat-
ing K(kθ, X) by keeping the first few terms of (8). In our
theorem, we quantify the impact of that truncation to GP
regression in terms of the KL divergence between the data
likelihood of the GP process with kernel K(kθ, X) and the
GP process with the truncated kernel.
Theorem 3 (Proof in the supplementary material). For
some B > 0, let k(·, ·) be a Mercer kernel on probabil-
ity space (X , µ) with k(x,x) ≤ B, for all x ∈ X . Let X =
(x1, . . . ,xN ) comprise N samples from µ, let K = K(k,X)
(which satisfies (8)), and let Σ =

∑r
t=1 λtωtω

>
t , for some

r ∈ N. (So the rank of Σ is r.) With probability at least
1 − δ (with respect to the samples X), the KL divergence
from distribution (3) to distribution (1) is at most

N

2σ2
·

(
Λ>r +

√
BΛ>r
Nδ

)
, (9)

where Λ>r =
∑
t>r λt. Two example instantiations of the

bound are as follows:
• Suppose k(x,x′) = exp(−2π2||x − x′||22) is the multi-

variate Gaussian kernel over RD, endowed with a Gaus-
sian density µ(x) = (2π/R2)

D
2 exp(−2π2||x||22/R2),



where R > 0. For any absolute constant 0 < c < 1,
choosing rank

r =


(
Ω(RD log(RD ∨ e) +R log 1

εσδ )
)D

, if R ≥ c(
Ω

(
D

log 1
R

(
log D

log 1
R

∨ log 2
R2

)
+

log 1
εσδ

log 1
R

))D
, ow

makes (9) at most εN . In both bounds the constant hidden
by the Ω(·) notation depends on c and no other parameter.
Moreover, the bound easily extends to Gaussian kernels
with different length scales per dimension and other prod-
uct Gaussian input measures µ.
• Suppose k(x,x′) is a Matérn kernel with parameter ν >

0 and length scale α > 0 over RD,1 endowed with a
bounded measure µ(x) over a bounded set. Then choosing
rank r ≥ A

(
1
εσδ

)Ω(D/ν)
makes (9) at most εN , for some

constant A that depends on ν, α,D and the bounds on µ
and its support, but does not depend on ε, σ, δ,N .

4.3 Approximation guarantees for GP regression
There are two ways to use Thms 2 and 3 to obtain bounds
on the approximation error resulting from using an approx-
imate GP model based on either random Fourier features
or truncating the Mercer expansion of the kernel. Indeed, if
we apply those theorems using X = Xtrain and y = ytrain

we immediately get bounds on KL(P (ytrain) ‖ Q(ytrain))
where P (ytrain) and Q(ytrain) are respectively the densities
of the training data under the exact GP and the approximate
one. Indeed, in the settings of Thms 2 and 3 and the choice
of rank made in these theorems for N = Ntrain, we get that
with probability at least 1−δ (with respect to the randomness
in the sampling of modified Fourier Features in the setting of
Thm 2 and the sampling of Xtrain in the setting of Thm 3):

0 ≤ KL(P (ytrain) ‖ Q(ytrain)) ≤ εNtrain.

By the definition of KL divergence, this bound can be inter-
preted as a bound on the difference of the marginal likeli-
hoods under the true and the approximate GP, in expectation
over data sampled from the true GP. Indeed, we equivalently
get that, with probability ≥ 1− δ:

0 ≤ Eytrain∼P [logP (ytrain)− logQ(ytrain)] ≤ εNtrain.

Moreover, it is straightforward to use Thms 2 and 3 to ob-
tain bounds on the Kullback–Leibler divergence between the
predictive densities of unobserved responses ytest on new fea-
tures Xtest corresponding to the exact GP and that obtained
by either random Fourier features or by truncating the Mercer
expansion of the kernel. Indeed, if we apply those theorems

using X =

[
Xtrain

Xtest

]
and y =

[
ytrain

ytest

]
, we immediately get

1Specifically the kernel takes the form

k(x,x′) =
21−ν

Γ(ν)

(
‖x− x′‖2

α

)ν

Kν

(
‖x− x′‖2

α

)
,

where Kν is a modified Bessel function and α = `/
√

2ν, ` > 0;
see Chapter 4 of Rasmussen and Williams (2006).

bounds on KL(P (ytrain,ytest) ‖ Q(ytrain,ytest)) where
P (ytrain,ytest) andQ(ytrain,ytest) are the joint densities of
the combined vector of observed and unobserved responses,
under respectively the exact GP and the approximate GP. In-
deed, in the settings of Thms 2 and 3 and the choice of rank
made in these theorems forN = Ntrain+Ntest = Ntotal, we
get that with probability at least 1− δ (w.r.t. the randomness
in the sampling of modified Fourier Features in the setting of
Thm 2 and the sampling of Xtrain in the setting of Thm 3):

KL(P (ytrain,ytest) ‖ Q(ytrain,ytest)) ≤ εNtotal. (10)

By the chain rule of KL divergence, the LHS of (10) equals

KL(P (ytrain) ‖ Q(ytrain))

+ KL(P (ytest|ytrain) ‖ Q(ytest|ytrain)).

Because of the non-negativity of Kullback–Leibler diver-
gence, Eq (10) implies that with probability at least 1− δ:

KL(P (ytest|ytrain) ‖ Q(ytest|ytrain)) ≤ εNtotal.

