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Abstract

We construct a generalization of the Ornstein–Uhlenbeck processes on the cone of
covariance matrices endowed with the Log-Euclidean and the Affine-Invariant metrics.
Our development exploits the Riemannian geometric structure of symmetric positive def-
inite matrices viewed as a differential manifold. We then provide Bayesian inference for
discretely observed diffusion processes of covariance matrices based on an MCMC algo-
rithm built with the help of a novel diffusion bridge sampler accounting for the geometric
structure. Our proposed algorithm is illustrated with a real data financial application.
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1. Introduction

We are interested in Bayesian inference for diffusion processes of covariance matrices when only
a discrete set of observations is available over some finite time period. Our motivation stems from
financial applications where diffusions have been often adopted to describe continuous-time processes,
see for example, Kalogeropoulos et al. [2010], Stramer et al. [2010], but an inferential framework to
model realized covariances of asset log-returns is not available. This task is challenging not only
because the marginal likelihood of the data obtained in partially observed diffusions is generally
intractable, but also because dealing with covariance matrices requires models that preserve their
positive definiteness. The resulting complexity of Bayesian inference via MCMC sampling algorithms
necessitates the development of dynamics in SP(n), the curved space of symmetric positive definite
matrices in Rn×n, together with sampling algorithms for diffusion bridges in SP(n).

There is considerable work on stochastic differential equations (SDE’s) defined on positive semidef-
inite matrices based on Wishart processes introduced by Bru [1991] as a matrix generalisation of
squared Bessel processes; see for example, Gouriéroux [2006], Gouriéroux et al. [2009], Gouriéroux
and Sufana [2010], Buraschi et al. [2010], Barndorff-Nielsen and Stelzer [2007]. While Wishart pro-
cesses seem natural candidates for Bayesian inference on SP(n), they lack geometric structure which,
as will become evident in our model development, is a highly desirable property. As an example,
Pfaffel [2012] notes that simulation of Wishart processes via the Euler–Maruyama method fails to
always generate points on SP(n) so a time-adjustment algorithm is necessary.

We construct a generalisation of Ornstein–Uhlenbeck (OU) processes on SP(n) by noting that
their dynamics are naturally specified by the Riemannian geometric structure of SP(n) viewed as a
differential manifold endowed with the Euclidean, the Log-Euclidean (LE) and the Affine-Invariant
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(AI) metrics. We emphasize the need to adopt the LE and the AI metrics which, unlike the Euclidean
metric, achieves efficient sampling even from points lying near the boundary of SP(n). We then
propose an MCMC algorithm that operates on SP(n) and alternates between imputing diffusivity-
independent Brownian motions driving diffusion bridges between consecutive observations and ap-
proximating the likelihood with the Euler–Maruyama method adapted to the Riemannian setting via
the exponential map. In particular, the construction for the AI metric required the development of a
novel bridge sampling algorithm. We demonstrate our methodology with simulated and real financial
data.

The essence of our construction is based on the following key points. We adopt an intrinsic point
of view [Elworthy, 1982] of SP(n) equipped with either the LE or the AI metric. We construct
a Riemannian Brownian motion as the limit of a random walk along geodesic segments [Gangolli,
1964] using the exponential map for both metrics. We then proceed to construct a d = n(n + 1)/2-
dimensional OU process on SP(n) by adding a mean reverting drift and prove that its solution is
equivalent to a solution of an SDE in Rd in the case of the LE metric. For the AI metric we establish
existence and non-explosion of the newly proposed process. Finally, armed with the mathematical
constructions, we proceed to the Bayesian estimation through a Bayesian data augmentation strategy
in which the key required ingredient is the ability to sample from a diffusion bridge on SP(n); see
Roberts and Stramer [2001].

Sampling from Brownian bridges has played an important role in Bayesian inference for diffu-
sions. When the transition function is analytically unavailable, MCMC data augmentation sampling
strategies that impute partial trajectories via bridge samplers have been used to numerically approx-
imate the transition functions, see Elerian et al. [2001], Eraker [2001], Roberts and Stramer [2001].
The use of bridge sampling has a long history in the inference for diffusions starting from Pedersen
[1995]. Recent advances include the modified diffusion bridge by Durham and Gallant [2002] and its
modifications, see Golightly and Wilkinson [2008], Stramer et al. [2010], Lindström [2012] and ideas
based on sequential Monte Carlo [Del Moral and Murray, 2015, Lin et al., 2010]. There has been a
line of research based on ideas of Delyon and Hu [2006] that uses guided and residual proposal den-
sities, see van der Meulen et al. [2017], Schauer et al. [2017], Whitaker et al. [2017]. Finally, a recent
promising approach is based on Bladt and Sørensen [2005], see Mider et al. [2019]. We contribute to
this literature by proposing a sampling strategy to sample from a diffusion bridge on SP(n) with AI
metric which can be viewed as a guided proposal density for our MCMC sampling according to the
ideas in Delyon and Hu [2006].

We investigate with both simulated and real data the performance of our proposed diffusion
processes with the three metrics. We demonstrate that LE and AI metrics should be preferred to the
Euclidean metric and we illustrate that both LE and AI metrics, unlike the Euclidean metric which
neglects the geometric structure of SP(n), do not have the problem of the swelling effect [Arsigny
et al., 2007] or the difficulties when sampling near the boundary of SP(n). We have also found
that the diffusion based on the LE metric, compared with the AI metric, leads to greater anisotropy
which is more evident when conditioning on matrices with eigenvalues close to zero. Our financial
data example is chosen to illustrate this exact point: one can use diffusions on SP(n) with LE and
AI metrics for pricing or portfolio construction even when the dynamics on SP(n) operate near the
boundary.

2. Riemannian geometry for covariance matrices

2.1. Preliminary of Riemannian geometry

Smooth manifolds are motivated by the desire to extend the differentiation property to curved
spaces that are more general and complicated than Rd. This is achieved by considering coordinate
charts, i.e. functions that map small patches of the given manifold M to open sets in Euclidean
space. It is then possible to define smooth curves γ : [0, T ] → M which pass through some point
γ(0) = P ∈ M, and whose velocity vectors γ̇(0) at P are known as tangent vectors constituting a
vector space TPM, the tangent space at P . A Riemannian metric tensor g assigns to each point P on
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M a bilinear function gP on TPM×TPM which is symmetric and positive definite. Smooth manifolds
equipped with Riemannian metric tensors are called Riemannian manifolds and are characterised by
their corresponding Riemannian metrics.

As differentiability is so special with a smooth manifold, one initially considers first order deriva-
tives: Firstly, these include vector fields X which assign to each point P ∈ M a tangent vector
v ∈ TPM and give rise to the tangent bundle TM, the disjoint union of all points’ tangent spaces.
The set of all smooth vector fields is denoted Γ(TM). Secondly, differentials of smooth maps from
one manifold to another which give rise to linear maps from one tangent space to another are also first
order derivatives. Then, consideration moves on to second order derivatives such as the derivative of
a vector field with respect to another vector field. Suppose x = {xi}di=1 is a local chart on an open
neighbourhood U of some point P on the manifold M of dimension d, the vector fields Xi = ∂/∂xi

span the tangent space TPM at each P ∈ U . The covariant derivative, denoted as ∇XY , explores
how a vector field Y varies along another vector field X and the Christoffel symbols Γkij are functions

on U defined uniquely by the relation ∇XiXj =
∑d
k=1 Γkij Xk , see Boothby [1986]. Moreover, using

an orthornormal basis {Ei(P )}di=1 with respect to the metric tensor g, one can simply compute the
Riemannian gradient of any smooth function, i.e. f ∈ C∞(M) as ∇P f =

∑n
i=1(Eif)P Ei(P ). Here

(Eif)P can be understood as the differential of f at P in the direction of Ei(P ).
The connection ∇ allows us to transport a tangent vector from one tangent space to another

on M in a parallel manner. A vector field V along the curve γ on M is said to be parallel along
the curve if ∇γ̇(t)V = 0 at every point on the curve [Lovett, 2010]. Furthermore, any curve γ(t)
on M that satisfies ∇γ̇(t)γ̇(t) = 0 at all points on the curve is called a geodesic. They are locally
defined as minimum length curves over all possible smooth curves that connect two given points on
the Riemannian manifold [Caseiro et al., 2012]. The exponential map, ExpP : TPM→M computes
the point at which a geodesic starting from P in the direction ν ∈ TPM ends after one time unit. In
general, ExpP is bijective only from a small neighbourhood V ⊂ TPM to a neighbourhood U ⊂ M
of P on which the inverse map of ExpP can be defined uniquely: this is called the logarithm map
LogP = Exp−1P .

We focus on the space of n×n symmetric positive definite matrices SP(n) which is a sub-manifold
of the space of symmetric matrices S(n). Any metric on the space of n×n invertible matrices GL(n)
induces a metric on SP(n). For example, the Frobenius inner product induces the so-called Euclidean
metric gE which, by noting that the tangent space at any point on SP(n) is simply S(n), is given by

gE(S1, S2) = 〈S1, S2〉F = tr(ST1 S2) for S1, S2 ∈ S(n), (1)

where tr stands for the trace operator on GL(n).
Since the symmetry property is not preserved under the usual matrix multiplication, Arsigny

et al. [2007] proposed the use of the matrix exponential/logarithm functions:

P �Q = exp(logP + logQ), λ ∗ P = exp(λ logP ) for P,Q ∈ SP(n) and λ ∈ R.

Equipping SP(n) with �, SP(n) becomes an Abelian group as matrix addition is commutative.
Since both matrix exponential and logarithm are diffeomorphisms, (SP(n),�) is in fact a Lie group.
Moreover, we can get a vector space structure with (SP(n),�, ∗) since (SP(n),�) is isomorphic and
diffeomorphic to (S(n),+). Therefore, even though SP(n) is not a vector space, we can identify
SP(n) with a vector space by considering its image under the matrix logarithm. To obtain a metric,
the Frobenius inner product on the Lie algebra (i.e. TInSP(n) = S(n)) can be extended by left-
translation and becomes a bi-invariant metric gLE on SP(n). This metric is called the Log-Euclidean
(LE) metric,

gLEP (S1, S2) = 〈dP logS1, dP logS2〉F for S1, S2 ∈ S(n), (2)

where dP logS is the derivative of the matrix logarithm function at P ∈ SP(n) in the direction
S ∈ S(n). As the name suggests, the metric is simply the Euclidean metric in the logarithmic domain.
Equipping SP(n) with gLE, we gain invariance with respect to inversion, gLEP (A,B) = gLEP (A−1, B−1);
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and invariance under similarity transform Â = R−1AR (where R ∈ GL(n)): gLEP (A,B) = gLEP (Â, B̂).
Finally, matrices having non-positive eigenvalues are infinitely far away from any covariance matrix.

Besides the LE metric, another metric on SP(n), namely the Affine-Invariant (AI) metric, has
been studied intensively [Pennec, 2006, Moakher, 2005, Caseiro et al., 2012]. There are many ways
of defining this metric whose name arises from the group action (?) on GL(n) that gives rise to
Riemannian metrics invariant under this action, where

R ? S = RSRT for S ∈ S(n), R ∈ GL(n).

The AI metric gAI is thus defined to satisfy

gP (S1, S2) = gR?P (R ? S1, R ? S2) for S1, S2 ∈ S(n), P ∈ SP(n) and R ∈ GL(n). (3)

Choosing gAI
I to be the Frobenius inner product 〈·, ·〉F then defines the metric on SP(n):

gAI
P (S1, S2) =

〈
P−1/2S1P

−1/2, P−1/2S2P
−1/2

〉
F
. (4)

Alternatively, the AI metric can be obtained from the theory of the multivariate normal distribution
through the Fisher information [Skovgaard, 1984, Moakher and Zéräı, 2011].

