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The centre of mass of a random walk

Dimension: d ≥ 1

Sequence of i.i.d. random variables: X ,X1,X2, . . .

Random walk: (Sn,n ∈ Z+) in Rd defined by

S0 := 0 and Sn :=
n∑

i=1

Xi (n ≥ 1).

Centre of mass process: (Gn,n ∈ Z+), corresponding to
the random walk, defined by

G0 := 0 and Gn :=
1
n

n∑
i=1

Si (n ≥ 1).
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Center of mass in one dimension
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Center of mass and random walk in two dimensions
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Center of mass and random walk in two dimensions (2)
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Center of mass and random walk in three dimensions
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Motivation

For Sn simple symmetric random walk, the problem of the
asymptotic behaviour of Gn was posed by P. Erdős and
solved by K. Grill (1988).

Gn is an example of a non-Markov process of relevance for
applications. E.g. if the random walk models a polymer
chain, the centre of mass is of obvious physical
significance.
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Notations and Assumptions

Notation:

µ := EX , M := E[(X − µ)(X − µ)>]

whenever the expectations exist; when defined, M is a
symmetric d by d matrix.

Moment assumptions:

(µ) Suppose that E‖X‖ <∞.

(M) Suppose that E[‖X‖2] <∞ and M is
positive-definite.
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Strong law of large numbers

From the (functional) strong law of large numbers for the
random walk Sn, we get the following strong law of large
numbers for Gn.

Proposition (L., Wade, 2017)

If (µ) holds, then, as n→∞,

n−1Gn →
1
2
µ, a.s.



Central Limit Theorem

With the help of Lindeberg–Feller theorem for triangular arrays,
we have the following central limit theorem.

Proposition (L., Wade, 2017)

If (M) holds, then, as n→∞,

n−1/2
(

Gn −
n
2
µ
)

d−→ Nd(0,M/3).



Local central limit theorem

For our first main result, we assume that X has a lattice
distribution.

(L) Suppose that X is non-degenerate. Suppose that for a
constant vector b ∈ Rd and a d by d matrix H with
|det H| = h > 0, where h is maximal, we have

P(X ∈ b + HZd) = 1.

Also define

Ln :=
{

n−3/2
(

1
2n(n + 1)b + HZd

)}
.



Some examples

Some complication on the lattice distribution. How to find
the maximal span h?

This is not always immediate even for some classical
random walks.
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Trivial choice

Trivial choice of lattice distribution for simple symmetric
random walk, i.e. b = 0 and H = I: Remarkably h is not
maximal.

Which walk has this trivial choice as the right choice?
Lazy simple symmetric random walk!
Maybe this walk is just too lazy to bother with a
complicated choice of a lattice distribution.
How to verify that h is maximal?
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Simple symmetric random walk

Example (SSRW on Zd )

Suppose that P(X = ei) = P(X = −ei) =
1

2d for all i .

For SSRW the construction of H for which (L) holds is
non-trivial.
For d = 1, we take b = −1 and h = 2.
In general d ≥ 2, we take H = (hij) and b = (bi) defined as
follows.
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Simple symmetric random walk (cont.)

Example (cont.)
If d = 2n − 1 for n ≥ 2,n ∈ Z, we take

bi = −1 for all i = 1,2, . . . ,d ;

hij =

{
1 if i − j ≡ 0 or n (mod 2n − 1),
0 otherwise.

If d = 2n for n ≥ 1,n ∈ Z, we take

bi =

{
0 if i = 2n,
−1 otherwise;

hij =


−1 if (i , j) = (2n,1),
1 if j − i ≡ 0 or 1 (mod 2n) and (i , j) 6= (2n,1),
0 otherwise.
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Simple symmetric random walk (cont.)

Example (cont.)
E.g. for d = 2 we have

b =

(
−1
0

)
and H =

(
1 1
−1 1

)
.

For d = 3, we have

b =

−1
−1
−1

 and H =

1 1 0
0 1 1
1 0 1

 .
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Simple symmetric random walk (cont.)

Example (cont.)
For d = 4, we have
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Simple symmetric random walk (cont.)

Example (cont.)
For d = 5, we have
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Note that h = 2 for all such H.
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Local central limit theorem
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Local central limit theorem (cont.)

For x ∈ Rd , define pn(x) := P(n−1/2Gn = x), and

n(x) :=
exp{−3

2x>M−1x}
(2π)d/2

√
det(M/3)

.