By the definition of conditional KL divergence, we equiva-
lently get that with probability≥ 1−δ (w.r.t. the randomness
in the sampling of modified Fourier Features in the setting
of Thm 2 and the sampling of Xtrain in the setting of Thm 3)
the expected (w.r.t. ytrain ∼ P ) KL divergence between the
predictive densities of the true and the approximate GPs are
close:

Eytrain∼P [KL(P (ytest|ytrain) ‖ Q(ytest|ytrain))] ≤ εNtotal.
(11)

In turn, by using Markov’s inequality, we get that for η of
our choosing, with probability at least 1 − δ − η (w.r.t. the
sampling of both ytrain ∼ P and the randomness in the
sampling of modified Fourier Features in the setting of Thm 2
and the sampling of Xtrain in the setting of Thm 3):

KL(P (ytest|ytrain) ‖ Q(ytest|ytrain)) ≤ ε

η
Ntotal. (12)

Finally, since both P (ytest|ytrain) and Q(ytest|ytrain) are
Gaussian distributions, our bounds from (11) and (12) di-
rectly bound the error between the predictive mean vectors
and between the predictive covariance matrices computed us-
ing the approximate vs using the true GP, as per the following
proposition:
Proposition 4. Consider arbitrary N -dimensional
Gaussians N (µ1,Σ1) and N (µ2,Σ2). Suppose
that Σ1 and Σ2 are non-singular, and suppose that
KL(N (µ1,Σ1) ‖ N (µ2,Σ2)) ≤ γ for some γ ≥ 0. Then

1

2
(µ2 − µ1)TΣ−1

2 (µ2 − µ1) ≤ γ, (13)

b(2γ) · Σ2 � Σ1 � t(2γ) · Σ2, (14)

where b(2γ) and t(2γ) are respectively the smallest and
largest roots of x − 1 − ln(x) = 2γ. In particular, the Ma-
halanobis distance of µ1 from (µ2,Σ2) is bounded by

√
2γ

and Σ1 and Σ2 are spectrally close.2

2It can be shown that b(2γ) ≥ max(1− 2
√
γ, exp(−1− 2γ))

and t(2γ) ≤ 1 + max(
√

8γ, 8γ) so these explicit expressions can
be plugged in place of b(2γ) and t(2γ) respectively in (14).



We set P (ytest|ytrain) in place of N (µ1,Σ1) and
Q(ytest|ytrain) in place of N (µ2,Σ2) in Prop 4 and com-
bine it with the bound of (12) to get the following:

• With probability ≥ 1 − δ − η (w.r.t. the randomness
in the sampling of modified Fourier features in the set-
ting of Thm 2 and the sampling of Xtrain in the setting
of Thm 3 as well as the sampling of ytrain ∼ P ) the
Mahalanobis distance between the predictive mean vec-
tor under the true and the approximate GP is at most√

2ε/ηNtotal. Moreover, the predictive covariances of
the true and the approximate GPs are sandwiched as fol-
lows b(2ε/ηNtotal) · Σ2 � Σ1 � t(2ε/ηNtotal) · Σ2.

For the above bounds to be most effective, it makes sense
to choose ε to scale with Ntotal, perhaps as 1/Nκ

total for
some κ. We note that depending on the choice of κ the rank
bound of Thm 2 may or may not be effective. (It is effective
if κ < 1/2). On the other hand, the rank bound of Thm 3
remains effective regardless the choice of κ as the appearance
of ε in the rank bound is milder.

5 Experiments
We perform a series of simulated and real-data experiments
for studying our theoretical bounds in practise. The low-rank
approximation techniques of Secs 4.1 and 4.2 are refered to
as Fourier GP (FGP) and Mercer GP (MGP) respectively.

Inference for FGP is based on guidelines given by (Rahimi
and Recht 2008). We sample, for even r, r2 spectral frequen-
cies η1, . . . ,η r2 from the spectral density p(η) of the kernel,
and compute the feature map φ(x) : RD → Rr, defined by√

2
r [cos(η>1 x), . . . , cos(η>r

2
x), sin(η>1 x), . . . , sin(η>r

2
x)]>.

The spectral frequencies are only sampled once, before
training, and are kept fixed throughout the optimization
of the log-marginal likelihood. The spectral density of the
Gaussian kernel (31), which we use in our experiments, is
p(η) =

√
|2π∆−1|σ−2

f exp(−2π2η>∆−1η).
Inference for MGP is straightforward when D = 1. How-

ever, when D > 1 the eigenvalues and eigenvectors are con-
structed as tensor products so their computational complexity
is prohibitively large for even small values of D; see Sec B
of the supplement. Therefore, for our real data experiments
we devise a simple computational trick to circumvent this
problem as follows. We linearly project the D-dimensional
features to a lower d-dimensional space via a weight matrix
W of dimension D × d that is readily estimated by maxi-
mizing the marginal log-likelihood. The resulting projected
feature matrix Z = (z1, z2, . . . , zN ) has dimension N × d.
Next, we compute a low-rank Σ by keeping, from the Mer-
cer expansion of the kernel, the top r, under some ordering,
tensor products of the eigenfunctions: Σ =

∑r
n=1 λnξnξ

>
n ,

where ξn = [en(z1), . . . , en(zN )]> ∈ RN and er is the
eigenfunction of the kernel indexed by r. The choice of the
ordering of the tensor product of eigenvectors is first based
on the total degree of the corresponding orders in each dimen-
sion and second on lexicographical order. Finally, note that
the parameters aj in (32) of Sec B of the supplement have to
be prefixed or learnt from the data. We choose to keep them

fixed with their values set to 1/
√

2, which corresponds to a
standard d-dimensional Gaussian measure over z. Thus, we
also standardize the projected features z.
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Figure 1: The lowest rank needed for Σ so that KL(N (0,K+
σ2IN ) ‖ N (0,Σ + σ2IN )) ≤ εN as the input dimension D
increases, in the low-rank approximation settings of Thms 2
(solid lines) and 3 (dashed lines). We sample N = 5000
points from N (0, 1

162 ID) for the GP with Gaussian kernel,
and sample from a D-dimensional U(−

√
3

16 ,
√

3
16 ) for Matérn-

1/2. We set σ2 = 1 and ε = 0.01, respectively. For reference,
we show the full rank line in black.

5.1 Experimental rates of convergence
In this Section we use simulated data experiments to investi-
gate the effectiveness of our theoretical bounds in capturing
the dependence of the KL approximation on the dimension
of the input features and the rank of K.