A metric tensor can also be expressed in the form of a matrix function G ∈ SP(d) with respect
to some basis. For example, the AI metric can be expressed explicitly in matrix form G(P ) at any
P ∈ SP(n) with respect to the standard symmetric basis Bd on S(n), defined in equation (6):

G(P ) = DT
n ·
(
P−1 ⊗ P−1

)
·Dn and G−1(P ) = D†n · (P ⊗ P ) · (D†n)T , (5)

where Dn ∈ Rn2×n(n+1)/2 is a constant matrix (referred to as the duplication matrix), that satisfies
vec(P ) = Dn ν(P ) with ν(P ) containing all independent entries of P and D†n is the Moore-Penrose
inverse of Dn [Moakher and Zéräı, 2011]. Similarly to the LE metric, the AI metric is inversion-
invariant and any covariance matrix is at infinite distance to any non-positive definite matrix. While
the AI metric attains full affine-invariance, i.e. (3) holds for any invertible matrices, the LE metric
only achieves similarity invariance, i.e. (3) only holds for orthogonal matrices.

Finally, we summarize some results about the Euclidean metric in equation (1), the Log-Euclidean
metric in equation (2) and the Affine-Invariant metric in equation (4) into Table 1, which includes
explicit formulae of the exponential/logarithm maps, geodesics and distance square [Arsigny et al.,
2007, Pennec, 2006].

Euclidean Log-Euclidean Affine-Invariant

ExpP (S) S + P exp(logP + dP log S) P 1/2 ? exp(P−1/2 ? S)
LogP (Q) Q− P dlogP exp (logQ− logP ) P 1/2 ? log(P−1/2 ? Q)
γ(P,Q)(t) P + t(Q− P ) exp(logP + t(logQ− logP )) P 1/2 ? exp(P−1/2 ? tQ)

d2(P,Q) ||Q− P ||2F || logQ− logP ||2F ‖ log(P−1/2 ? Q)||2F

Table 1: Explicit formulae of exponential map, logarithm map, geodesic and distance square for the
Euclidean, Log-Euclidean and Affine-Invariant metrics. For the Log-Euclidean and Affine-Invariant cases,

these will be denoted as ExpLE, ExpAI, LogLE, LogAI and dLE, dAI, respectively.

Let us fix an orthonormal basis Bd = {Si}di=1 with respect to the Frobenius inner product on the
tangent space S(n) of SP(n), where d = n(n+ 1)/2:

Si = e
(n)
ii for 1 ≤ i ≤ n (6)

Sn+1 =
(
e
(n)
21 + e

(n)
12

)
/
√

2, Sn+2 =
(
e
(n)
31 + e

(n)
13

)
/
√

2, Sn+3 =
(
e
(n)
32 + e

(n)
23

)
/
√

2, . . .

Here, {Si}ni=1 has all entries zero except the jth entry on the diagonal being one. The remaining

{Si}di=n+1 are obtained by adding, with i > j, the single-entry matrix e
(n)
ij with one at the (i, j)th

entry and zero elsewhere to its transpose and dividing to
√

2 so that it has unit Frobenius norm. We
call Bd the standard symmetric basis of S(n).
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2.2. The importance of Riemannian geometry to SP(n)
We discuss two major reasons that necessitate the use of Riemannian geometry: easier sampling

close to the boundaries of SP(n) and no swelling effects. One may additionally argue that other
properties, such as inversion-invariance and similarity-invariance for the LE and AI metrics, and
affine-invariance for the AI metric, may be useful in calculations for complicated computational
algorithms.

Although the Frobenius inner product on SP(n) ⊂ GL(n) is simple, it is problematic because non-
covariance matrices are only a finite distance away from covariance matrices. As Table 1 illustrates,
LE and AI metrics do not suffer from this problem as the involvement of the matrix logarithm
guarantees that non-covariance matrices are at infinite distance from any point on SP(n). Therefore,
they avoid the undesirable inequality constraints that are required in the Frobenius induced geometry
to ensure positive definiteness and whose number grows quadratically with n. As will become evident
in our simulation experiments, this turns out to be a highly desirable property because it facilitates
sampling close to the boundary of SP(n).

The determinant of a covariance matrix measures the dispersion of the data points from a mul-
tivariate normal distribution. For the Euclidean metric, the geodesic connecting two fixed points
often contains points with a larger determinant than the two fixed points, and the difference can get
extremely large whenever the fixed points lie near the boundary of SP(n). This problem is referred
to as the swelling effect; see for example, Arsigny et al. [2007], Dryden et al. [2009], Jung et al. [2015].
In many contexts, the swelling effect is described as undesirable because the level of dispersion should
remain close to the given information obtained by the observations of covariance matrices; see for
example, Arsigny et al. [2007], Chefd’Hotel et al. [2004], Fletcher and Joshi [2007], Tschumperle and
Deriche [2001]. The LE and AI metrics avoid this swelling effect. Moreover, points on LE and AI
geodesics at corresponding times have the same determinants and these determinants are the result
of linear interpolation in the logarithmic domain; this can be proved by following similar lines as in
Arsigny et al. [2007].

Euclidean

0 0.25 0.75 1
Time

Log−Euclidean

c(
−

0.
5,

 0
.5

)

0 0.25 0.75 1
Time

Affine−Invariant

c(
−

0.
5,

 0
.5

)

0 0.25 0.75 1
Time

Figure 1: Comparison of three metric tensors on SP(2): Red ellipses represent two points at time
t = 0.25, 0.75 on the geodesic connecting P0 at t = 0 and P1 at t = 1. The length of the axes are the square

root of the eigenvalues.

A visual illustration of the swelling effect is provided in Figure 1 where two intermediate points

on the geodesic connecting P0 =

(
0.4 0.3
0.3 0.4

)
at t = 0 and P1 =

(
1 0.1

0.1 0.02

)
at t = 1 are shown for

each metric. Notice the swelling effect in the case of the Euclidean metric and also that the geodesic
of the LE metric has points with exaggerated anisotropy; for more details on this phenomenon see
Arsigny et al. [2006], Dryden et al. [2009].
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3. Stochastic processes on SP(n)

3.1. Overview

SDEs on manifolds present additional complications over the Euclidean setting which we deal
with in three stages: firstly, we introduce the general notion of SDEs on manifolds. Secondly, we
discuss Brownian Motion (definition, local representation, horizontal lift, construction via Euler-
Maruyama with the exponential map and non-explosion) in subsection 3.2. and thirdly we proceed
to the Ornstein–Uhlenbeck class in subsection 3.3..

Since the curvature of Riemannian manifolds makes direct use of Euclidean stochastic analysis
prohibitively hard, a common strategy in stochastic analysis is to adopt the extrinsic view that
involves embedding the manifold in a higher dimensional Euclidean space using the Nash embedding
theorem; see for example, Hsu [2002], Elworthy [1982], Gangolli [1964]. The approach benefits from
existing theory for SDE’s on Euclidean space but a suitable coordinate system is often not explicitly
available or too inconvenient, so this approach has limited practical use.

On a Riemannian manifold M of dimension d, Hsu [2002] writes the SDE driven through vector
fields V1, . . . , Vl by an Rl-valued semi-martingale Zt (with initial condition P ∈ F0) as

dXt =

l∑
i=1

Vi(Xt) ◦ dZit (X0 = P ). (7)

Zit could be a deterministic component, such as time, or a stochastic component, such as a Brownian
motion: this corresponds to the usual distinction of some Vi as drift and other Vi as diffusivity. We
call Xt an M-valued semi-martingale defined up to a stopping time τ if it satisfies

f(Xt) = f(P ) +

l∑
i=1

∫ t

0

Vif(Xs) ◦ dZis 0 ≤ t < τ , f ∈ C∞(M), (8)

where the integrals above are in the Stratonovich sense, and converting them to Ito sense yields:

f(Xt) = f(P ) +

l∑
i=1

∫ t

0

Vif(Xs) dZ
i
s +

1

2

l∑
i,j=1

∫ t

0

(∇VjVi)f(Xs) d〈Zi, Zj〉s. (9)

The additional terms in equation (9) arise from the non-trivial chain rule in the Ito case. The
Stratonovich representation in equation (8) brings simplicity and is invariantly defined whence it is
usually preferred for SDE’s on manifolds [Elworthy, 1982].

3.2. Brownian motion class

Since the infinitesimal generator of Brownian motion on Euclidean space is ∆/2, with ∆ the
usual Laplace operator, Brownian motion on a Riemannian manifold M can also be defined as
a diffusion process generated by ∆M/2 where ∆M denotes the Laplace-Beltrami operator. The
resulting Brownian Motion can be expressed in local coordinates using the standard Brownian motion
Bt on Rd by writing ∆M in local coordinates:

dXi
t =

d∑
j=1

(G−1/2)ij(Xt) dB
j
t −

1

2

d∑
k,l=1

(G−1)lk(Xt) Γikl(Xt)dt 1 ≤ i ≤ d, (10)

where (G−1)ij is the (i, j)-entry of G−1 which is the matrix form of the metric tensor g of the manifold
M [Hsu, 2002, Elworthy, 1982]. We choose to instead adopt the intrinsic viewpoint that studies
Riemannian manifolds via their metric or connection which enables us to write down less cumbersome
SDEs with more readily interpretable parameters. Thus, let us introduce a frame u : Rd → TPM
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at P ∈M (this is an isomorphism of vector spaces with inner product) and the frame bundle F(M)
which is the collection of all frames for all P ∈ M. Let us fix the standard basis {ei}di=1 on Rd
and express u in local coordinates {E1, . . . , Ed, e1, . . . , ed} in some neighbourhood U of P ∈ M as
u = (P, ζ) with ζ = (ζij) ∈ Rd×d the coefficients with respect to the orthonormal basis {Ei(P )}di=1

on TPM. This means that for any vector e ∈ Rd with coordinates εi, i.e. e =
∑d
i=1 εiei ∈ Rd:

u(e) =

d∑
i,j=1

εi ζ
i
j Ei(P ) ∈ TPM.

Moreover, F(M) is again a smooth manifold, and the canonical projection map π : F(M) →M
is smooth [Hsu, 2002]. If ut is a smooth curve on F(M) and for each e ∈ Rd the vector field ut(e) of
M is parallel along the curve π(ut), ut is called horizontal curve on F(M). For any smooth curve γ
on M, there is a corresponding horizontal curve on F(M) (unique up to choice of initial condition
u0) which is referred to as the horizontal lift of γ. This definition carries over to the horizontal lift
of a tangent vector on M. We define the anti-development of γ as

wt =

∫ t

0

u−1s (γ̇(s)) ds,

where ut is the horizontal lift of γ(t) on M. While this anti-developement wt is guaranteed to exist
and is uniquely defined up to the initial conditions u0 and γ(0), its computation is often difficult. To
address this issue, we establish the following:

Proposition 1. On SP(n), in the case of the LE metric, the horizontal lift of a smooth curve can
be explicitly expressed in local coordinates. For the AI metric, a first order Euler approximation for
the horizontal lift of a geodesic can be explicitly computed.

More details about the stochastic development on SP(n) are discussed in Proposition S3 and
Corollary S1 in the Supplementary Material.