Theorem (L., Wade, 2017)

Suppose that (M), (L) hold. Then we have

lim
n→∞

sup
x∈Ln

∣∣∣∣∣n3d/2

h
pn(x)− n

(
x− (n + 1)

2n1/2 µ

)∣∣∣∣∣ = 0.



One dimension: Recurrent case
Depending on different moment assumptions, we can get
very different recurrence behavour of the process. First we
give a recurrence result in one dimension.

In the case of SSRW the fact that Gn returns infinitely often
to a neighbourhood of the origin is due to Grill[1988].

Theorem (L., Wade, 2017)

Suppose that d = 1 and that either of the following two
conditions holds.

(i) Suppose that E|X | ∈ (0,∞) and X d
= −X.

(ii) Suppose that (M) holds and that EX = 0.
Then we have lim infn→∞Gn = −∞, lim supn→∞Gn = +∞ and
lim infn→∞ |Gn| = 0.
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One dimension: Transient case

On the other hand, if the first moment does not exist, Gn may
be transient. The condition we assume is as follows.

(S) Suppose that X d
= −X and X is in the domain of normal

attraction of a symmetric α-stable distribution with α ∈ (0,1).

Theorem (L., Wade, 2017)

Suppose that d = 1 and (L) holds, i.e., P(X ∈ b + hZd) = 1 for
b ∈ R and h > 0. Also suppose that (S) holds. Then we have
limn→∞ |Gn| =∞.



Two dimensions or more

The following theorem implies that limn→∞ ‖Gn‖ = +∞
and moreover gives a diffusive rate of escape.

In the case of SSRW the result is due to Grill[1988].

Theorem (L., Wade, 2017)

Suppose that d ≥ 2 and that (M) and (L) hold. Also suppose
that µ = 0. Then

lim
n→∞

log ‖Gn‖
log n

=
1
2
, a.s.
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Idea of proof for recurrent case

Suppose d = 1.

Gn =
n∑

i=1

(
n − i + 1

n

)
Xi ,

implies that Gn satisfies a central limit theorem.

Hewitt-Savage 0-1 law implies Gn changes sign infinitely
often.

|Gn+1 −Gn| → 0 as n→∞.
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Idea of proof for transient case

Suppose d ≥ 2. We sketch the proof of transience only.

The idea is to use the local limit theorem to control (via
Borel–Cantelli) the visits of Gn to a growing ball, along a
subsequence of times suitably chosen so that the slow
movement of the centre of mass controls the trajectory
between the times of the subsequence as well.

Step 1: Local limit theorem implies that
P(Gn ∈ B) = O

(
n−

d
2

)
for a fixed ball B.
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Idea of proof for transient case

We have the following estimate on the deviations.

Lemma

Suppose that (M) holds and that µ = 0. Then, for any ε > 0,
a.s. for all but finitely many n,

max
n2≤m≤(n+1)2

‖Gm −Gn2‖ ≤ nε.

Step 2: Slow movement of Gn implies that it suffices to
control Gn2 .
Step 3: P(Gn2 ∈ B) ≈ n−d , which is summable if d ≥ 2.
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Idea of proof for transient case



Conjecture

Obtaining necessary and sufficient conditions for
recurrence and transience of Gn is an open problem.

For d ≥ 2, we believe that Gn is always ‘at least as
transient’:

Conjecture (L., Wade, 2017)
Suppose that supp X is not conatined in a one-dimensional
subspace of Rd . Then

lim inf
n→∞

log ‖Gn‖
log n

≥ 1
2
, a.s.
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Back to Lattice assumption

Denote

H := {H : P(X ∈ b + HZd) = 1 for some b ∈ Rd}.

Suppose that the minimal subgroup of Rd associated with
X is L := HZd with h := |det H| > 0. Let

H0 := {H ∈ H : L = HZd}.

Let K := {|det H| : H ∈ H}.
Denote ϕ(t) := E[eit>X ] to be the characteristic function of
X . Set U := {t ∈ Rd : |ϕ(t)| = 1}. Set SH := 2π(H>)−1Zd .
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Back to Lattice assumption

Lemma (L., Wade, 2017)

Suppose that X is non-degenerate and H ∈ H. The following
are equivalent.

(i) H ∈ H0.
(ii) |det H| is the maximal element of K .
(iii) SH = U.
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