Fig 1 depicts, for fixed εN , the lowest rank r needed for
Σ such that KL(N (0,K + σ2IN ) ‖ N (0,Σ + σ2IN )) ≤
εN against the feature dimension D. Our theoretical results
are supported by comparing the blue against green and the
solid against the dotted curves: the former indicates that
the Gaussian kernels require lower rank kernels to achieve
the desired threshold when compared with Matérn kernels
3 whereas the latter supports the theoretical results stating
that the Mercer approximations require lower rank kernels
to achieve a desired threshold εN when compared with a
random feature approximations.

Fig 2 illustrates the practical behaviour, as a function of
the rank, of the KL-divergence between an exact GP and an
approximate GP obtained using random features or Mercer
expansion truncation, in two example settings covered by
Thms 2 and 3. Our theoretical bounds suggest that, for a
fixed rank of Σ, approximating the Gaussian kernel using
random features results in worst KL approximation compared
to approximating it by truncating its Mercer expansion. This
is indeed reflected in our experiments on simulated data,
when comparing the blue curves of the two panels of Fig 2.
Similarly, our theoretical bounds suggest that truncating the

3Due to the analytical difficulty of getting closed forms for the
eigenvalues/eigenfunctions of Matérn kernels, we resort to approxi-
mating their values by eigendecomposing the data kernel matrix.



NEGATIVE LOG-PREDICTIVE DENSITY

BIKE ELEVATORS SUPER PROTEIN SARCOS KEGGDIR 3DROAD
Ntrain 15641 14939 19136 41157 44039 48071 391386
Ntest 1738 1660 2127 4573 4894 5342 43488
D 57 18 81 9 21 19 3

SGPR6 1.43(0.01) 0.52(0.01) 0.69(0.00) 1.22(0.00) 0.35(0.01) 0.65(0.01) 1.32(0.01)
FGP6 0.97(0.02) 1.13(0.18) 0.76(0.01) 1.29(0.01) 0.41(0.00) 1.27(0.01) 1.28(0.00)
MGP6 0.99(0.01) 0.56(0.01) 0.97(0.01) 1.25(0.00) 0.33(0.00) 0.98(0.00) 1.31(0.01)

SGPR10 0.90(0.28) 0.50(0.01) 0.64(0.01) 1.19(0.00) 0.16(0.02) 0.58(0.01) 1.06(0.00)
FGP10 0.92(0.01) 1.16(0.24) 0.76(0.00) 1.22(0.01) 0.34(0.00) 1.06(0.01) 1.21(0.00)
MGP10 0.73(0.01) 0.48(0.01) 0.68(0.01) 1.19(0.00) −0.04(0.00) 0.67(0.00) 1.15(0.01)

SGPR50 0.19(0.01) 0.46(0.01) 0.57(0.01) 1.11(0.01) −0.21(0.00) 0.35(0.01) 0.92(0.00)
FGP50 0.92(0.01) 0.56(0.01) 0.69(0.01) 1.19(0.00) −0.11(0.00) 0.71(0.01) 1.06(0.00)
MGP50 0.29(0.01) 0.45(0.01) 0.51(0.01) 1.15(0.00) −0.26(0.00) 0.46(0.00) 1.02(0.00)

SGPR100 0.05(0.01) 0.44(0.01) 0.53(0.01) 1.07(0.01) −0.30(0.00) 0.27(0.00) 0.86(0.01)
FGP100 0.87(0.04) 0.53(0.01) 0.64(0.00) 1.16(0.00) −0.20(0.00) 0.60(0.01) 1.01(0.00)
MGP100 0.04(0.01) 0.43(0.01) 0.51(0.01) 1.14(0.00) −0.29(0.00) 0.39(0.00) 0.85(0.00)

SGPR200 0.02(0.01) 0.43(0.01) 0.50(0.01) 1.01(0.01) −0.39(0.00) 0.20(0.01) 0.83(0.01)
FGP200 0.81(0.03) 0.47(0.01) 0.58(0.01) 1.13(0.01) −0.30(0.00) 0.47(0.01) 0.89(0.00)
MGP200 0.05(0.01) 0.41(0.01) 0.52(0.01) 1.13(0.00) −0.29(0.00) 0.36(0.00) 0.81(0.00)

SGPR300 0.01(0.01) 0.42(0.01) 0.48 (0.01) 0.97 (0.01) -0.45 (0.00) 0.16 (0.01) 0.82(0.00)
FGP300 0.72(0.04) 0.46(0.01) 0.55(0.01) 1.10(0.01) −0.37(0.00) 0.40(0.00) 0.82(0.00)
MGP300 -0.01 (0.00) 0.40 (0.01) 0.50(0.01) 1.02(0.01) −0.30(0.00) 0.21(0.00) 0.79 (0.00)

Table 1: Negative log-predictive density comparison (standard deviations reported in parentheses) on seven standard benchmark
real-world datasets The lowest negative log-predictive density is in bold.
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Figure 2: Decay of KL(N (0,K + σ2IN ) ‖ N (0,Σ + σ2IN )) as the rank r of Σ increases, in the same settings as those in Fig 1
where D = 1. Results from the random feature-based low-rank approximation (i.e. setting of Thm 2) and the Mercer expansion
truncation-based low-rank approximation (i.e. setting of Thm 3) are depicted on the left and right panel, respectively.

Mercer expansion of the Gaussian kernel provides better KL
approximation compared to truncating the expansion of the
Matérn kernel, and this is indeed reflected when comparing
the blue and green curves of the right panel of Fig 2.

5.2 Real data experiments
We conduct thorough experiments, testing the quality of FGP
and MGP over seven datasets from UCI repository (Dua and
Graff 2017). We also compare them to Sparse GP Regression
(SGPR) (Titsias 2009) which uses the Nyström approxima-
tion to conduct inference and whose convergence rates were
studied by Burt, Rasmussen, and van der Wilk (2020).

