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Cutpoints

Suppose that X = (Xn; n ∈ Z+) is a discrete-time stochastic
process adapted to a filtration (Fn; n ∈ Z+) and taking values in
a measurable X ⊂ R+ with inf X = 0 and supX =∞. We
permit F0 to be rich enough that X0 is random.

A point x of R+ is a cutpoint for a given trajectory of a
stochastic process if, roughly speaking, the process visits x and
never returns to [0, x) after its first entry into (x ,∞).



Motivation

Under mild conditions, cutpoints may appear only in the
transient case, when trajectories escape to infinity.

The more cutpoints that a process has, the ‘more transient’ it is,
in a certain sense.

A fundamental question is: does a transient process have
infinitely many cutpoints, or not?



Cutpoints

Definition

(i) The point x ∈ R+ is a cutpoint for X if there exists n0 ∈ Z+

such that Xn ≤ x for all n ≤ n0, Xn0 = x , and Xn > x for all
n > n0.
(ii) The point x ∈ R+ is a strong cutpoint for X if there exists
n0 ∈ Z+ such that Xn < x for all n < n0, Xn0 = x , and Xn > x for
all n > n0.



Number of cutpoints

Let C denote the set of cutpoints, and let Cs denote the set of
strong cutpoints; the random sets C and Cs are at most
countable, with Cs ⊆ C.

In this presentation we give conditions under which either (i)
#Cs =∞, or (ii) #C <∞.

The example of a trajectory on Z+ which follows the sequence
(0,0,1,1,2,2, . . .) shows that it is, in principle, possible to have
#C =∞ and #Cs <∞, but our results show that such
behaviour is excluded for the models that we consider (with
probability 1).



Some literature

For simple symmetric random walk (SSRW) on Zd , d ≥ 3,

Erdős and Taylor (1960): Cutpoints have a positive density in
the trajectory if d ≥ 5;

Lawler (1991): Transient SSRW has infinitely many cutpoints in
dimension d ≥ 4;

James and Peres (1997): Transient SSRW has infinitely many
cutpoints in dimension d ≥ 3.

Recently, examples of transient Markov chains on Z+ with
finitely many cutpoints were produced (e.g. by Csáki et. al
(2010)): these processes are nearest-neighbour birth-and-
death chains that are ‘less transient’ than SSRW on Z3.



Some assumptions

Bounded Increments:
(B) Suppose that there exists a constant B <∞ such that, for

all n ∈ Z+,
P(|Xn+1 − Xn| ≤ B | Fn) = 1.

Non-confinement condition:
(N) Suppose that lim supn→∞ Xn = +∞, a.s.



Some assumptions cont’

For n ∈ Z+, we will impose conditions on the conditional
increment moments E[(Xn+1 − Xn)k | Fn], k = 1,2, that are
required to hold uniformly (in n and a.s.) on {Xn > x} for large
enough x . To formulate these conditions, we suppose that we

have (measurable) functions µk , µ̄k : X → R such that

µk (Xn) ≤ E(∆k
n | Fn) ≤ µ̄k (Xn), a.s.

for all n ∈ Z+.
Additional mild assumption:
(V) Suppose that lim infx→∞ µ2(x) > 0.



A sufficient condition for infinitely many strong cutpoints

Theorem 1 (L., Menshikov, Wade, 2020)

Suppose that (B), (N), and (V) hold. Suppose also that

lim inf
x→∞

(
2xµ1(x)− µ̄2(x)

)
> 0, (1)

lim sup
x→∞

(
x µ̄1(x)

)
<∞.

Then P(#Cs =∞) = 1. Moreover, if EX0 <∞ then there is a
constant c > 0 such that E#(Cs ∩ [0, x ]) ≥ c log x for all x
sufficiently large.

The hypotheses of Theorem 1 imply Xn →∞ a.s. is a result of
Lamperti. By Lamperti’s result, condition (1) is sufficient for
transience and is equivalent to d ≥ 3 in SSRW on Zd .



A sufficient condition for finitely many cutpoints

Our second result applies only to the Markov case.

Theorem 2 (L., Menshikov, Wade, 2020)

Suppose that some stronger regularity assumption on the
process, (B), and (V) hold. Suppose also that there exist
constants x0 ∈ R+ and D <∞ such that

µ1(x) ≥ 0 and 2xµ1(x)− µ2(x) ≤ D
log x

, for all x ≥ x0. (2)

Then P(#C <∞) = 1.



An example of transient processes with #C <∞

Intuitively, we want processes that are ‘less transient’ than
SSRW in Z3.

A more refined recurrence classification (see Menshikov et. al.
(1995)) says that a sufficient condition for transience is, for
some θ > 0 and all x sufficiently large,

2xµ1(x) ≥
(

1 +
1 + θ

log x

)
µ2(x),

and a sufficient condition for recurrence is the reverse
inequality with θ < 0.



Example cont’

Example 1
If

lim
x→∞

µ2(x) = b ∈ (0,∞), and µ1(x) =
a

2x
+

c + o(1)

2x log x
,

then a > b implies that there are infinitely many cutpoints by
Theorem 1, and a < b is recurrent (regardless of c).

The critical case has a = b, and then c < b implies recurrence
and c > b implies transience.

This latter regime provides examples of processes with few
cutpoints, as we show in Theorem 2.

See Csáki et. al (2010) for a sharper version in the nearest
neighbour case.



Application to higher dimensions

Elliptic random walks were introduced in Georgiou et. al.
(2016) and are non-homogeneous random walks with zero drift
that can be transient in any dimension d ≥ 2.

Theorem 3 (L., Menshikov, Wade, 2020)

Suppose that Ξ is a time-homogeneous transient elliptic
random walk on Σ ⊆ Rd . Then a.s., there are infinitely many cut
annuli.



Application to higher dimensions (cont’)

The following corollary is essentially due to James and
Peres(1997), now follows as a special case of Theorem 3.

Corollary

Suppose we have a homogeneous random walk on Zd with
bounded jumps, zero drift and finite variance. Then the random
walk is transient and has infinitely many cut annuli.



Example

A transient elliptic random walk and a cut annulus
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