By carrying out a similar process to the case of a smooth curve, we obtain a corresponding
horizontal semi-martingale Ut on the frame bundle and an anti-development Wt on Rd to a semi-
martingale Xt onM. Up to a choice of initial conditions, this relationship is one-to-one. The process
of transforming Wt to Xt is called stochastic development, see Elworthy [1982]. One particularly
important result is that one can define Riemannian Brownian motion on M with the connection ∇
by having its anti-development Wt be the standard Euclidean Brownian motion. On the sphere S2,
stochastic development is intuitively described as “rolling without slipping”: if we have a path of
Brownian motion Wt on a flat paper (this paper acts as the tangent plane of S2), rolling the sphere
along the path of Wt without slipping results in a trajectory on S2 which turns out to be a path of
the Riemannian Brownian motion on S2.

Yet another alternative construction of Riemannian Brownian Motion uses the Euler–Maruyama
approximation, which employs the exponential map:

Xt+δt = ExpXt

{
d∑
i=1

(Bit+δt −Bit)Ei(Xt)

}
for δt > 0; (11)

see for example, Baxendale [1976], Manton [2013], McKean et al. [1960]. As δt→ 0, Xt converges to
the Riemannian Brownian motion in distribution [Gangolli, 1964]. Since SP(n) endowed with either
the LE or the AI metric is geodesically complete (i.e. the exponential map is a global diffeomorphism),
the approximation method in equation (11) becomes more convenient and efficient in our case.

The transition density function pM(s, P ; t, Q) of the Riemannian Brownian motion exists but
usually no explicit expression is available, while on the Euclidean space it is simply the Gaussian
distribution [Hsu, 2002, Elworthy, 1982]. On the Euclidean space, Brownian motion does not explode
in finite time, and if this holds in the Riemannian setting, that is∫

M
pM(0, P ; t, Q) dQ = 1 for all P ∈M & 0 < t <∞,
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then the manifold M is said to be stochastically complete. It turns out that SP(n) equipped either
with the LE or the AI metric is also stochastically complete, see Proposition S3 in the Supplementary
Material.

3.3. Ornstein–Uhlenbeck (OU) class

Adopting the intrinsic point of view, we present a construction of an OU class of processes on
SP(n) for both the LE and the AI metrics. In analogy with the Euclidean OU process, we start
with Brownian motion and add a mean-reverting drift which pushes the process toward the point of
attraction. In the Euclidean setting, this drift is simply given as the gradient of the squared distance
between the process and the point of attraction. We translate this idea to manifolds by using the
covariant derivative in the place of the Euclidean gradient. This is similar to the treatment of the
drift term by Staneva and Younes [2017] for shape manifolds.

Let us define the OU process on SP(n) to be the solution of the following SDE with model
parameters θ ∈ R>0, M ∈ SP(n) and σ ∈ R>0 :

dXt = −θ
2
∇Xt

{
d2(Xt,M)

}
dt+ FXt

(σ dBt) (X0 = P ). (12)

This uses the smooth function F : SP(n)× Rd → Γ(TSP(n)) defined as:

FQ(e) =

d∑
i=1

εiEi(Q) with e =

d∑
i=1

εi ei ∈ Rd, Q ∈ SP(n) and d =
n(n+ 1)

2
. (13)

The following Proposition demonstrates that the covariant derivative chosen for the drift in the
SDE (12) is explicitly computable; the proof is presented in Proposition S2 (Supplementary Material).

Proposition 2 (Riemannian gradient of distance squared on SP(n)).

(i) (LE metric). The set BLE
d = {ELE

i }di=1 is an orthonormal frame on the tangent bundle TSP(n),
where for any P ∈ SP(n):

ELE
i (P ) = dlogP exp Si = (dP log)−1 Si for 1 ≤ i ≤ d.

Moreover, the Riemannian gradient of distance squared for any fixed point Q ∈ SP(n) is
∇P

{
d2
LE(P,Q)

}
= −2(dP log)−1(logQ− logP ) = −2 LogLEP (Q).

(ii) (AI metric). The set BAI
d = {EAI

i }di=1 is an orthonormal frame on the tangent bundle TSP(n),
where for any P ∈ SP(n):

EAI
i (P ) = P 1/2 ? Si for 1 ≤ i ≤ d.

Moreover, the Riemannian gradient of distance squared for any fixed point Q ∈ SP(n) is

∇P
{

d2
AI(P,Q)

}
= −2

∑d
i=1

〈
log(P−1/2QP−1/2), Si

〉
F
EAI
i (P ) = −2 LogAI

P (Q).

For simulation, we employ the Euler–Maruyama method adapted to the Riemannian setting via
the exponential map, i.e. using the standard Euler–Maruyama method on the tangent space:

Xt+δt = ExpXt

{
− θ

2
∇Xt
{d2(Xt,M)} δt +

d∑
j=1

(Bjt+δt −B
j
t )σ Ej(Xt)

}
for δt > 0. (14)

The selection of the basis fields plays an important role as they represent the horizontal lift of Xt

locally when using the piece-wise approximation method in equation (14).
For the LE metric, we define a global isometric diffeomorphism h, that allows us to constructively

identify SP(n) with Rd. Additionally, it characterizes the OU class of processes on SP(n) equipped
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with the LE metric as the image of the standard OU process on Rd under h, see Theorem 1 in which
the proof is presented in Theorem S1 (Supplementary Material). In turn, this permits establishing
existence, uniqueness and non-explosion of the OU class for the LE metric.

We define h = (hj) : SP(n)→ Rd with e =
∑d
j=1 εj ej ∈ Rd and P ∈ SP(n) as follows:

hj(P ) = 〈logP, Sj〉F (1 ≤ j ≤ d) and h−1(e) = exp
( d∑
j=1

εj Sj
)
. (15)

Theorem 1. Consider the following SDE on SP(n) endowed with the LE metric :

dXt = V (Xt) dt+ FXt(a(Xt) dBt) (X0 = P ), (16)

where V is a smooth vector field with smooth function a : SP(n)→ Rd×d, Bt is Rd-valued Brownian
Motion and the function F is as defined in equation (13). Then the problem of solving the SDE (16)
on SP(n) is the same as solving the following SDE on Rd :

dxt = v(xt) dt+ ã(xt) dBt (x0 = p), (17)

(i) p = h(P ), xt = h(Xt) for all t > 0 and ã : Rd → Rd×d, e 7→ a
(
h−1(e)

)
,

(ii) Function v =
(
v(j)
)

with v(j) ∈ C∞(Rd), xt 7→
〈
(dXt

log)V (Xt), Sj
〉
F

(1 ≤ j ≤ d).

Solutions of (16) and (17) are in one-to-one correspondence. Therefore, the conditions for ex-
istence and uniqueness of the solution for the SDE (16) depend directly on the requirements that
the drift and diffusivity of the SDE (17) satisfy on the Euclidean space, e.g. continuity and local
Lipschitzness. Indeed, equating the drift and diffusivity of the SDE (16) with our OU process, the
SDE (17) turns out to be a standard OU process on Rd. Thus, most favourable properties that the
OU process has on the Euclidean space will carry over to SP(n), such as existence and uniqueness
of the solution and ergodicity. The transition probability density is explicitly available up to the
Jacobian term involving the derivative of the matrix exponential.

Corollary 1. SDE (12) has a unique solution and gives rise to an ergodic diffusion process on SP(n)
in the LE case.

We conclude this section by establishing equivalent results for the AI case in a non-constructive
manner. While there is no simple diffeomorphism corresponding to h, otherwise equivalent results
can be obtained for the AI case:

Proposition 3. The existence and uniqueness theorem in Elworthy [1982, Theorem 2E, Page 121] is
applicable to the OU process on SP(n) equipped with the AI metric. Moreover, this diffusion process
is also non-explosive, see Elworthy [1982, Corollary 6.1, Page 131].

4. Bayesian parameter estimation

We now focus on the Bayesian estimation of the parameters of the OU difussion processes on
SP(n) when observations are collected at low frequency. We adopt the data augmentation MCMC
computational strategy introduced by Roberts and Stramer [2001] which requires data imputation
through sampling from a diffusion bridge. We need to build diffusion bridge samplers that operate
on SP(n) which, unlike the Euclidean case, have not been studied before. A common approach
used in manifolds is to use embedding or local charts followed by an appropriate Euclidean method;
see for example, Ball et al. [2008], Sommer et al. [May 2017], Staneva and Younes [2017], but this
strategy is unsuitable when transitioning between charts is required and charts can be cumbersome
to work with. We therefore develop a diffusion bridge sampler exploiting the exponential map and
adopting an intrinsic viewpoint. In fact, by using Corollary 1 we can translate any existing method
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for the OU process from the Euclidean to the LE setting, so in the remainder of this section we
will focus only on the AI metric where no such result exists. To deal with the data augmentation
problem it is either assumed that Xt has constant diffusivity, or that Xt is transformed to a process of
constant diffusivity, or existence of a process that is absolutely continuous to Xt and its corresponding
transition probability density need to be derived. In the case of the AI metric, at first glance the SDE
seems to have constant diffusivity. However, due to the presence of curvature, the diffusivity part
does depend on the position of the process Xt, hence straightforward algorithms from literature are
not applicable. In fact, by looking at the local coordinate expression of the Riemannian Brownian
motion on SP(n) equipped with the AI metric (substituting G−1 in equation (5) and Christoffel
symbols given in Lemma 1 into equation (10)), the dependence of the diffusivity on Xt is evident as
is the complexity of the resulting expressions. Furthermore, attempting to sample from this Euclidean
SDE using the standard Euler-Maruyama method will lead to symmetric but non-positive definite
matrices.

On the Euclidean space, Delyon and Hu [2006] and Schauer et al. [2017] suggest adding an
extra drift term which guides the SDE solution toward the correct terminal point and leaves its law
absolutely continuous with respect to the law of the original conditional diffusion process; the Radon-
Nikodym derivative is available explicitly. This results in an easier simulation, much better MCMC
mixing rate of convergence and no difficulty of computing acceptance probability when updating the
proposal bridge. The additional drift is the gradient of the logarithm of the transition density of
an auxiliary process X̃t which must have explicitly available transition probability density. In the
manifold setting, we are aware of one attempt to use the above approach to sample diffusion bridges
through local coordinates by Sommer et al. [May 2017], but using the exponential map in this context
is new. Motivated by these ideas, we construct a methodology that allow us to sample a diffusion
bridge on SP(n) equipped with the AI metric using a guided proposal process.

We need to choose a proposal diffusion process, which has both an explicit transition probability
density and an analytically tractable gradient of the log transition probability density due to the
requirement in otaining the additional drift in the guided proposals SDE. The Wishart process is
inappropriate because it does not have a closed form for its Riemannian gradient so we choose a
diffusion process X̃t on SP(n) with transition probability the Riemannian Gaussian distribution
[Said et al., 2017] given as

p(s, X̃s; t, X̃t) =
1

Kn(σ)
exp

(
−d2

AI(X̃s, X̃t)

2 (t− s)σ2

)
,

where Kn(σ) is the normalising constant that depends only on σ and n. We emphasize that explicit
availability of the guided proposal SDE is not actually a pre-requisite for the guided proposals algo-
rithm. Indeed, the proposal Markov process X̃t exists but its SDE form is not explicitly available
[Baxendale, 1976].

Consider the OU process Xt on SP(n) equipped with the AI metric with its law Pt and assume
that sampling from the target diffusion bridge X∗t = {Xt, 0 ≤ t ≤ T |X0 = U,XT = V } with its
corresponding law P∗t is required. We introduce the guided proposal X�t which is the solution of the
following SDE with its law P�t :

dX�t =

(
θ LogAI

X�
t
M +

LogAI
X�

t
V

T − t

)
dt+ F (X�t )(σ dBt) (X�0 = U). (18)

We then show that P∗t and P�t are equivalent up to time T with the aid of Lemma 1 in Theorem 2;
proofs are shown in Lemma S1 and Theorem S2 respectively (Supplementary Material).