Both input data and their corresponding responses are
standardized for all datasets. For Bike dataset, we use the
standard dataset, however, we one-hot encoded some of the
categorical features which led to an increased dimensionality.
We train all methods for 300 epochs using Adam (Kingma

and Ba 2014). All GPs use Gaussian kernels with separate
length-scale per dimension. All results have been averaged
over five random splits (90% train, 10% test). The last num-
ber r in an acronym indicates that a method was trained using
rank r. We use r = 6, 10, 50, 100, 200, 300 for all three meth-
ods. For MGP, the projection dimension d is determined by
cross-validation on training data, with its value ranging in
3 ≤ d ≤ 7 across all seven datasets. Table 1 presents com-
parisons of all methods in terms of negative log-predictive
density (NLPD) where a similar table with root mean squared
error (RMSE) scores is given in appendix. Table 1 indicates
that MGP has similar behavior with SGPR. This is consis-
tent with our theoretical predictions as our bounds for MGP
and those of Burt, Rasmussen, and van der Wilk (2020) for
SGPR are quantitatively similar; see discussion in Sec 2. The
slight inferior performance of FGP compared to MGP is also
consistent with the predictions of the theory as the bound of



Thm 2 scales worse than that of Thm 3.

Acknowledgements
C.D. and P.D. acknowledge partial financial support by the
Alan Turing Institute under the EPSRC grant EP/N510129/1.
C.D. was supported by NSF Awards CCF-1901292, DMS-
2022448 and DMS-2134108, by a Simons Investigator
Award, by the Simons Collaboration on the Theory of Algo-
rithmic Fairness, by a DSTA grant, and by the DOE PhILMs
project (No. DE-AC05-76RL01830). The authors would like
to thank Andrew Ilyas for helping them with setting up the
Linux machine used for the experiments.

References
Avron, H.; Kapralov, M.; Musco, C.; Musco, C.; Velingker,
A.; and Zandieh, A. 2018. Random Fourier Features for Ker-
nel Ridge Regression: Approximation Bounds and Statistical
Guarantees. arXiv preprint arXiv:1804.09893.
Braun, M. L. 2006. Accurate error bounds for the eigenvalues
of the kernel matrix. The Journal of Machine Learning
Research, 7(11): 2303–2328.
Burt, D. R.; Rasmussen, C. E.; and van der Wilk, M. 2020.
Convergence of Sparse Variational Inference in Gaussian Pro-
cesses Regression. Journal of Machine Learning Research,
21: 1–63.
Cortes, C.; Mohri, M.; and Talwalkar, A. 2010. On the impact
of kernel approximation on learning accuracy. In Artificial
Intelligence and Statistics, 113–120.
Cutajar, K.; Bonilla, E. V.; Michiardi, P.; and Filippone, M.
2017. Random feature expansions for deep Gaussian pro-
cesses. In International Conference on Machine Learning,
884–893. JMLR. org.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Reposi-
tory. http://archive.ics.uci.edu/ml.
Fan, K. 1953. Minimax theorems. Proceedings of the Na-
tional Academy of Sciences of the United States of America,
39(1): 42.
Fasshauer, G. E. 2012. Green’s functions: Taking another
look at kernel approximation, radial basis functions, and
splines. In Approximation Theory XIII: San Antonio 2010,
37–63. Springer.
Fasshauer, G. E.; and McCourt, M. J. 2012. Stable evaluation
of Gaussian radial basis function interpolants. SIAM Journal
on Scientific Computing, 34(2): A737–A762.
Ferrari-Trecate, G.; Williams, C. K.; and Opper, M. 1999.
Finite-dimensional approximation of Gaussian processes. In
Advances in Neural Information Processing Systems, 218–
224.
Gal, Y.; and Turner, R. 2015. Improving the Gaussian Pro-
cess Sparse Spectrum Approximation by Representing Un-
certainty in Frequency Inputs. In International Conference
on Machine Learning, 655–664.
Hensman, J.; Durrande, N.; and Solin, A. 2017. Variational
Fourier features for Gaussian processes. The Journal of
Machine Learning Research, 18(1): 5537–5588.

Hensman, J.; Fusi, N.; and Lawrence, N. D. 2013. Gaus-
sian Processes for Big Data. In Uncertainty in Artificial
Intelligence, 282. Citeseer.
Hensman, J.; Matthews, A.; and Ghahramani, Z. 2015. Scal-
able variational Gaussian process classification.
Hoang, Q. M.; Hoang, T. N.; Pham, H.; and Woodruff, D. P.
2020. Revisiting the Sample Complexity of Sparse Spec-
trum Approximation of Gaussian Processes. arXiv preprint
arXiv:2011.08432.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.
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A Omitted proofs
Proof of Proposition 1: We first show (4). Recall that the
KL divergence between two Gaussians with non-singular
covariances has a closed form expression:

KL(N (0,Σ1) ‖ N (0,Σ2)) =

1

2

(
Tr(Σ−1

2 Σ1)−N + ln
|Σ2|
|Σ1|

)
. (15)

Because Σ2 is positive definite, Σ−1
2 is too and it has a square

root. Thus, by using properties of the trace we can write:

Tr(Σ−1
2 Σ1) = Tr(Σ

−1/2
2 Σ1Σ

−1/2
2 )

= Tr(Σ
−1/2
2 (Σ1 − (1− γ)Σ2 + (1− γ)Σ2)Σ

−1/2
2 )

= Tr(Σ
−1/2
2 (Σ1 − (1− γ)Σ2)Σ

−1/2
2 )

+ Tr(Σ
−1/2
2 ((1− γ)Σ2)Σ

−1/2
2 )

= Tr(Σ
−1/2
2 (Σ1 − (1− γ)Σ2)Σ

−1/2
2 ) + (1− γ)Tr(IN )

= Tr(Σ
−1/2
2 (Σ1 − (1− γ)Σ2)Σ

−1/2
2 ) + (1− γ)N

Plugging this into (15) yields:

KL(N (0,Σ1) ‖ N (0,Σ2)) = −1

2

(
γN − ln

|Σ2|
|Σ1|

)
+

1

2

(
Tr(Σ

−1/2
2 (Σ1 − (1− γ)Σ2)Σ

−1/2
2 )

)
. (16)

Next we argue the following:

Lemma 5. IfA,B are positive definite, andB−A is positive
semidefinite, then ln

(
|A|
|B|

)
≤ 0.

