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Motivation: Lamperti’s problem

Let Xn be a nearest neighbour random walk on Z+.

Denote the mean drift at x by µ(x).

Lamperti’s problem: µ(x) = O(1/x) when x →∞.
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Non-homogeneous RW on semi-infinite strip

Let S be a finite non-empty set.

Let Σ be a subset of R+ × S that is locally finite, i.e.,
Σ ∩ ([0, r ]× S) is finite for all r ∈ R+.

E.g. Σ = Z+ × S .

Define for each k ∈ S the line Λk := {x ∈ R+ : (x , k) ∈ Σ}.
Suppose that for each k ∈ S the line Λk is unbounded.
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Non-homogeneous RW on semi-infinite strip

Suppose that (Xn, ηn), n ∈ Z+, is a time-homogeneous,
irreducible Markov chain on Σ, a locally finite subset of
R+ × S .

Neither coordinate is assumed to be Markov.
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Motivating examples

We can view S as a set of internal states, influencing motion on
the lines R+. E.g.,

Operations research: modulated queues
(S = states of server)

Economics: regime-switching processes
(S contains market information)

Physics: physical processes with internal degrees of freedom
(S = energy/momentum states of particle)
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Classification of the random walk

Recall (Xn, ηn) is a time-homogeneous irreducible Markov chain on
the state-space Σ ∈ R+ × S .

(i) If (Xn, ηn) is transient, then Xn →∞ a.s.

(ii) If (Xn, ηn) is recurrent, then P(Xn ∈ A i.o.) = 1 for any
bounded region A.

(iii) Define τ = min{n ≥ 0 : Xn ∈ A}. If (Xn, ηn) is
positive-recurrent, then E[τ ] <∞ for any bounded region A.

(iv) If (Xn, ηn) is recurrent but not positive recurrent, then we call
it null-recurrent.



Assumptions

Moments bound on jumps of Xn

(Bp) ∃ Cp <∞ s.t.

E[|Xn+1 − Xn|p | (Xn, ηn) = (x , i)] ≤ Cp

Notation for moments of the displacements in the
X -coordinate

µi (x) = E[Xn+1 − Xn | (Xn, ηn) = (x , i)]

σi (x) = E[(Xn+1 − Xn)2 | (Xn, ηn) = (x , i)]
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Assumptions (cont.)

ηn is “close to being Markov” when Xn is large
Define

qij(x) = P[ηn+1 = j | (Xn, ηn) = (x , i)]

(Q∞) qij = limx→∞ qij(x) exists for all i , j ∈ S
and (qij) is irreducible

Let π be the unique stationary distribution on S
corresponding to (qij).
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Constant drift

Constant-type moment condition
(MC) ∃ di ∈ R for all i ∈ S such that

µi (x) = di + o(1).
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Recurrence classification for constant drift

The following theorem is from Georgiou, Wade (2014), extending
slightly earlier work of Malyshev (1972), Falin (1988), and Fayolle
et al (1995).

Theorem

Suppose that (Bp) holds for some p > 1 and conditions (Q∞) and
(MC) hold. The following sufficient conditions apply.

If
∑

i∈S diπi > 0, then (Xn, ηn) is transient.

If
∑

i∈S diπi < 0, then (Xn, ηn) is positive-recurrent.

where πi is the unique stationary distribution on S .

What about
∑

i∈S diπi = 0 ?



Different drifts

(i)
∑

i∈S diπi 6= 0, constant drift:

µi (x) = di + o(1)

(ii)
∑

i∈S diπi = 0 and di = 0 for all i , Lamperti drift:

µi (x) =
ci
x

+ o(x−1)

σi (x) = s2
i + o(1)

(iii)
∑

i∈S diπi = 0 and di 6= 0 for some i , generalized Lamperti
drift:

µi (x) = di +
ci
x

+ o(x−1)

σi (x) = s2
i + o(1)



Lamperti drift

Lamperti-type moment conditions
(ML) ∃ ci , si ∈ R for all i ∈ S (at least one si nonzero) such
that

µi (x) =
ci
x

+ o(x−1); σi (x) = s2
i + o(1).