Lemma 1. The Christoffel symbols at any P ∈ SP(n) with respect to the basis BAI
d do not depend

on P and are given by Γkij(P ) = 〈−(SiSj + SjSi) , Sk〉F /2.

Theorem 2. For t ∈ [0, T ) the laws Pt,P�t and P∗t are absolutely continuous. Let p(t,Xt;T, V ) be
the true (unknown) transition density of moving from Xt at time t to V at time T and let X�[0:t] be

10



the path of X�t from time 0 to t. Then

dPt
dP�t

(X�[0:t]) =
exp(f(X�0 ))

exp(f(X�t ))
exp

{
Φ(t,X�[0:t]) + φ(t,X�[0:t])

}
, (19)

dP∗t
dP�t

(X�[0:t]) =
p(t,X�t ;T, V )

exp(f(X�t ))

exp(f(X�0 ))

p(0, U ;T, V )
exp

{
Φ(t,X�[0:t]) + φ(t,X�[0:t])

}
, (20)

where f, φ and Φ are

f (X�t ) = −d
2
AI(X

�
t , V )

2σ2(T − t)
= −

∣∣∣∣log
(
(X�t )−1/2V (X�t )−1/2

)∣∣∣∣2
F

2σ2(T − t)
,

φ (t,X�[0:t]) =

d∑
i,j=1

∫ t

0

(
ζij(X

�
s )
)2

2(T − s)
ds, (21)

Φ(t,X�[0:t]) =

t∫
0

[
θ gAI

Xs

(
LogAI

X�
s
M,

LogAI
X�

s
V

σ2(T − s)

)

+
1

2

d∑
i,j,r=1

gAI
X�

s

(
ζij(X

�
s )

(
d∑
l=1

ζil (X
�
s )Γrjl + (EAI

j ζir)X�
s

)
EAI
r (X�s ) ,

LogAI
X�

s
V

T − s

)]
ds,

(22)

with Γrjl given in Lemma 1. The functions ζ = (ζil ) are the coefficients with respect to the basis BAI
d

in the expression of the horizontal lift in local coordinates.

The Radon-Nikodym derivatives in equations (19)–(20) can not be computed explicitly due to
the presence of ζ. However, we can approximate φ and Φ in Theorem 2 based on the approximation
of ζ, see Corollary S1 (Supplementary Material). As a result, Remark 1 is a crucial step to make our
proposed algorithm practicable; detailed calculation of the approximation of φ and Φ are presented
in Corollary S2 (Supplementary Material).

Remark 1. Given that X�t is simulated using the piece-wise approximation method in equation (14)
with sufficiently small time step, that is we have a simulation path {X�tk = y�tk}

m+1
k=0 such that

max{tk+1 − tk}mk=0 is sufficiently small and 0 = t0 < . . . < tm+1 = t, the functions φ in equa-
tion (21) and Φ in equation (22) can be approximated as follows:

φ(t,X�[0:t]) ≈ d

2
log

T − t
T

,

Φ(t,X�[0:t]) ≈
m∑
k=0

tk+1 − tk
T − tk

[
θ
〈
log
{

(y�tk)−1/2M(y�tk)−1/2
}
, log

{
(y�tk)−1/2V (y�tk)−1/2

}〉
F

σ2

+

〈
Γ , log((y�tk)−1/2V (y�tk)−1/2)

〉
F

2

]
,

with Γ =
∑d
i,r=1 ΓriiSr and Christoffel symbols Γrii are given in Lemma 1.

We expect that taking the limit t ↑ T in equation (20) will follow along similar lines to those in
Delyon and Hu [2006] and Schauer et al. [2017] so that the following holds

dP∗T
dP�T

(X�[0:T ]) =
Hn,T

p(0, U ;T, V )
exp

{
f(X�0 , σ

2) + Φ(T,X�[0:T ])−
d

2
log σ2

}
,

where Hn,T is a fixed constant that depends only on the dimension n and the terminal time T . While
we do not present the full argument, we do, however, provide a careful numerical validation in Section
5..
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Suppose we have discretely observed data D = {Xtj = yj}Nj=0 at observation times t0 = 0 < t1 <
· · · < tN = T , where the diffusion process Xt is the OU process Xt on SP(n). We aim to sample

from the posterior distribution of Θ = {θ, M, σ2}. We set µ =
∑d
i=1 µ

(i) ei = h(M), as defined in
equation (15), and the prior distributions of {θ, µ, σ2} as πθ0 , π

µ
0 and πσ0 respectively. The key step

involves first imputing suitable mj − 1 data points between the jth consecutive observations in a
way that they are independent of the diffusivity, and then using the Riemannian adapted Euler–
Maruyama approximation for the likelihood. We choose to use random walk symmetric proposal
distributions with suitable choices of step size q(θ̃|θ), q(µ̃|µ) and q(σ̃2|σ2) for {θ, µ, σ2} respectively.

Algorithm 1 (Guided proposals on SP(n)).

1. (Iteration k = 0). Choose starting values for Θ and sample standard Brownian motions Wj,

independently for 1 ≤ j ≤ N , each covering the time interval tj − tj−1, and set B
(0)
j = Wj.

2. (Iteration k ≥ 1).

(a) Update Bj independently (1 ≤ j ≤ N): sample the proposal W̃j and obtain Ỹ[tj−1,tj ]

from {W̃j , θk−1,Mk−1, σ
2
k−1,D} and Y[tj−1,tj ] from {B(k−1)

j , θk−1,Mk−1, σ
2
k−1,D} using

equation (14) to approximately solve the SDE (18); then accept W̃j with probability α(B) =

exp
[
Φ(tj − tj−1, Ỹ[tj−1,tj ])− Φ(tj − tj−1, Y[tj−1,tj ])

]
(b) Update σ2 : sample proposal σ̃2 from q(σ2|σ2

k−1) and obtain Ỹ[tj−1,tj ] from {B(k)
j , θk−1,Mk−1, σ̃

2,D}
and Y[tj−1,tj ] from {B(k)

j , θk−1,Mk−1, σ
2
k−1,D} using equation (14) to approximately solve

the SDE (18); then accept σ̃2 with probability

α(σ) =
πσ0 (σ̃2)

πσ0 (σ2
k−1)

∏N
j=1 exp

{
Φ(tj − tj−1, Ỹ[tj−1,tj ]) + f(Ỹtj−1

, σ̃2)− d
2 σ̃

2
}

∏N
j=1 exp

{
Φ(tj − tj−1, Y[tj−1,tj ]) + f(Ytj−1

, σ2
k−1)− d

2σ
2
k−1
} .

(c) Update µ and M : sample µ̃ from q(µ|µk−1), compute the corresponding M̃ = h−1(µ̃) and
accept µ̃, M̃ with probability

α(M) =
πµ0 (µ̃)

πµ0 (µk−1)
exp


N∑
j=1

[
Φ
(
tj − tj−1, Ỹ[tj−1,tj ]

)
− Φ

(
tj − tj−1, Y[tj−1,tj ]

)] ,

where we obtain Ỹ[tj−1,tj ] from {B(k)
j , θk−1, M̃ , σ2

k,D} and Y[tj−1,tj ] from {B(k)
j , θk−1,Mk−1, σ

2
k,D}

using equation (14) to approximately solve the SDE (18).

(d) Update θ similarly as µ.

Remark 2 (Time change). Since Φ in equation (22) explodes as t ↑ T , Schauer et al. [2017] suggests
time change and scaling to reduce the required number of imputed data points. Scaling will not be as
effective here as in the univariate setting because it can only fit one of the directions involved, so the
effect is less pronounced than in the univariate setting and we expect further lessening as dimension
increases. Nonetheless, in this work, we adopt one time change function from Schauer et al. [2017]
which maps s to s (2− s/T ).

5. Simulation study on SP(2)

5.1. Brownian bridges

We perform a simulation exercise to illustrate our proposed bridge sampling of Algorithm 1 and
to compare the performance for the Euclidean, LE and AI metrics. The simulation scenario involves
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sampling a standard Brownian bridge Wt conditioned on {W0 = U,WT = V }, T = 0.1, n = 2, in

two cases: (i) with U and V lying far away from the boundary, U =

(
2 1
1 2

)
, and V =

(
3 1
1 2

)
and

(ii) with U and V lying close to the boundary, U =

(
2 1.999

1.999 2

)
, V =

(
3 2.435

2.435 2

)
. For the

Euclidean metric we simply embed SP(n) in S(n) endowed with the Frobenius inner product and
thus the Brownian motion in this case is the solution of the SDE dν(Wt) = dBt (W0 = U), where Bt
is the standard Brownian motion on Rd and ν(Wt) ∈ Rd contains only independent entries of Wt.
The LE and AI metrics are based on Theorem 1 and Algorithm 1 respectively.
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Figure 2: Time series for determinant and trace of 20 simulated Brownian bridges on SP(2) endowed with
three different metrics (Euclidean: top row, log Euclidean: middle row, affine invariant: bottom row) in the

2 cases (i) and (ii). Red background area shows failure to be positive definite.

First we evaluate how Algorithm 1 performs compared with the naive simulation approach. For
case (i) we obtain samples by forward-simulating the guided proposal in equation (18) and accepting
with probability α(B) in Algorithm 1. We then compare these bridges with the so-called true bridges,
which are generated from the naive simulation approach by forward-solving the Riemannian Brownian
motion Xt and picking only those paths Xt that satisfy dAI(X0.1, V ) < ε for some ε > 0. For
different values of ε and number of imputed points m, we collect 1000 sampled bridges and carry out
a Kolmogorov-Smirnov (K-S) test to compare the distribution of the true and approximated bridges
at t = T/2 = 0.05; The Q-Q plots and the K-S p-values shown in Figure 3 indicate that the values
m = 2000, ε = 0.05 provide a good approximation and as ε ↓ 0 the two distributions get closer to each
other. Note that for case (ii) we had a difficulty in sampling true bridges because V is too close to the
boundary of SP(2) and points on the boundary are at infinite distance to covariance matrices. This
difficulty escalates as dimension n increases. Beside high dependence with the diffusivity, the naive
approach of simulating bridges has very low acceptance rate when the conditioned observation is close
to being non-positive definite, thus it is clearly not a good approach to use in the data-augmentation
algorithm.
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m = 2000 0.00283 0.0612 0.370
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m = 1000 0.0112 0.0293 0.108
m = 2000 0.00123 0.0378 0.288

Figure 3: Comparison in distribution at T/2 of the true bridges and the guided proposal bridges, given that
U and V are chosen as in Case 1. Right table: p-values from the KolmogorovSmirnov (K-S) tests, where ε

and m are varied. Left figures: the Q-Q plots for determinant and trace when m = 2000 and ε = 0.05.

Next, we illustrate the problems that arise when neglecting the geometric structure of SP (n) as
stated in Section 2.2.. Figure 2 depicts traces and determinants of 20 simulated bridges with each
metric. First note that the Euclidean metric samples do not achieve positive definiteness and have
a clear presence of the swelling effect. The LE and AI metrics sample points that lie in SP(n) while
the determinants behave reasonably with respect to the conditional points. In fact, one can show
following the lines of the case of geometric means in Arsigny et al. [2007] that the distribution of
the determinant is the same for the LE and the AI metrics. The AI metric leads to less anisotropy
that becomes more noticeable when the conditional points have eigenvalues close to zero, see plots
about the trace in Fig. 2, indicating that the selection between LE and AI depends on the desirable
property that one wishes to achieve.

