
O R D I N A RY D I F F E R E N T I A L E Q UAT I O N S ( M AT H 2 0 3 0 )

Lecture 1: Introduction

aleksander doan

12 January 2021

Please read about recommended textbooks, homework, grading policy, ex-
ams, and the structure of the course at:

https://www.math.columbia.edu/~doan/ode.html

The same information is available on Canvas. If you have any questions,
don’t hesitate to ask in class, during office hours, or by email:

aleksander.doan@columbia.edu

references

Boyce–DiPrima sections 1.1, 1.2, 1.3; Braun sections 1.1, 1.3, 1.5.

1 general comments

Don’t hesitate to ask questions in class, feel free to interrupt me when I’m
talking or send a message on zoom chat; the former is preferable as I don’t
see the chat while sharing the whiteboard. However, if you don’t want to ask
a question in front of the class, you’re welcome to send me a private message
by zoom chat or email.

I encourage you to attend office hours. We can discuss homework prob-
lems, review material discussed in class, and discuss any topic related to the
course. Even if you don’t have any particular questions, please stop by: you
can benefit from hearing other people’s questions and comments.

Homework must be submitted through gradescope. If you don’t have an
access to gradescope, please let me know. Please read about grading policy
and academic integrity in the course syllabus or on the website.

The class will be attended by people with various majors and diverse
math background. Please be respectful, supportive, and help your peers. It is
hard to make such a course balanced: some of you might already know many
of the topics we will discuss, whereas for the others they will be completely
new. We can always adjust the difficulty and pace of the course. After a
few weeks, I will ask you for your opinion: whether the course it too slow
or too fast, too easy or too difficult etc. If you find the course moving too
fast, please let me know and make sure to attend office hours. On the other
hand, if the course is too slow or too easy for you, also let me know and
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we can find together some more interesting topics to learn about and more
challenging homework problems for extra credit.

2 review of calculus

2.1 Functions

In your calculus class, you studied a variety of functions. In this course, by a
function we mean a recipe for associating to a real number x another real
number f (x). For example, f (x) = sin x, f (x) = x2, and so on. In these
examples f (x) is defined for any real number x, but some functions are
defined only for certain x. For example, f (x) =

p
x is defined for x � 0 and

f (x) = 1/x is defined for x 6= 0.

2.2 Derivatives

Recall that the derivative of a function f at a number a, denoted d f /dx(a)
or f 0(a), is the limit (if it exists)

f 0(a) = lim
x!a

f (x)� f (a)
x � a

.

This number can be interpreted as the rate of change of f at a. For example,
if x(t) is the position of an object moving along the x–axis at time t, then
x0(t) is the speed of this object at time t. Geometrically, f 0(a) is the slope of
the tangent line to the graph y = f (x) at the point with coordinates (a, f (a))
on the xy–plane.

If f 0(a) exists for all a, we say that f is differentiable. The derivative of
such a function f , denoted f 0 or d f /dx, is also a function. Namely, to any
number a it associates the number f 0(a). If this function is also differentiable,
we can define its derivative f 00. This is the second derivative of f . Similarly,
we can consider higher derivatives f (3), f (4), and so on; every next function
is the derivative of the previous one (provided it exists).

For this course, it is important that you are able to compute derivatives
of functions such that ex, ln x, xa, trigonometric functions, and functions that
are constructed from the above. Please review the rules for differentiating
sums, products, quotients, and compositions of functions (the chain rule).

2.3 Antiderivatives and integrals

Given a function f an antiderivative of f is any function F such that F0 = f .
The antiderivative is not unique. If F0 = f and C is any constant, then the
function G(x) = F(x) + C is also an antiderivative: G0 = f . In fact, if you
find one antiderivative F of f , then any other antiderivative G of f is of
the above for for some constant C. Antiderivatives are also called indefinite
integrals and denoted

R
f (x)dx or simply

R
f , so for example

Z
(x + 1)dx =

1
2

x2 + x + C,

meaning that for any constant C the derivative of the right-hand side is
the function f (x) = x + 1. This notation is inspired by the Fundamental
Theorem of Calculus, which deals with definite integrals

Z b

a
f (x)dx
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which are defined as the area (with sign) of the region in the xy–plane
bounded by the graph y = f (x) and lines x = a, x = b and the x–axis.
The Fundamental Theorem of Calculus says that if F =

R
f (x)dx is any

antiderivative of f , then the definite integral is given by

Z b

a
f (x)dx = F(b)� F(a).

Another formulation of this theorem is that if we define a function F by

F(t) =
Z t

t0
f (x)dx

for any t0, then F is an antiderivative of f , that is F0 = f .
It is important that you know how to integrate simple functions such

as ex, ln x, xa, trigonometric functions and their inverses, rational functions
(quotients of polynomials), and that you know various rules of integration
(integration by parts, integration by substitution).

3 what is a differential equation?

In school, you studied algebraic equations such as

x2 + 2x + 3 = 0, etc.