Proof of Lemma 5: Let `1 ≥ `2 ≥ . . . ≥ `N > 0 be the
eigenvalues of A, and `′1 ≥ `′2 ≥ . . . ≥ `′N > 0 be the
eigenvalues of B, in non-increasing order. Because B � A,
by the min-max theorem (Fan 1953) we have `i ≤ `′i, ∀i.
Thus,

|A|
|B|

=

N∏
i=1

`i
`′i
≤ 1⇒ ln

(
|A|
|B|

)
≤ 0.
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Because (1 + γ)Σ1 � Σ2, it follows from Lemma 5 that

0 ≥ ln

(
|Σ2|

|(1 + γ)Σ1|

)
= ln

(
|Σ2|

(1 + γ)N |Σ1|

)
= ln

(
|Σ2|
|Σ1|

)
−N ln(1 + γ) ≥ ln

(
|Σ2|
|Σ1|

)
−Nγ.

Combining the last inequality with (16) yields Bound (4).

To prove (5), we note that if additionally (1 + γ)Σ2 � Σ1

then:

1

2
Tr(Σ

−1/2
2 ((1 + γ)Σ2 − Σ1)Σ

−1/2
2 ) ≥ 0. (17)

This follows by noticing that matrix Σ
−1/2
2 ((1 + γ)Σ2 −

Σ1)Σ
−1/2
2 � 0. Indeed, for all x ∈ RN and using that

(Σ
−1/2
2 )T = Σ

−1/2
2 :

xTΣ
−1/2
2 ((1 + γ)Σ2 − Σ1)Σ

−1/2
2 x

= (Σ
−1/2
2 x)T((1 + γ)Σ2 − Σ1)(Σ

−1/2
2 x) ≥ 0,

where the last inequality follows from the positive semidefi-
niteness of (1 + γ)Σ2 − Σ1.

Now combining (17) with (4) and using properties of the
trace we get:

KL(N (0,Σ1) ‖ N (0,Σ2))

≤ 1

2

(
Tr(Σ

−1/2
2 (Σ1 − (1− γ)Σ2)Σ

−1/2
2 )

+ Tr(Σ
−1/2
2 ((1 + γ)Σ2 − Σ1)Σ

−1/2
2 )

)

≤ 1

2

(
Tr(Σ

−1/2
2 (2γΣ2)Σ

−1/2
2 )

)
≤ γTr(IN ) = γN.

Let us now move to the proof of (6). We plug Σ1 = σ2IN+



K1 and Σ2 = σ2IN +K2 into (4) to get:

KL(N (0,Σ1) ‖ N (0,Σ2))

≤ 1

2
Tr(Σ

−1/2
2 (K1 − (1− γ)K2 + γσ2IN )Σ

−1/2
2 )

≤ 1

2
Tr(Σ−1

2 (K1 − (1− γ)K2 + γσ2IN )) (18)

where we used properties of the trace. Because K2 is positive
semidefinite, it has eigenvalues `1 ≥ `2 ≥ . . . ≥ `N ≥ 0,
which implies that Σ2 = σ2I+K2 has eigenvalues σ2+`1 ≥
σ2 + `2 ≥ . . . ≥ σ2 + `N > 0, which in turn implies that
Σ−1

2 has eigenvalues (σ2 + `N )−1 ≥ (σ2 + `N−1)−1 ≥
. . . ≥ (σ2 + `1)−1 > 0. Now using (18) and properties of
the trace we have that:

KL(N (0,Σ1) ‖ N (0,Σ2))

≤ 1

2
Tr(Σ−1

2 (K1 − (1− γ)K2 + γσ2IN ))

≤ 1

2
λmax(Σ−1

2 )Tr(K1 − (1− γ)K2 + γσ2IN )

=
1

2
· 1

σ2 + `N
· Tr(K1 − (1− γ)K2 + γσ2IN )

≤ 1

2σ2
Tr(K1 − (1− γ)K2 + γσ2IN ),

where in the above derivation λmax(Σ−1
2 ) is the maximum

eigenvalue of matrix Σ−1
2 . �

Proof of Theorem 2: We will make use of the following
theorem.
Theorem 6 (Theorem 12 of (Avron et al. 2018)). Con-
sider the D-dimensional Gaussian kernel k(x,x′) =
exp(−2π2||x − x′||22), and the kernel matrix K =
K(k,X) = (k(xi,xj))ij , where X = (x1, . . . ,xN )
is a collection of points in RD such that, for some
R > 0, ||xi − xj ||∞ ≤ R,∀i, j. Suppose D ≤
5 log(N/σ2) + 1 and ε ∈ (0, 1). There exists (a sam-
plable in O(D)-time) distribution p(η) and a parameter-
ized family eη(·) of modified Fourier Features such that, if

r ≥ Ω
(
RD

ε2

(
log N

σ2

)2D
log
(
sσ2 (K)

δ

))
, where sσ2(K) =

Tr((σ2I + K)−1K) and δ ∈ (0, 1), then the feature map
φ(x) = (eη1

(x), . . . , eηr (x)) where η1, . . . ,ηr ∼ p(η) sat-
isfies the following with probability at least 1− δ:

(1− ε)(σ2IN +K) � (σ2IN + Σ) � (1 + ε)(σ2IN +K),
(19)

where Σ = (φ(xi)
>φ(xj))ij , and � denotes semi-definite

domination.
Now set Σ1 = σ2IN+K and Σ2 = σ2IN+Σ. Notice that

sσ2(K) = Tr((σ2I+K)−1K) ≤ Tr(IN ) ≤ N . Thus, given
our choice of r, Theorem 6 implies that, with probability at
least 1− δ, Σ1 and Σ2 satisfy:

(1− ε)Σ1 � Σ2 � (1 + ε)Σ1.