5.2. Parameter estimation for the Affine-Invariant metric

We simulate 106 +1 equidistant time points Xt of the OU process in the case of the AI metric on

[0, 100] using equation (14) with model parameters θ = 0.5, M =

(
1 0.9

0.9 1

)
, σ2 = 1 and X0 = I2

and take sub-samples at time points {0, 0.2, . . . , 100}. We apply the Algorithm 1 with time change
assuming the prior distributions log σ2, log θ ∼ N(0, 4) and µ ∼ N(0, 4× I3).

Figure 4 is based on 1,000 burn-in and 4,000 MCMC iterations; it indicates that increasing m does
not affect the mixing of the chain and improves, in some cases, the approximation to the marginal
densities. We then run a longer MCMC chain of 50000 iterations while varying the value of m
over 10, 50, 100 and 200. These chains are thinned out after a burn-in period of 2000 iterations and
samples of 4000 points are collected from the target distributions. Figure 5 shows that the kernel den-
sity estimations of the marginal posterior distributions of {θ, µ, σ2} are approximately the same for
m = 100, 200. Thus, m = 100 is considered to provide a sufficiently fine discretization for these data.
The average proportions of accepting the bridges after the burn-in period are 72.7%, 70.2%, 68.5%
and 67.3% for m = 10, 50, 100 and 200 respectively.

Our final investigation for Algorithm 1 is the prior reproduction test of Cook et al. [2006] to
validate the Algorithm 1. We assume proper priors for {θ, µ, σ2} : log θ, log σ2 ∼ N(0, 0.32), µ ∼
N(0, 0.2×I3) and n = 500. We generate, in turn, 1000 samples from the prior distributions and then,
conditional on each sampled parameter vector, high-frequency observations on [0, 50] at 5× 105 + 1
equidistant time points and keep sub-samples at time points {0, 0.1, . . . , 50}. For the 1000 generated
datasets we estimate the corresponding posterior densities using Algorithm 1 and test whether they
come from the same distribution as the prior as this validates that our algorithm works properly.
Figure 6 illustrates that the prior has been successfully replicated while, as expected, the parameters
approximation improves as m increases.
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Figure 4: (Simulation study). m is varied over 10, 50 and 100. Top three rows: Traceplots from 4× 103

iterates after discarding 103 iterations of burn-in, where true values are indicated with the red dashed lines.
Bottom three rows: ACF plots based on these MCMC chains.
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Figure 5: (Simulation study). Estimated posterior distribution of {θ, µ, σ2} using 5× 104 MCMC iterations
(2× 103 burn-in discarded, thinned by 12), and the result for M = h−1(µ) is given in Figure 11 (Appendix).

True values are indicated by solid vertical black lines.
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Figure 6: Prior reproduction test to validate the Algorithm 1 with time change: Q-Q plots of priors against
posteriors from three model parameters.

6. Application to finance

6.1. Introduction

The widespread availability of intra-day high-frequency prices of financial assets has enabled the
computation of consistent estimates of daily covariation of asset prices called realized covariances, in-
troduced by Andersen et al. [2001a,b] and studied in detail by Barndorff-Nielsen and Shephard [2004].
The literature in discrete time series involves approaches based on Wishart-based distributions, see
Asai and So [2014], Golosnoy et al. [2012], Gouriéroux et al. [2009], Jin and Maheu [2013], Yu et al.
[2017], Jin et al. [2019]; matrix decompositions to deal with the positive definiteness requirement
of the elements of the covariance matrices, see Bauer and Vorkink [2011], Chiriac and Voev [2011];
or ideas borrowed from the literature of multivariate GARCH models, see Noureldin et al. [2012],
Hansen et al. [2014]. There has been quite a lot of evidence that direct modelling of realized co-
variances provides more precise forecasts than GARCH and stochastic volatility multivariate models
that assume that the covariance matrices are unobserved latent matrices; see Golosnoy et al. [2012],
Gouriéroux et al. [2009], Chiriac and Voev [2011], Bauer and Vorkink [2011], Noureldin et al. [2012],
Golosnoy et al. [2012].

One important practical question in this framework is how covariance matrices vary at different
time scales. It is well known work by Epps [1979] that correlations between assets decrease with
the duration of investment horizons and this necessitates models that are frequency independent.
Modelling realized covariances with diffusions offers a critical advantage over discrete time models
because they allow inference of implied model dynamics and properties as well as forecasting at
various frequencies that may differ from the observed data frequency. Moreover, continuous time
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models are useful in irregularly spaced observed data and provide a clear advantage when used in
pricing derivative instruments.

6.2. Data preprocessing
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Figure 7: Time series of the closing price from two indices: NASDAQ Composite (COMP) and NASDAQ
100 (NDX) at the end of each working day from 31.12.2012 to 31.12.2014.
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Figure 8: Time series of estimated covariance matrices based on the price of indices NDX and COMP.
Estimated correlations are also plotted against time (red dashed line indicates correlation 1).

We estimate 2× 2 daily covariance (volatility) matrices from NASDAQ Composite (COMP)
and NASDAQ 100 (NDX) indices with data of 504 working days obtained from 31.12.2012 to
31.12.2014 at 1−minute intervals from FirstRate Data [2019]; see Figure 7. For the estimation
we used quadratic variation/covariation in the logarithm domain and assumed that the microstruc-
ture noise does not impact our estimates because the indices are very liquid, see Zhang [2011]. We
verified this assumption by noting that estimates based on 5-minute inter-observation intervals are
very similar. The pattern of the time series from the entries of covariance matrices in Figure 8
indicates a mean-reverting tendency and many observations lying close to the boundary of SP(2),
making the Euclidean metric inappropriate and the Riemannian structures suitable.

6.3. Model fitting

Our time series has unevenly spaced observations due to weekends and holidays, so the imputed
points mj between the (j − 1)th and jth consecutive observations are carefully chosen such that
δt = (tj − tj−1)/mj is constant. We choose vague proper priors log θ ∼ N(0, 4) , log σ2 ∼ N(−1, 4)

and µ ∼ N
((
−12 −12 3

)T
, 4 I3

)
. We adopt the algorithm by Roberts and Stramer [2001] in

the case of the LE metric and Algorithm 1 with time change for the case of the AI metric. MCMC
samples based on 105 iterations with varying values of δt were collected after a burn-in period of 4000
iterations and kernel density estimations are depicted in Figure 9.

Fewer imputed points are required for the LE metric than for the AI metric to adequately approx-
imate the posterior densities which we attribute to different degrees of non-linearity: after transfor-
mation through the matrix logarithm, the LE problem is reduced to a linear problem whereas with
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the AI metric, discretization including approximation of the horizontal lift takes place in the original
domain. This domain can be seen to be less linear from the fact that covariance matrices are com-
mutative under the logarithm product which is at the heart of the LE metric whereas exchanging the
order of multiplication causes a different result for the AI metric. This difference is more pronounced
near the boundary of the cone which is where the majority of our observations lie.
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Figure 9: Estimated posterior distribution for {θ, µ, σ2} from financial data example using either the LE
(top row) or the AI metric (bottom row), based on 105 MCMC iterations (4× 103 burn-in discarded,

thinned by 19). Moreover, the result for M = h−1(µ) is given in Figure 13 (Appendix).
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Figure 10: Empirical cumulative distribution of the generalized residuals for the entries from volatilities
under two models using either the LE and the AI metric, in which model parameter estimates are the
posterior mean. Moreover, p-values are obtained from the K-S tests of comparison to U [0, 1] (red line).

We test the fit of the two models using the transition density-based approach by Hong and Li
[2005]. For each model, we choose the posterior mean to estimate {θ,M, σ2} and compute the

generalized residuals Z
(i)
j , for 1 ≤ j ≤ 504, as

Z
(i)
j =

∫ y
(i)
j

−∞
p(i)(tj , v|tj−1, yj−1)dv. (23)

where {y(i)j }
504, 3
j=0, i=1 denote the observations, p(i) are the marginal transition densities and i = 1, 2, 3

denotes the two diagonal and the off-diagonal entries respectively.The integral in equation (23) is
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estimated by simulating k = 3000 points at tj via equation (14) starting from yj−1 at time tj−1.
Under the null hypothesis that the observations come from the model, the realized generalized resid-

uals {Z(i)
j }504j=0 are i.i.d and follow the standard uniform distribution U [0, 1] for all i ∈ {1, 2, 3}.

The empirical cumulative distribution of these Z
(i)
j are shown in Figure 10 with p-values from the

Kolmogorov-Smirnov (K-S) test when comparing to U [0, 1].
Figure 10 clearly indicates that the model using the LE metric fits the data better than the one

using the AI metric for this particular dataset.

7. Discussion

In summary, it is clear that the Euclidean metric, despite its simplicity, should not be used on
SP(n). We instead suggest using either the LE or the AI metric. While both metrics behave similarly,
the difference escalates when moving toward the boundary of SP(n) and the demonstrated goodness
of fit testing can aid model choice. Although the AI metric generally has increased computational
cost over the LE metric and exhibits slightly worse fit for our financial data example, it provides an
alternative diffusion process on SP(n) with available Bayesian estimation. Moreover, the AI metric
leads to less anisotropy than the LE metric, which is desirable in some other application areas, e.g.
diffusion tensor imaging.

Cartan-Hadamard manifolds are diffeomorphic to Euclidean space, and the diffeomorphism maps
can be obtained from the exponential map at any point, see Carmo [1992], Jost and Jost [2008].
Furthermore, following Karcher [1977], we note that ∇Xt

d2 can be expressed in terms of the loga-
rithm map for more general manifolds so that our choice of drift is available for even more general
Riemannian manifolds. Thus, our approach of sampling diffusion bridges and our proposed class of
OU processes can be extended to any Cartan-Hadamard manifold on which there exists a suitable
diffusion process with an explicit transition density function, e.g. hyperbolic spaces [Matsumoto,
2001, Nagano et al., 2019]. This opens up potential applications to phylogenetic trees [Nye et al.,
2011] and electronic engineering [Huckemann et al., 2010] where this or closely related geometries
are used. Extension to volatilities observed indirectly through the price processes generalizing the
univariate models in Beskos et al. [2013] seems both feasible and practically relevant.
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Supplementary material

Supplementary material available online includes the proofs of Lemma 1, Theorems 1–2 and
Propositions 1–2. Moreover, we include calculation of the approximation for ζ, φ and Φ, as well as
prove the stochastic completeness on SP(n) with LE and AI metrics.

Appendix

We include the kernel density estimations for the marginal posterior distribution of the model pa-
rameters {θ,M, σ2} in the simulation study (Fig. 11) and the application in finance (Fig. 13), which
correspond to the estimated posterior distribution for {θ, µ, σ2} in Fig. 5 and Fig. 9, respectively.
Furthermore, trace plots and ACF plots when using either the LE metric with δt = 0.01 or the AI
metric with δt = 0.001 are shown in Figure 12.
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Figure 11: (Simulation study). Estimated posterior distribution of {θ,M, σ2} using 5× 104 MCMC
iterations (2× 103 burn-in discarded, thinned by 12). True values are indicated by solid vertical black lines.
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Figure 12: (Application in finance). MCMC trace plots of 4000 iterations using different starting points
(orange, green and red) and ACF plots based on iterates 1000− 4000 of the green chain with δt = 0.01 in

the case of the LE metric and δt = 0.001 in the case of the AI metric .
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Figure 13: (Application in finance). Estimated posterior distribution for {θ,M, σ2} using either the LE
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Abstract

This supplement is divided into three sections. Section 1. contains the proof of The-
orem S1, while Section 3. discusses stochastic completeness of SP(n) when equipping
either the LE and the AI metric. Finally, we study the absolute continuity of the measure
coming from the guided proposal on SP(n) equipped with the AI metric in Section 2..
We provide the proofs of Lemma S1, Theorem S2, Propositions S2–S3, together with the
calculation of the approximation for ζ, φ and Φ in this section.