When S is a singleton, this reduces to the classical Lamperti
problem on R+.
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Recurrence classification for Lamperti drift

Theorem (Georgiou, Wade, 2014)

Suppose that (Bp) holds for some p > 2 and conditions (Q∞) and
(ML) hold. The following sufficient conditions apply.

(i) If
∑

i∈S(2ci − s2
i )πi > 0, then (Xn, ηn) is transient.

(ii) If |
∑

i∈S 2ciπi | <
∑

i∈S s
2
i πi , then (Xn, ηn) is null-recurrent.

(iii) If
∑

i∈S(2ci + s2
i )πi < 0, then (Xn, ηn) is positive-recurrent.

[With better error bounds in (Q∞) and (ML) we can also show
that the boundary cases are null-recurrent.]



Idea of proof of the theorem

Our general analysis is based on the Lyapunov function
fν : Σ→ R defined for ν ∈ R by

fν(x , i) := xν +
ν

2
bix

ν−2

where bi ∈ R.

For appropriate choices of ν, and selecting the right bi
depending on the drift and the stationary distribution, we can
show that fν(Xn, ηn) is a supermartingale and so we can apply
some semi-martingale theorem. Hence we obtain the last
theorem shown.
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Generalized Lamperti drift
Generalized Lamperti type moment conditions
Define

µij(x) = E[(Xn+1 − Xn)1{ηn+1 = j} | (Xn, ηn) = (x , i)]

(MCL) There exist di ∈ R, ci ∈ R, dij ∈ R and s2
i ∈ R+, with

at least one s2
i non-zero, such that all of the following is

satisfied,

(i) For all i ∈ S , µi (x) = di + ci
x + o(x−1) as x →∞,

(ii) For all i , j ∈ S , µij(x) = dij + o(1) as x →∞,
(iii) σi (x) = s2

i + o(1),
(iv)

∑
i∈S πidi = 0.

Transition probability condition
(QCL) There exist γij ∈ R, such that

qij(x) = qij +
γij
x

+ o(x−1)
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Recurrence classification for Generalized Lamperti drift

Theorem (L., Wade, 2015)

Suppose that (Bp) holds for some p > 2, and conditions (Q∞),
(QCL) and (MCL) hold. Define ai to be the unique solution up to
translation of the system of equations di +

∑
j∈S(aj − ai )qij = 0

∀ i ∈ S . The following sufficient conditions apply.

If
∑

i∈S [2ci − s2
i + 2

∑
j∈S aj(γij − dij)]πi > 0 then (Xn, ηn) is

transient.

If |
∑

i∈S(2ci + 2
∑

j∈S ajγij)πi | <
∑

i∈S(s2
i + 2

∑
j∈S ajdij)πi

then (Xn, ηn) is null-recurrent.

If
∑

i∈S [2ci + s2
i + 2

∑
j∈S aj(γij + dij)]πi < 0 then (Xn, ηn) is

positive-recurrent.



Idea of proof of the theorem

Transform the process (Xn, ηn) with generalized Lamperti drift
to a process (X̃n, ηn) = (Xn + aηn , ηn)

Find the appropriate choices of the real numbers ai , i ∈ S ,
such that (X̃n, ηn) has Lamperti drift i.e., the constant
components of the drifts are eliminated

Calculate the new increment moment estimates for the
transformed process (X̃n, ηn).

Apply the results in the Lamperti drift case
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Example: One-step Correlated random walk



Simulation results on One-step Correlated RW
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Example: Two-steps Correlated random walk



Simulation results on Two-steps Correlated RW
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Existence and Non-existence of Moments results

We also obtained some quantitative information on the nature
of recurrence. We studied moments of passage times.

For x ∈ R+, define the stopping time

τx := min{n ≥ 0 : Xn ≤ x}.

We got results that gives conditions for which s such that
E[τ sx ] exists or not exists.

We used similar techniques and ideas in our proofs.
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