Given that for ε ∈ (0, 1
2 ], we get that 1−ε ≥ 1

1+2ε , the above
implies that:

(1 + 2ε)−1Σ1 � Σ2 � (1 + 2ε)Σ1.

Now we use (5) of Proposition 1, to get that the KL diver-
gence from distribution (3) to distribution (1) is bounded by
2εN . �

Proof of Theorem 3: We will make use of the following
theorem:

Theorem 7 (Proof of Theorem 4 in (Braun 2006)). Let
k(·, ·) be a Mercer kernel on probability space (X , µ) with
k(x,x) ≤ B, for all x ∈ X . Let X = (x1, . . . ,xN ) com-
prise samples from µ, let K = K(k,X) (which satisfies (8)),
and let Σ =

∑r
t=1 λtωtω

>
t , for some r ∈ N (which has rank

r). With probability at least 1− δ over the samples X:

Tr(K − Σ) ≤ N ·

(
Λ>r +

√
BΛ>r
Nδ

)
, (20)

where Λ>r =
∑
t>r λt.

To prove the first part of our theorem, notice that, because
Σ is a truncation of K, K − Σ is positive semidefinite. To
prove (9), we set K1 = K, K2 = Σ, and use (6) from
Proposition 1 with γ = 0 to get that the KL divergence from
distribution (3) to distribution (1) is bounded by:

1

2σ2
Tr(K − Σ)

(20)
≤ N

2σ2
·

(
Λ>r +

√
BΛ>r
Nδ

)
.

Next, we prove our bound for the Gaussian kernel using
properties of its eigenspectrum. This is well-understood; see
e.g. (Rasmussen and Williams 2006). For completeness we
also describe it in Section B. As per Equations (33), (34),
(35) in that section, the eigenfunctions and eigenvalues of the
Gaussian kernel can be indexed by vectors n ∈ Nd. Let us
pick an arbitrary, absolute constant 0 < c < 1 and split our
analysis into two cases: R ≥ c and R ≤ c.

• Case R ≥ c: Plugging into (35) and simple manip-
ulations, we obtain that the eigenvalues satisfy λn ≤(
R+1
R2

)D (
1− 1

R+1

)1Tn

, where 1 denotes the vector of
all ones. Moreover, the eigenvalues are ordered in terms
of the “level sets” of 1Tn; in particular, the larger 1Tn
is, the smaller the eigenvalue is, while every n with
the same value of 1Tn has the same eigenvalue. For
m = Ω(RD log(RD)+R log 1

εσδ ), let us take r = |{n ∈



ND | 1Tn < m}|. We have that

Λ>r =
∑

n:1Tn≥m

λn

≤
∑

n:1Tn≥m

(
R+ 1

R2

)D (
1− 1

R+ 1

)1Tn

≤
∞∑
`=m

`D
(
R+ 1

R2

)D (
1− 1

R+ 1

)`
=

(
R+ 1

R2

)D ∞∑
`=m

(
`D
(

R

R+ 1

)`/2)(
R

R+ 1

)`/2
≤
(
R+ 1

R2

)D ∞∑
`=m

(
R

R+ 1

)`/2
≤
(
R+ 1

R2

)D (
R

R+ 1

)m/2
· 1

1−
√

R
R+1

=

(
R+ 1

R2−1/D

)D (
R

R+ 1

)m/2
· 1

R
(

1−
√

R
R+1

) ,
(21)

where the second to last inequality follows from the fact

that `D
(

R
R+1

)`/2
≤ 1 for ` ≥ m = Ω(RD log(RD ∨

e)). To conclude the proof notice that the Gaussian kernel
k(x,x′) = exp(−2π2||x − x′||22) satisfies k(x,x) =
1, hence we can use (9) with B = 1 to bound the KL
divergence from distribution (3) to distribution (1) by

N

2σ2
·

(
Λ>r +

√
Λ>r
Nδ

)
≤ εN, (22)

where the last inequality uses (21) and that m =
Ω(RD log(RD ∨ e) + R log 1

εσδ ). Given that r =

|{n ∈ ND | 1Tn < m}|, we get that to attain (22)
it suffices to choose the rank to be r = mD =(
Ω(RD log(RD ∨ e) +R log 1

εσδ )
)D

.

• Case R ≤ c: Plugging into (35) and simple manipu-
lations, we obtain that the eigenvalues satisfy λn ≤(√

R2+1
R2

)D (
1− 1

R2+1

)1Tn

, where 1 denotes the vec-
tor of all ones. Moreover, the eigenvalues are ordered in
terms of the “level sets” of 1Tn; in particular, the larger
1

Tn is, the smaller the eigenvalue is, while every n with
the same value of 1Tn has the same eigenvalue. For m
equals to

Ω

(
D

log(1 + 1
R2 )

(
log

D

log(1 + 1
R2 )
∨ log

√
R2 + 1

R2

)

+
1

log(1 + 1
R2 )

log
1

εσδ

)
,

let us take r = |{n ∈ ND | 1Tn < m}|. We have that

Λ>r =
∑

n:1Tn≥m

λn

≤
∑

n:1Tn≥m

(√
R2 + 1

R2

)D (
1− 1

R2 + 1

)1Tn

≤
∞∑
`=m

`D

(√
R2 + 1

R2

)D (
1− 1

R2 + 1

)`

=

(√
R2 + 1

R2

)D ∞∑
`=m

(
`D
(

R2

R2 + 1

)`/2)(
R2

R2 + 1

)`/2

≤

(√
R2 + 1

R2

)D ∞∑
`=m

(
R2

R2 + 1

)`/2

≤

(√
R2 + 1

R2

)D (
R2

R2 + 1

)m/2
· 1

1−
√

R2

R2+1

(23)

where the second to last inequality follows from

the fact that `D
(

R2

R2+1

)`/2
≤ 1 for ` ≥ m =

Ω
(

D
log(1+ 1

R2 )
log
(

D
log(1+ 1

R2 )
∨ e
))