1. Stochastic differential equations on SP(n) equipped with the LE
metric

Theorem S1. Consider the following SDE on SP(n) endowed with the LE metric :

dXt = V (Xt) dt+ FXt(a(Xt) dBt) (X0 = P ), (S1)

where V is a smooth vector field with smooth function a : SP(n)→ Rd×d, Bt is Rd-valued Brownian
Motion and the function F is as defined in the SDE of OU processes on SP(n). Then the problem
of solving the SDE (S1) on SP(n) is the same as solving the following SDE on Rd :

dxt = v(xt) dt+ ã(xt) dBt (x0 = p), (S2)

(i) p = h(P ), xt = h(Xt) for all t > 0 and ã : Rd → Rd×d, e 7→ a
(
h−1(e)

)
,

(ii) Function v =
(
v(j)
)

with v(j) ∈ C∞(Rd), xt 7→
〈
(dXt

log)V (Xt), Sj
〉
F

(1 ≤ j ≤ d).

Proof. As V is a smooth vector field on SP(n), there always exist functions f (j) ∈ C∞(SP(n)) , 1 ≤
j ≤ d such that

V (Xt) =

d∑
j=1

f (j)(Xt)E
LE
j (Xt) =

d∑
j=1

f (j)(Xt) {(dXt
log)−1Sj}.

Hence, (dXt log)V (Xt) =
∑d
j=1 f

(j)(Xt)Sj , which are smooth on S(n) with respect to Xt as the func-

tion log is diffeomorphic on SP(n). Since the {Si}di=1 are orthonormal, f (j)(Xt) =
〈
(dXt log)V (Xt), Sj

〉
F

,

which implies v(j)(xt) = f (j)(h−1(xt)). Furthermore, since h−1 and f are both smooth, the function
v is smooth on Rd.
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On the other hand, for an arbitrary e =
∑d
j=1 εj ej ∈ Rd :

FXt
(e) =

d∑
j=1

εj E
LE
j (Xt) = (dXt

log)−1

 d∑
j=1

εj Sj

 ⇐⇒ (dXt
log)FXt

(e) =

d∑
j=1

εj Sj

Applying the push-forward by the matrix logarithm function (i.e. dXt
log) with the fact that log :

SP(n) → S(n) is a global diffeomorphism in using the result in Hsu [2002, Proposition 1.2.4, Page
20], the diffusion process xt satisfies

d∑
j=1

dx
(j)
t Sj =

d∑
j=1

v(j)(xt)Sjdt+
∑
i,j=1

aij(xt)Sj dB
i
t

The second term of the Ito formulation vanishes because SP(n) equipped with the LE metric has
null sectional curvature everywhere. Removing the standard symmetric basis Bd = {Si}di=1, we get
the desired result.

2. Absolute continuity of the guided proposal on SP(n) equipped
with the Affine-Invariant metric

Let us fix the standard basis {ei}di=1 for Rd and consider the problem of Xt being the OU process
on SP(n) equipped with the AI metric with its law Pt :

dXt = −θ
2
∇Xt

{
d2(Xt,M)

}
dt+ FXt

(σ dBt) (X0 = P ). (S3)

Our simulation method involves the Euler–Maruyama approximation via the exponential map,

Xt+δt = ExpXt

{
− θ

2
∇Xt{d2(Xt,M)} δt +

d∑
j=1

(Bjt+δt −B
j
t )σ Ej(Xt)

}
for δt > 0. (S4)

We want to sample from the target diffusion bridge X∗t = {Xt, 0 ≤ t ≤ T |X0 = U,XT = V } with its
corresponding law P∗t by introducing the guided proposal X�t , which is the solution of the following
SDE with its law P�t :

dX�t =

(
θ LogAI

X�
t
M +

LogAI
X�

t
V

T − t

)
dt+ F (X�t )(σ dBt) (X�0 = U). (S5)

We aim to show the absolute continuity among three measures Pt, P∗t and P�t in Theorem S2 below.
In preparation for this main theorem, we will compute the Riemannian gradient of distance square
in Proposition S2 and construct the stochastic development of smooth curves in Proposition S3 in
the case of the LE and the AI metrics. Moreover, since the expression of the horizontal lift in local
coordinates in the case of the AI metric does not admit explicit formulae, we approximate them in
Corollary S1 and provide the calculation of Christoffel symbol in Lemma S1.

Proposition S2 (Riemannian gradient of distance squared).

(i) (LE metric). The set BLE
d = {ELE

i }di=1 is an orthonormal frame on the tangent bundle TM ,
where for any P ∈ SP(n):

ELE
i (P ) = dlogP exp Si = (dP log)−1 Si for 1 ≤ i ≤ d. (S6)

Moreover, the Riemannian gradient of distance squared for any fixed point Q ∈ SP(n) is
∇P

{
d2
LE(P,Q)

}
= −2(dP log)−1(logQ− logP ) = −2 LogLEP (Q).
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(ii) (AI metric). The set BAI
d = {EAI

i }di=1 is an orthonormal frame on the tangent bundle TM ,
where for any P ∈ SP(n):

EAI
i (P ) = P 1/2 ? Si for 1 ≤ i ≤ d. (S7)

Moreover, the Riemannian gradient of distance squared for any fixed point Q ∈ SP(n) is

∇P
{

d2
AI(P,Q)

}
= −2

∑d
i=1

〈
log(P−1/2QP−1/2), Si

〉
F
EAI
i (P ) = −2 LogAI

P (Q).

Proof. (i) Notice that the function log : SP(n) → S(n) is bijective, thus there always exists
uniquely Qi ∈ SP(n) such that logQi − logP = Si for all 1 ≤ i ≤ d. And ELE

i (P ) simply
equals to LogLEP (Qi) ∈ TPSP(n). Moreover, since matrix exponential and logarithm are smooth
on SP(n), ELE

i (P ) are smooth for all 1 ≤ i ≤ d. Moreover, for any 1 ≤ i, j ≤ d, we have

gLEP
(
ELE
i (P ), ELE

j (P )
)

=
〈
dP logELE

i (P ), dP logELE
j (P )

〉
F

= 〈Si, Sj〉F = δij ,

where δij is the Kronecker delta. Thus, the first argument is proved.

We have:

∇P
{

d2
LE(P,Q)

}
=

d∑
i=1

dfP {ELE
i (P )} ELE

i (P ),

where f(P ) = d2
LE(P,Q) = 〈logQ− logP, logQ− logP 〉F and dfP {ELE

i (P )} is the differential
of f at P in the direction ELE

i (P ). Since the matrix logarithm is a diffeomorphism and gLEP is
induced from the Frobenius inner product through the derivative of the matrix logarithm, we
get

dfP {ELE
i (P )} = 2 gLEP

(
∇Ei(P )LogLEP M,LogLEP Q

)
= 2 〈dP (logQ− logP )Ei(P ), logQ− logP 〉F
= 2 〈−dP logEi(P ), logQ− logP 〉F
= −2 〈Si, logQ− logP 〉F

⇒ ∇P
{

d2
LE(P,Q)

}
= −2 (dP log)−1(logQ− logP ) = −2 LogLEP (Q)

(ii) Since the function log : SP(n) → S(n) is bijective, there always exists uniquely Qi ∈ SP(n)
such that log(P−1/2QiP

−1/2) = Si for all 1 ≤ i ≤ d. And Ei(P ) = LogAI
P (Qi) ∈ TPSP(n).

Moreover, for any 1 ≤ i, j ≤ d, we have

gAI
P

(
EAI
i (P ), EAI

j (P )
)

=
〈
P−1/2EAI

i (P )P−1/2, P−1/2EAI
j (P )P−1/2

〉
F

= 〈Si, Sj〉F = δij ,

where δij is the Kronecker delta. We hence obtain a global orthonormal basis field BAI
d on

SP(n), by the congruent transformation of P 1/2.

Similarly to the case of the LE metric, we have

∇P
{

d2
AI(P,Q)

}
=

d∑
i=1

dfP {EAI
i (P )}EAI

i (P ),

where f(P ) = d2
AI(P,M) and dfP {EAI

i (P )} is the differential of f at P in the direction EAI
i (P ).

Consider a geodesic curve γ(t) = P 1/2 exp(t Si)P
1/2, which satisfies γ(0) = P , γ̇(0) = P 1/2SiP

1/2 =
EAI
i (P ), and we have

dfP (EAI
i (P )) =

d

dt
f (γ(t))

∣∣∣∣
t=0

,
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f (γ(t)) = || log
{
M−1/2γ(t)Q−1/2

}
||2F = tr

(
log2

{
Q−1/2γ(t)Q−1/2

})
.

Letting φ(t) = Q−1/2γ(t)Q−1/2, then for any non-zero v ∈ Rn,

vTφ(t)v = (P 1/2Q−1/2v)T exp(tSi)(P
1/2Q−1/2v) > 0

as exp(tSi) ∈ SP(n), thus φ(t) ∈ SP(n), ∀t ≥ 0. We then can apply the result by Moakher
[2005] to φ(t), which implies

d

dt
tr
(
log2 φ(t)

)
= 2 tr

(
log φ(t){φ(t)}−1 d

dt
φ(t)

)

⇒ d

dt
f (γ(t))

∣∣∣∣
t=0

=
d

dt
tr
(
log2 φ(t)

)∣∣∣∣
t=0

= 2 tr
(

log φ(0){φ(t)}−1φ̇(0)
)

= 2 tr
(

log φ(0){φ(0)}−1Q−1/2γ̇(0)Q−1/2
)

= 2 tr
(

log(Q−1/2PQ−1/2)Q−1/2P 1/2SiP
1/2Q−1/2

)
= 2 tr

(
log(P 1/2Q−1P 1/2)Si

)
= −2

〈
log(P−1/2QP−1/2), Si

〉
F

Thus, ∇P
{

d2
AI(P,Q)

}
= −2

∑d
i=1

〈
log(P−1/2Q P−1/2), Si

〉
F
EAI
i (P ) = −2 LogAI

P Q.

Lemma S1. The Christoffel symbols at any P ∈ SP(n) with respect to the basis BAI
d are Γkij(P ) =

〈−(SiSj + SjSi) , Sk〉F /2, which are constant (i.e. they do not depend on P ).

Proof. We take the result by Moakher and Zéräı [2011] that the Levi-Civita connection of SP(n)
equipped with the AI metric are given as follows:

(∇XY )P = −1

2
(XPP

−1YP + YPP
−1XP ) for X,Y ∈ Γ(TSP(n)).

Replacing X = EAI
i (P ) and Y = EAI

j (P ), we get

(∇EAI
i
EAI
j )P = P 1/2

{
−1

2
(SiSj + SjSi)

}
P 1/2 =

d∑
k=1

〈
−1

2
(SiSj + SjSi) , Sk

〉
F

EAI
k (P )

⇒ Γkij(P ) =

〈
−1

2
(SiSj + SjSi) , Sk

〉
F

and clearly, Christoffel symbols do not depend on P .

Proposition S3 (Horizontal lift of smooth curves). Suppose that γ(t) is a smooth curve on SP(n)
with γ(0) = P and some smooth curve ut such that π(ut) = γ(t) for all t > 0, where π : F(SP(n))→
SP(n) is the canonical projection map.