Given an equation, you are interested in finding all numbers x solving it.
Similarly, you can consider systems of equations for many unknown numbers
x, y, . . .

A differential equation is an equation for an unknown function, which
involves the function and its derivatives (first, second, and higher). Coef-
ficients of such an equations are also function. For example, we might be
interested in finding all functions x(t) of a variable t which satisfy

x0(t) + 2t2x(t) + sin t = 0.

This equation involves the unknown function x(t) and its first derivative
x0(t), and the coefficients are known functions of t: 2t2 and sin t. We can also
have equations which involve higher derivatives, or systems of equations
involving many functions x(t), y(t), z(t), . . . and their derivatives.

Remark 1. We call a differential equation ordinary if it involves functions
of one variable. Differential equations for functions of many variables
f (x, y, z, . . .) (such as the ones you studied in a multivariable calculus class)
involving their partial derivatives ∂ f /∂x, ∂ f /∂y, . . . are called partial dif-
ferential equations. In this class, we will study only ordinary differential
equations, which we will often abbreviate to ODE.

Given a differential equation such as the one above here are some typical
questions we are interested in: Is there a solution to the equation? Is is
unique or maybe there are many solutions? Can we find a solution (or all
solutions), either by guessing or by using some special technique? In this
course, we will learn a few such techniques. Perhaps even if we cannot
write a formula for the solution, maybe we can say something about its
behavior? For example, does the solution grow or decay, or has a limit or
asymptotic behaviour as t ! •? Are there any quantities associated with
the solution that are constant in t, such as energy in physical systems? Can
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we approximate the solution with a solution to a different, simpler equation
that we understand better?

First, can we solve it. Is there a solution? Given a solution, is it the only
one or maybe there are many? Can we write it down explicitly (in terms
of functions we know)? If not, can we still say something about how this
solutions behaves? For example, what happens when t ! •?

Example 2 (Simplest case). The simplest example of a differential equation
is one of the form

x0(t) = f (t),

where x is an unknown function and f is known function of t. This equation
says that x is an antiderivative of f , so that any solution is given by

x(t) =
Z

f (t)dt.

Since the indefinite integral is defined only up to adding a constant, there
is an entire family of solutions obtained as follows. If y(t) is any f solution,
then all other solutions are of the form x(t) = y(t) + C for some constant C.

Suppose we are given t0 and x0 and we look for a solution x(t) such that
x(t0) = x0. This specifies our solution uniquely. Indeed, since any solution
is of the form x(t) = y(t) + C, by plugging t = t0 we get

x0 = x(t0) = y(t0) + C,

so C = x0 � y(t0) is determined.

Most differential equations are more complicated than the above example
and we cannot solve them so easily. For example, suppose that we are given
f (t) and we look for a function x(t) such that

x0(t) = x(t) + f (t).

We cannot solve it anymore in the same way as in the above example: if we
try to integrate both sides, we get x(t) =

R
x(t)dt +

R
f (t)dt. This doesn’t

get us anywhere since in order to compute the right-hand side we would
have to know x(t) to begin with. However, there are more sophisticated
techniques for solving differential equations such as the one above and in
this class we will learn some of these techniques.

4 motivation and examples

Differential equations are used to model how natural or social phenomena
change in time. An unknown function x(t) corresponds to some quantity we
are interested in, which depends on time t. We want to predict the evolution
of x(t). While x(t) is not given by an explicit formula, we know its value
at some initial time t0, and a principle, or law, governing its evolution in
time. Such a law is often expressed as a differential equation. Therefore, by
solving th differential equation we can predict the future of a system from
its initial state together with a law governing its evolution in time.

Example 3 (Newton’s laws). The first differential equation ever studied in
history was Newton’s law of motion: F = ma. Here F is the force acting on a
certain body of mass m, and a is the acceleration of this body. Suppose that
the body moves along the x–axis and its position at time t is denoted by x(t).
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The acceleration is then defined as the second derivative of the position with
respect to time: a(t) = x00(t).

Suppose that there is no force acting on the body: F = 0. Thus, our
differential equation is simply x00(t) = 0. Integrating, this gives us x0(t) = C
for some constant C. Integrating again, we get x(t) = Ct + D for some other
constant D. Thus, we recover Newton’s first law: an object upon which
no forces act will remain in motion with constant velocity. What is the
interpretation of the constants C and D? By plugging t = 0 we get x(0) = D
and x0(0) = C. Therefore, C and D are, respectively, the velocity and position
of the body at time t = 0.

We similarly solve the equation if the force is constant F = const. This is
the case, for example, for a massive object placed in a constant graviational
field. Denote for simplicity F/m = k. In this case, integration gives us
x0(t) = kt + C and x(t) = 1

2 kt2 + Ct + D. We see that the motion is described
by a quadratic function. Indeed, if you throw a rock it will move along a
parabola, which corresponds to the fact that its vertical position is a quadratic
function of time, whereas the horizontal position is a linear function of time
(because the gravitational force acting in the vertical direction is constant
and there is no force acting in the horizontal direction). Again by plugging
t = 0 we interpret C and D as the initial velocity and position.