. To conclude the

proof notice that the Gaussian kernel k(x,x′) =
exp(−2π2||x − x′||22) satisfies k(x,x) = 1, hence we
can use (9) with B = 1 to bound the KL divergence from
distribution (3) to distribution (1) by

N

2σ2
·

(
Λ>r +

√
Λ>r
Nδ

)
≤ εN, (24)

where the last inequality uses (23) and

m = Ω

(
D

log(1 + 1
R2 )

log

√
R2 + 1

R2

+
1

log(1 + 1
R2 )

log
1

εσδ

)
.

Given that r = |{n ∈ ND | 1Tn < m}|, we get that to
attain (24) it suffices to choose the rank to be
r = mD =(

Ω

(
D

log(1 + 1
R2 )

(
log

D

log(1 + 1
R2 )
∨ log

√
R2 + 1

R2

)

+
1

log(1 + 1
R2 )

log
1

εσδ

))D
.

Given the above, taking r as follows suffices (which might
be a more convenient form of a sufficient bound):

r =

(
Ω

(
D

log 1
R

(
log

D

log 1
R

∨ log
2

R2

)

+
1

log 1
R

log
1

εσδ

))D
.



Finally, we prove our bound for the Matérn kernel with
parameter ν and length scale α. It follows from (Seeger,
Kakade, and Foster 2008) that for some constants C and s0

that depend on D, ν, α and the bounds on µ and its support,
the eigenvalues λ1 ≥ λ2 ≥ . . . of the kernel with respect to
measure µ satisfy that

λm ≤ C
(

1

m

) 2ν+D
D

,∀m ≥ s0.

It follows that for any r ≥ s0, we have

Λ>r = C
∑

m≥r+1

(
1

m

) 2ν+D
D

≤ C
∫ +∞

r

1

x
2ν+D
D

dx = C
D

2ν

1

r
2ν
D

. (25)

To conclude the proof notice that the Matérn kernel, as stated
in the statement of the theorem, satisfies k(x,x) = 1. Hence,
we can use (9) with B = 1 to bound the KL divergence from
distribution (3) to distribution (1) by

N

2σ2
·

(
Λ>r +

√
Λ>r
Nδ

)
≤ εN, (26)

where the last inequality uses (25) and choosing r ≥ s0 ∨
A
(

1
εσδ

)Ω(D/ν)
for some constant A that depends on ν, α,D

and the bounds on µ and its support, but does not depend on
ε, σ, δ,N . �

Proof of Proposition 4: The KL divergence between two
Gaussians has an explicit form:

KL(N (µ1,Σ1) ‖ N (µ2,Σ2)) =

1

2

(
tr(Σ−1

2 Σ1)−N + ln

(
|Σ2|
|Σ1|

)

+ (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

)
. (27)

Since Σ1,Σ2 are positive definite the following matrix is
well-defined and positive definite as well:

Λ = Σ
−1/2
2 Σ1Σ

−1/2
2 .

Moreover, observe that

tr(Σ−1
2 Σ1)−N + ln

(
|Σ2|
|Σ1|

)
= tr(Λ)−N − ln (|Λ|)

=

N∑
i=1

(λi − 1− ln(λi)) ,

where 0 < λ1, . . . , λN are the eigenvalues of Λ. Plugging
the above into (27) we get

KL(N (µ1,Σ1) ‖ N (µ2,Σ2)) =

1

2

(
N∑
i=1

(λi − 1− ln(λi))

+ (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

)
. (28)

Next we observe that the function x− 1− ln(x) ≥ 0, for all
x > 0. We also observe that, because Σ−1

2 is positive definite,
(µ2−µ1)TΣ−1

2 (µ2−µ1) ≥ 0. These observations together
with the hypothesis that KL(N (µ1,Σ1) ‖ N (µ2,Σ2)) ≤ γ
from the proposition statement imply that:

1

2
(µ2 − µ1)TΣ−1

2 (µ2 − µ1) ≤ γ; (29)

λi − 1− ln(λi) ≤ 2γ,∀i. (30)
(29) is identical to (13) in the proposition statement. To
show (14) we first observe that the function x − 1 − ln(x)
is convex in its domain x ∈ (0,+∞) and attains its global
minimum of 0 at x = 1. The equation x − 1 − ln(x) =
2γ has thus exactly two roots b(2γ) and t(2γ) satisfying
0 < b(2γ) < 1 < t(2γ). Thus (30) implies that b(2γ) ≤
λi ≤ t(2γ), for all i. As λ1, . . . , λN are the eigenvalues of
Λ = Σ

−1/2
2 Σ1Σ

−1/2
2 this implies that

b(2γ) · Σ2 � Σ1 � t(2γ) · Σ2,

as we had wanted to show. Finally, it is easy to show using
basic calculus that b(2γ) ≥ max(1− 2

√
γ, exp(−1− 2γ))

and t(2γ) ≤ 1 + max(
√

8γ, 8γ). �

B Mercer Expansion of the
Multi-Dimensional Gaussian Kernel

For illustration purposes we provide the Mercer expansion
of the multi-dimensional Gaussian kernel, showing how its
eigenvalue sequence decays exponentially fast. We consider
a general D-dimensional Gaussian kernel as follows:
kσ2

f ,∆
(xi,xj) = σ2

f exp(−(xi − xj)
T∆(xi − xj)), (31)

where ∆ = diag(ε21, . . . , ε
2
D) contains the length scales along

the D dimensions of the covariates, and σ2
f is the variance.