(i) (LE metric). Suppose the expression of ut in local coordinates {ELE
1 (γ(t)), . . . ELE

d (γ(t)), e1, . . . , ed}
is ut = (γ(t), δ) with δ = (δij), the Kronecker delta, then ut is the unique horizontal lift of the
curve γ(t) from u0, where u0(ei) = ELE

i (P ) for all 1 ≤ i ≤ d.

(ii) (AI metric). Suppose the expression of ut in local coordinates {EAI
1 (γ(t)), . . . EAI

d (γ(t)), e1, . . . , ed}
is ut = (γ(t), ζ) with ζ = (ζij) and ζij : SP(n) → R are continuous functions, then ut is the
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unique horizontal lift of the curve γ(t) from u0 : Rd → TPSP(n) with u0(ei) = EAI
i (P ) (1 ≤

i ≤ d), i.e. ζij(P ) = δij if and only if functions ζij exist uniquely and satisfy:

d∑
r=1

αr(γ(t))

{
(EAI

r ζij)γ(t) +

d∑
k=1

ζik(γ(t)) Γjrk(γ(t))

}
= 0 for all 1 ≤ i, j ≤ d, (S8)

where Γjrk(γ(t)) = Γjrk, the Christoffel symbols, were shown constant in Lemma S1 and γ̇(t) =∑d
r=1 αr(γ(t))EAI

r (γ(t)) for some functions αr ∈ C∞(SP(n)).

Moreover, if αr(γ(t)) 6= 0 for only one r ∈ {1, . . . , d} , then functions ζij(γ(t)) have to satisfy

(EAI
r ζij)γ(t) = −

d∑
k=1

ζik(γ(t)) Γjrk for all 1 ≤ i, j ≤ d.

Proof. (i) We are given π(ut) = γ(t) with fixed initial values γ(0) = P and u0 ∈ F(SP(n))P ,
thus it is sufficient to show that ut(e) is parallel along the curve γ(t) for any e ∈ Rd, i.e.
∇γ̇(t)ut(e) = 0.

Consider an arbitrary e ∈ Rd, then e =
∑d
i=1 εiei for some εi ∈ R. By definition, ut(e) =∑d

i=1 εiEi(Xt). On the other hand, we also can write γ̇(t) =
∑d
i=1 αi(γ(t))Ei(γ(t)) for some

functions αi ∈ C∞(SP(n)). Since εi does not depend on γ(t) for all 1 ≤ i ≤ d, we have :

∇γ̇(t)ut(e) = ∇{∑d
i=1 αi(γ(t))Ei(γ(t))}

{ d∑
j=1

εj Ej(γ(t))
}

=

d∑
i,j=1

αi(γ(t)) εj

{
∇Ei(Xt)Ej(γ(t))

}
= 0.

Here we used the fact that ∇ELE
i (Q)E

LE
j (Q) = 0 (1 ≤ i, j ≤ d) for all Q ∈ SP(n).

(ii) Firstly, let us suppose that there exist such functions ζij , which satisfy equation (S8). Since
π(ut) = γ(t) with fixed u0 and γ(0) = P , it is sufficient to show ut is the unique horizontal lift
of γ(t) by showing for any e ∈ Rd, ut(e) is parallel along the curve γ(t), i.e.∇γ̇(t)ut(e) = 0.

Consider an arbitrary e ∈ Rd, i.e. e =
∑d
i=1 εi ei for some scalar εi, then

ut(e) =

d∑
i,j=1

εi ζ
i
j(γ(t))EAI

j (γ(t)).

Using the given condition in equation (S8), we get

∇γ̇(t)ut(e) =

d∑
r=1

αr(γ(t))

∇EAI
r (γ(t))


d∑

i,j=1

ei ζ
i
j(γ(t))EAI

j (γ(t))




=

d∑
r=1

αr(γ(t))

 d∑
i,j=1

ei∇EAI
r (γ(t))

{
ζij(γ(t))EAI

j (γ(t))
}

=

d∑
r=1

αr(γ(t))

 d∑
i,j=1

ei
{

(EAI
r ζij)γ(t)E

AI
j (γ(t)) + ζij(Xt)∇EAI

r (γ(t))E
AI
j (γ(t))

}
=

d∑
r,i,j=1

αr(γ(t)) ei (EAI
r ζij)γ(t)E

AI
j (γ(t))
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+

d∑
r=1

αr(γ(t))

d∑
i,j=1

ei ζ
i
j(γ(t))

(
d∑
k=1

Γkrj(γ(t))EAI
k (γ(t))

)

=

d∑
i,j=1

ei

(
d∑
r=1

αr(γ(t))

{
(EAI

r ζij)γ(t) +

d∑
k=1

ζik(γ(t)) Γjrk

})
EAI
j (γ(t)) = 0.

On the other hand, if ut is the horizontal lift of Xt starting from u0, for any e ∈ Rd, ∇γ̇(t)ut(e) =
0.

⇒
d∑
r=1

αr(γ(t))

{
(EAI

r ζij)γ(t) +

d∑
k=1

ζik(γ(t)) Γjrk

}
= 0 for all 1 ≤ i, j ≤ d.

If only one r ∈ {1, . . . , d} is such that αr(Xt) 6= 0, then clearly functions ζij(γ(t)) have to satisfy

(Erζ
i
j)γ(t) = −

d∑
k=1

ζik(γ(t)) Γjrk for all 1 ≤ i, j ≤ d

Uniqueness and existence of ut result from the fact that ζij is the solution of a system of first

order linear ordinary differential equations with initial conditions ζij(P ) = δij .

Theorem S2. For t ∈ [0, T ) the laws Pt,P�t and P∗t are absolutely continuous. Let p(t,Xt;T, V )
denote the true (unknown) transition density of moving from Xt at time t to V at time T and let
X�[0:t] be the path of X�t from time 0 to t, then the following Radon-Nikodym derivatives are given in
closed form:

dPt
dP�t

(X�[0:t]) =
exp(f(X�0 ))

exp(f(X�t ))
exp

{
Φ(t,X�[0:t]) + φ(t,X�[0:t])

}
, (S9)

dP∗t
dP�t

(X�[0:t]) =
p(t,X�t ;T, V )

exp(f(X�t ))

exp(f(X�0 ))

p(0, U ;T, V )
exp

{
Φ(t,X�[0:t]) + φ(t,X�[0:t])

}
, (S10)

where f, φ and Φ are

f (X�t ) = −d
2
AI(X

�
t , V )

2σ2(T − t)
= −

∣∣∣∣log
(
(X�t )−1/2V (X�t )−1/2

)∣∣∣∣2
F

2σ2(T − t)
, (S11)

φ (t,X�[0:t]) =

d∑
i,j=1

∫ t

0

(
ζij(X

�
s )
)2

2(T − s)
ds, (S12)

Φ (t,X�[0:t]) =

t∫
0

[
θ gAI

Xs

(
LogAI

X�
s
M,

LogAI
X�

s
V

σ2(T − s)

)
(S13)

+
1

2

d∑
i,j,r=1

gAI
X�

s

(
ζij(X

�
s )

(
d∑
l=1

ζil (X
�
s )Γrjl + (EAI

j ζir)X�
s

)
EAI
r (X�s ) ,

LogAI
X�

s
V

T − s

)]
ds,

with Γrjl given in Lemma S1. The functions ζ = (ζil ) are the coefficients with respect to the basis BAI
d

in the expression of the horizontal lift in local coordinates.

Proof. Using the Girsanov-Cameron-Martin Theorem in Elworthy [1982, Theorem 11C, Page 263],
the measures Pt and P�t are absolutely continuous, and the Radon-Nikodym derivative is given as

dPt
dP�t

(X�[0:t]) = exp

−
∫ t

0

gAI
X�

s

(
LogAI

X�
s
V , U�s (dBs)

)
σ(T − s)

− 1

2

∫ t

0

||LogAI
X�

s
||2
gAI
X�

s

σ2 (T − s)2
ds

 , (S14)
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where U�t is the horizontal lift of the guided proposal X�t .
On the other hand, we will apply Itô’s formula from [Elworthy, 1982, Lemma 9B, Page 145] to

the smooth function f while using some results:

∇X�
t
f =

LogAI
X�

t
V

σ2(T − t)
,

∆f{EAI
i (X�t ) , EAI

j (X�t ) } =
δij

σ2(T − t)

∂f

∂t
= − d2AI(V,X

�
t )

2σ2(T − t)2
= −
||LogAI

X�
t
||2gX�

t

2σ2(T − t)2
,

U�t (ei) =

d∑
j=1

ζij(X
�
t )EAI

j (X�t )

⇒ ∇U�
t (ei)

U�t (ek) =

d∑
j,l

ζij(X
�
t ) (

d∑
r=1

ζkl (X�t ) ΓrjlE
AI
r (X�t ) + (EAI

j ζkl )X�
t
EAI
l (X�t )).

Thus,

f(X�t )− f(X�0 ) =

t∫
0

∂f

∂s
ds+

t∫
0

gAI
Xs

(
θ LogAI

X�
s
M +

LogAI
X�

s
V

T − s
,∇X�

s
f
)
ds

+

t∫
0

gAI
Xs

(
U�s (σ dBs) , ∇X�

s
f
)

+
1

2

t∫
0

gAI
Xs

(
∇U�

s (σ dBs)U
�
s (σ dBs) , ∇X�

s
f
)

+
1

2

t∫
0

∆f{U�s (σ dBs) , U
�
s (σ dBs)}

= −1

2

t∫
0

||LogAI
X�

s
||2
gAI
X�

s

σ2(T − s)2
ds+

t∫
0

θ gAI
Xs

(
LogAI

X�
s
M,

LogAI
X�

s
V

σ2(T − s)

)
ds

+

t∫
0

||LogAI
X�

s
||2
gAI
X�

s

σ2(T − s)2
ds+

∫ t

0

gAI
X�

s

(
LogAI

X�
s
V

σ2 (T − s)
, U�s (σ dBs)

)

+
1

2σ2 (T − s)

∫ t

0

d∑
i,k=1

d〈Bi, Bk〉s

{
d∑

j,l=1

δjl ζ
i
j(X

�
s ) ζkl (X�s )σ2

+

d∑
j,r=1

gAI
X�

s

(
σ2 ζij(X

�
s )

(
d∑
l=1

ζkl (X�s )Γljr + (EAI
j ζkr )X�

s

)
EAI
l (X�s ) , LogAI

X�
s
V

)}

=
1

2

t∫
0

||LogAI
X�

s
||2
gAI
X�

s

σ2(T − s)2
ds+

∫ t

0

gAI
X�

s

(
LogAI

X�
s
V , U�s (dBs)

)
σ(T − s)

+

t∫
0

θ gAI
Xs

(
LogAI

X�
s
M,

LogAI
X�

s
V

σ2(T − s)

)
ds

+
1

2

d∑
i,j,r=1

∫ t

0

gX�
s

(
ζij(X

�
s )

(
d∑
l=1

ζil (X
�
s )Γrjl + (EAI

j ζir)X�
s

)
EAI
r (X�s ) ,

LogAI
X�

s
V

T − s

)
ds
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+

d∑
i=1

∫ t

0

∑d
j=1

(
ζij(X

�
s )
)2

2(T − s)
ds.