The parameters of the kernel are θ = (σ2
f ,∆).

We view kσ2
f ,∆

(xi,xj) as a kernel over RD equipped with
an axis aligned Gaussian measure ρ(x) = ρ(x1, . . . , xD),
whose density in dimension j is given by
ρj(x

j) = αjπ
−1/2 exp(−α2

j (x
j)2), ∀j = 1, . . . , D. (32)

Mercer’s expansion theorem (Mercer 1909) allows us to write

kσ2
f ,∆

(xi,xj) =
∑

n∈ND
λnen(xi)en(xj), (33)

where (en)n∈Nd is an orthonormal basis of L2(RD, ρ),
wherein inner products are computed using ρ(x). It is well-
known (Rasmussen and Williams 2006; Fasshauer and Mc-
Court 2012; Fasshauer 2012) that such an orthonormal basis
(en)n∈ND can be constructed as a tensor product of the or-
thonormal bases of L2(RD, ρj) for all j, as follows. Setting

βj =
(
1 + (2εj/αj)

2
)1/4

, γnj = β
1/2
j 2(1−nj)/2Γ(nj)

−1/2

and δ2
j = α2

j (β
2
j − 1)/2 the orthonormal eigenvectors are

defined as

en(x) =

D∏
j=1

enj (x
j)

=

D∏
j=1

γnj exp(−δ2
j (xj)2)Hnj−1(αjβjx

j), (34)



where Hn are the Hermite polynomials of degree n and the
corresponding eigenvalues are

λn = σ2
f

D∏
j=1

λnj

= σ2
f

D∏
j=1

(
α2
j

α2
j + δ2

j + ε2j

)1/2(
ε2j

α2
j + δ2

j + ε2j

)nj−1

.

(35)

Note that λnj → 0 as nj →∞. Indeed, as long as α2
j/ε

2
j is

bounded away from 0, this decay is exponentially fast.

C Additional experimental results
Table 2 demonstrates the RMSE values of all methods dis-
cussed in Section 5.2. RMSE values follow similar trends as
the corresponding NLPD values reported in Table 1.

D Code
All experiments were carried out on a Linux machine with
32 2.20GHz CPU cores and 64GB RAM. The implementa-
tion of our code is available at https://github.com/aresPanos/
gurantees GPR.



RMSE

BIKE ELEVATORS SUPER PROTEIN SARCOS KEGGDIR 3DROAD
Ntrain 15641 14939 19136 41157 44039 48071 391386
Ntest 1738 1660 2127 4573 4894 5342 43488
D 57 18 81 9 21 19 3

SGPR6 1.01(0.01) 0.40(0.01) 0.47(0.00) 0.82(0.00) 0.33(0.01) 0.46(0.01) 0.90(0.01)
FGP6 0.61(0.02) 0.77(0.18) 0.52(0.01) 0.88(0.01) 0.36(0.00) 0.86(0.01) 0.87(0.00)
MGP6 0.33(0.01) 0.42(0.01) 0.45(0.01) 0.82(0.00) 0.24(0.00) 0.54(0.00) 0.90(0.01)

SGPR10 0.65(0.28) 0.40(0.01) 0.45(0.01) 0.79(0.00) 0.28(0.02) 0.43(0.01) 0.70(0.00)
FGP10 0.60(0.01) 0.81(0.24) 0.52(0.00) 0.82(0.01) 0.34(0.00) 0.70(0.01) 0.81(0.00)
MGP10 0.27(0.01) 0.40(0.01) 0.40(0.01) 0.77(0.00) 0.21(0.00) 0.47(0.00) 0.75(0.01)

SGPR50 0.25(0.01) 0.38(0.01) 0.42(0.01) 0.73(0.01) 0.19(0.00) 0.34(0.01) 0.61(0.00)
FGP50 0.60(0.01) 0.42(0.01) 0.48(0.01) 0.79(0.00) 0.22(0.00) 0.49(0.01) 0.70(0.00)
MGP50 0.26(0.01) 0.39(0.01) 0.39(0.01) 0.75(0.00) 0.18(0.00) 0.38(0.00) 0.65(0.00)

SGPR100 0.25(0.01) 0.38(0.01) 0.40(0.01) 0.70(0.01) 0.18(0.00) 0.32(0.00) 0.57(0.01)
FGP100 0.55(0.04) 0.41(0.01) 0.46(0.00) 0.77(0.00) 0.20(0.00) 0.44(0.01) 0.66(0.00)
MGP100 0.25(0.01) 0.38(0.01) 0.38(0.01) 0.74(0.00) 0.18(0.00) 0.35(0.00) 0.59(0.00)

SGPR200 0.24(0.01) 0.38(0.01) 0.39(0.01) 0.66(0.01) 0.16(0.00) 0.30(0.01) 0.56(0.01)
FGP200 0.53(0.03) 0.39(0.01) 0.43(0.01) 0.75(0.01) 0.18(0.00) 0.39(0.01) 0.59(0.00)
MGP200 0.24(0.01) 0.37(0.01) 0.38(0.01) 0.73(0.00) 0.17(0.00) 0.34(0.00) 0.55(0.00)

SGPR300 0.24 (0.01) 0.37 (0.01) 0.38 (0.01) 0.64 (0.01) 0.15(0.00) 0.29 (0.01) 0.55(0.00)
FGP300 0.43(0.04) 0.38(0.01) 0.42(0.01) 0.73(0.01) 0.17(0.00) 0.36(0.00) 0.55(0.00)
MGP300 0.24 (0.00) 0.37 (0.01) 0.38 (0.01) 0.70(0.01) 0.16(0.00) 0.33(0.00) 0.53 (0.00)

Table 2: RMSE (standard deviations reported in parentheses) on seven standard benchmarkreal-world datasets The lowest RMSE
is in bold. The experimental set-ups are the same as in Table 1.