Substituting into equation (S14), we get

dPt
dP�t

(X�[0:t]) = exp

[
−
(
f(X�t )− f(X�0 )

)
+

t∫
0

ds

2σ2(T − s)

{
θ gAI

Xs

(
LogAI

X�
s
M,LogAI

X�
s
V
)

+ σ2
d∑

i,j=1

(
ζij(X

�
s )
)2

+σ2
d∑

i,j,r=1

gAI
X�

s

(
ζij(X

�
s )
( d∑
l=1

ζil (X
�
s )Γrjl + (EAI

j ζir)X�
s

)
EAI
r (X�s ) , LogAI

X�
s
V
)}]

=
exp(f(X�0 ))

exp(f(X�t ))
exp

{
Φ(t,X�[0:t] + φ(t,X�[0:t])

}
.

Using the result from Schauer et al. [2017], that is

dP∗t
dPt

(X�[0:t]) =
p(t,X�t ;T, V )

p(0, U ;T, V )
,

we can easily get the desired result as equation (S10).

Since the functions ζ, the coefficients with respect to the basis BAI
d in the expression of the

horizontal lift in local coordinates, cannot be expressed explicitly (as mentioned in Proposition S3),
their approximation will be discussed below.

Corollary S1 (Approximation of functions ζ). We approximate ζij(γ(t)) when t is close to 0 under
two special forms of γ(t).

1. Fix an integer l ∈ {1, , . . . , d}, and consider the geodesic curve on SP(n) equipped with the AI
metric such that γ(0) = P , γ̇(0) = P 1/2SlP

1/2, i.e. γ(t) = P 1/2 exp(tSl)P
1/2. Suppose ut is

the unique horizontal lift defined in Proposition S3,

⇒ (EAI
r ζij)P = (dζij)P (EAI

r (P )) =
d

dt
(ζij ◦ γ)(t)

∣∣∣∣
t=0

(1 ≤ r ≤ d).

With αr(P ) = δrl, Proposition S3 implies

(EAI
l ζij)P = −

d∑
k=1

ζik(P ) Γjlk = −
d∑
k=1

δikΓjlk = −Γjli (1 ≤ i, j ≤ d)

⇒ d

dt
(ζij ◦ γ)(t)

∣∣∣∣
t=0

= −Γjli

Since (ζij ◦ γ)(0) = δij, lim
t→0

(ζij◦γ)(t)−δij
t = −Γjli, then ζij(γ(t)) ≈ δij − tΓjli (0 ≤ t � 1). Thus,

for all 1 ≤ i, j ≤ d : ζij
(
P 1/2 exp(t Sl)P

1/2
)
≈ δij − tΓjli (0 ≤ t� 1).

2. Consider an arbitrary e =
∑d
l=1 εl el ∈ Rd such that el 6= 0 for l ∈ I ⊆ {1, . . . , d} and let

γ(t) = ExpAI
P (t u0(e)), then

γ̇(0) =

d∑
l=1

εlE
AI
l (P ) = P 1/2

(
d∑
l=1

εl Sl

)
P 1/2 ⇒ αr(X0) = er 6= 0 for r ∈ I.
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So,
∑
r∈I εr(E

AI
r ζij)γ(t) = −

∑
r∈I εr

∑d
k=1 ζ

i
k(γ(t)) Γjrk.

⇒
∑
r∈I

εr(E
AI
r ζij)P = −

∑
r∈I

εr

d∑
k=1

ζik(P ) Γjrk = −
∑
r∈I

εr Γjri.

On the other hand, setting the vector field V =
∑d
l=1 εlE

AI
l =

∑
r∈I εr E

AI
r ∈ Γ(TSP(n)), then

we have

(V ζij)γ(t) =
∑
r∈I

εr (EAI
r ζij)γ(t) and (V ζij)P = (dζij)P (VP ) =

d

dt
(ζij ◦ γ)(t)

∣∣∣∣
t=0

⇒ lim
t→0

(ζij ◦ γ)(t)− δij
t

=
∑
r∈I

εr (EAI
r ζij)P = −

∑
r∈I

εr Γjri.

Thus, for all 1 ≤ i, j ≤ d:

ζij

(
P 1/2 exp(t

d∑
l=1

εl Sl)P
1/2

)
≈ δij − t

d∑
l=1

εl Γ
j
li Il∈I,

for 0 ≤ t� 1, i.e. small t. Here I stands for the indicator function.

Using Corollary S1, we are ready to approximate φ and Φ in Theorem S2.

Corollary S2. If X�t is simulated using the piecewise approximation method in equation (S4) with
sufficiently small time width, that is we have a simulation path {X�tk = y�tk}

m+1
k=0 such that max{tk+1−

tk}mk=0 is sufficiently small and 0 = t0 < . . . < tm+1 = t, then approximations of the functions φ in
equation (S12) and Φ in equation (S13) are given by

φ(t,X�[0:t]) ≈ d

2
log

T − t
T

, (S15)

Φ(t,X�[0:t]) ≈
m∑
j=0

tk+1 − tk
T − tk

[
θ
〈
log
{

(y�tk)−1/2M(y�tk)−1/2
}
, log

{
(y�tk)−1/2V (y�tk)−1/2

}〉
F

σ2

+

〈
Γ , log((y�tk)−1/2V (y�tk)−1/2)

〉
F

2

]
, (S16)

with Γ =
∑d
i,r=1 ΓriiSr and Christoffel symbols Γrii are given in Lemma S1.

Proof. Using the result of approximation for ζij in Corollary S1, we have for 0 ≤ k ≤ m and 1 ≤
i, j ≤ d:

ζij(X
�
tk

) ≈ δij and U�t (ei) ≈ EAI
i (x�tk)⇒ EAI

l ζij = 0 for all 1 ≤ l ≤ d.

Thus,

φ(t,X�[0:t]) =

d∑
i,j=1

∫ t

0

(
ζij(X

�
s )
)2

2(T − s)
ds ≈

d∑
i=1

∫ t

0

1

2(T − s)
ds =

d

2
log

T − t
T

,

Φ(t,X�[0:t]) =

t∫
0

{
θ gAI

Xs

(
LogAI

X�
s
M,

LogAI
X�

s
V

σ2(T − s)

)

+

d∑
i,j,r=1

gAI
X�

s

(
ζij(X

�
s )
( d∑
l=1

ζil (X
�
s )Γrjl + (EAI

j ζir)X�
s

)
EAI
r (X�s ) ,

LogAI
X�

s
V

2(T − s)

)}
ds
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≈
t∫

0

θ
〈
log
(
(X�s )−1/2M(X�s )−1/2

)
, log

(
(X�s )−1/2V (X�s )−1/2

)〉
F

σ2(T − s)
ds

+

d∑
i,j,r=1

m∑
k=0

〈
δij

(∑d
l=1 δilΓ

r
jl

)
Sr , log

(
y�tk)−1/2V (y�tk)−1/2

)〉
F

2(T − tk)
(tk+1 − tk)

≈
m∑
k=0

tk+1 − tk
T − tk

[
θ
〈
log
{

(y�tk)−1/2M(y�tk)−1/2
}
, log

{
(y�tk)−1/2V (y�tk)−1/2

}〉
F

σ2

+

〈
Γ , log((y�tk)−1/2V (y�tk)−1/2)

〉
F

2

]

3. Stochastic completeness on SP(n)

Before proving stochastic completeness, let us state the calculation of the Ricci curvature by Pennec
[2020] in the case of the AI metric as well as the theorem in Hsu [2002] showing that manifolds having
a lower bound on the Ricci curvature are stochastically complete.

Lemma S2. [Pennec, 2020] For any P ∈ SP(n), the Ricci curvature is given in terms of the basis
BAI
d (P ), as defined in equation (S7) :

RicP = −n
4

(
In − 1

n1n,n 0
0 In(n−1)/2

)
,

where 1n,n is an n× n matrix, that has all entries equal to one.

Theorem S3. [Hsu, 2002] Consider a complete Riemannian manifold M of dimension d, a fixed
point p ∈ M and denote d(x, p) as the distance between x ∈ M and p. Suppose that a negative,
non-decreasing, continuous function κ : [0,∞)→ R<0 satisfies

κ(r) ≤ 1

d− 1
inf
x∈M

{RicM(x) : d(x, p) = r}

where RicM(x) = {Ric(X,X) : X ∈ TxM and |X| = 1}. If∫ ∞
c

1√
−κ(r)

dr =∞

for some constant c then M is stochastically complete.

Proposition S4 (stochastic completeness). The Riemannian manifold SP(n) is stochastically com-
plete if it is equipped with either

(i) the LE metric,

(ii) or the AI metric.

Proof. (i) Firstly, we show that SP(n) equipped with the LE metric has null sectional curvature
everywhere, i.e. for all 1 ≤ i, j ≤ d and P ∈ SP(n) we have ∇ELE

i (P )E
LE
j (P ) = 0, where

ELE
i , ELE

j ∈ BLE
d , as defined in equation (S6).

We have the result that SP(n) endowed with the LE metric is isometric to the S(n) endowed
with a Euclidean metric (Frobenius inner product) through the matrix logarithm function, that
is log : SP(n)→ S(n) is a diffeomorphism and for all P ∈ SP(n) we have

gLEP (S1, S2) = 〈dP logS1, dP logS2〉F S1, S2 ∈ TPSP(n).
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So ∇SP(n) is the pull-back connection of ∇S(n) by the matrix logarithm function, and we have
for any P ∈ SP(n) and 1 ≤ i, j ≤ d :

⇒ ∇SP(n)
ELE

i (P )
ELE
j (P ) = ∇SP(n){(dP log)−1Si}{(dP log)−1Sj} = (dP log)−1∇S(n)Si

Sj = 0.

Thus, the Ricci curvature tensor also vanishes everywhere, and the required result is a direct
consequence of Theorem S3.

(ii) We aim to show that the Ricci curvature satisfies the condition in Theorem S3, which implies
the required result.

Let us fix a point P ∈ SP(n), and vary some point Q ∈ SP(n) such that d2AI(P,Q) = r for some

r > 0. Consider a tangent vector v ∈ TQSP(n) such that |v| = 1, that is v =
∑d
i=1 νiE

AI
i (Q) ∈

TQSP(n) and
∑d
i=1 ν

2
i = 1.

By Lemma S2, denoting the (i, j)th entry of the Ricci curvature tensor at Q in matrix form as

Ric
(i,j)
Q , we have

Ric(v, v) =

d∑
i,j=1

νiRic
(i,j)
Q νj = −n− 1

4

n∑
i=j=1

ν2i −
n

4

d∑
i=j=n+1

ν2i +
1

4

n∑
i 6=j

νiνj

= −n
4

d∑
i=1

ν2i +
1

4

n∑
i,j=1

νiνj = −n
4

+
1

4

n∑
i,j=1

νiνj ≥ −
n

4
− n2

4
= −d

2

The last inequality holds due to the fact that
∑d
i=1 ν

2
i = 1. Therefore, using Theorem S3, we

can set κ(r) = −d
2(d−1) , which is clearly a negative, non-decreasing, continuous function.

⇒
∫ ∞
c

1√
−κ(r)

dr =

√
2(d− 1)

d

∫ ∞
c

1 dr =∞ for some constant c.

Thus, SP(n) endowed with the AI metric is stochastically complete.
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M. Moakher and M. Zéräı. The Riemannian geometry of the space of positive-definite matrices and its
application to the regularization of positive-definite matrix-valued data. Journal of Mathematical
Imaging and Vision, 40(2):171–187, 2011.

X. Pennec. Manifold-valued image processing with SPD matrices. In Riemannian Geometric Statistics
in Medical Image Analysis, pages 75–134. Elsevier, 2020.

M. Schauer, F. Van Der Meulen, H. Van Zanten, et al. Guided proposals for simulating multi-
dimensional diffusion bridges. Bernoulli, 23(4A):2917–2950, 2017.

11


	OU class - main (ArXiv)
	OU class - supplementary material (ArXiv)