Example 4 (Harmonic oscillator). In general, the force in Newton’s equation
F = mx00(t) can depend on the position x and time t, and we cannot solve the
equation simply by integrating both sides. For example, if x(t) describes the
position of a body attached to an elastic spring, Hooke’s law of elasticity states
that the force experiencing by the body is proportional to the deformation of
the spring, i.e. position, if x = 0 corresponds to the spring being undeformed:
F = �kx(t) for some constant k > 0; we have the minus sign because the
body will be pulled back by the spring. We end with a differential equation

x00(t) = � k
m

x(t).

Can you guess a solution? For simplicity, assume k/m = 1. The equation is
now easier

x00(t) = �x(t).

Your first guess might be the exponential function x(t) = et, but this doesn’t
work because of the sign. Indeed x(t) = et satisfies the equation x00(t) = x(t)
and not x00(t) = �x(t). But if we try

x(t) = sin t or x(t) = cos t,

we easily compute that these functions solve the equation. In fact, for any
constants A, B the function

x(t) = A sin t + B cos t

solve the equation. We will see in future lectures that, in fact, any solution
to the equation x00(t) = �x(t) is of this form. How can be interpret the
constants A and B? Again, by plugging t = 0, we see that B = x(0) is the
initial position. On the other hand, differentiating the formula for x(t) we
get

x0(t) = A cos t � B sin t

and plugging t = 0 we see that A = x0(0) is the initial velocity. Note that the
movement of the body is periodic because the functions sin t and cos t are
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periodic. This is very different from the behavior of the function x(t) = et

which solved the other equation x00(t) = x(t); the exponential function is not
periodic, in fact it grows very fast as t ! •.

Having guessed a solution in the special case k/m = 1, we can easily
modify it to the general case. You can check that any function of the form

x(t) = A sin wt + B cos wt

for a constant w, satisfies the equation x00(t) = �w2x(t). Thus, for w =p
k/m we find a solution to the original problem.

The harmonic oscillator equation is extremely important, not because we
care so much about springs, but because it models the behavior of many
other systems, and is the first order approximation of many differential
equations. In particular, suppose that the force depends only on the position,
F = F(x). Any function F(x) has a Taylor expansion

F(x) ⇡ F0 + F1x + F2x2 + . . .

If in the initial position x = 0 there is no force, F0 = 0, and if the first order
expansion is negative, i.e. the force pulls the body back rather than pushing
it forward, we get a differential equation

mx00(t) = �kx(t) + higher order terms.

Thus, as long as x(t) stays sufficiently small, the harmonic oscillator is a
good approximation of the general model.

More examples in the next lecture!
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Lecture 2: Separable equations

aleksander doan
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references

Boyce–DiPrima sections 2.2, 2.5; Braun sections 1.3, 1.4, 1.5.

1 motivation and examples

Last time we discussed some examples of differential equations and two basic
methods of finding solutions. The first method applies to trivial differential
equations of the form x0(t) = f (t). In this case, we simply integrate both
sides to find x(t). The second method is simply trying to guess a solution,
based on our knowledge of functions and their derivatives, as we did in the
example of the harmonic oscillator x00(t) = �x(t). Let us discuss two more
examples.

Example 1 (Population models). Let p(t) be the population of a certain
species. We are interested in how p(t) evolves in time. The simplest model
is to assume that the birth and death rates are constant in time. If this is the
case, the rate of change of p(t) is proportional to p(t):

p0(t) = lp(t) for a constant l > 0. (1.1)

As in the case of the harmonic oscillator, this equation is simple enough so
that we can guess a solution. Suppose first that l = 1, so that we look for a
function p(t) such that p0(t) = p(t). The obvious candidate is p(t) = et. In
fact, p(t) = Cet works for any constant C. This suggests the solution for a
general value of l:

p(t) = Celt.

We easily check that p(t) solves (1.1). What is the meaning of the constant
C? As usual, set t = 0, then we see that

p(0) = C,

so C is the initial population and our solution is

p(t) = p(0)elt.

This model predicts that the population will grow exponentially fast in
time. This simple model was proposed by the English scholar Thomas
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Malthus in 1798. Based on it, Malthus predicted that such a fast growth
of population will lead to a catastrophe as the growth of population will
outpace agricultural production, thus restricting humanity’s access to food
and other resources and resulting in famine and diseases. Malthus’ book
was highly influential. It gave Charles Darwin the idea that with the growth
of populations, animals have to compete for limited resources and only the
best adapted survive. Thus, Malthus’ simple model was an inspiration for
Darwin’s theory of natural selection.

However, the Malthussian model is too simple to be realistic. There are
many other models that try to correct it. One idea is to assume that it is
valid as long as the population is not too large. However, as the population
grows, the Malthussian model fails to be realistic because it does not take
into account that organisms compete for limited resources. One model that
takes this into account is the following logistic model proposed by the Dutch
mathematician Verhulst in 1937:

p0(t) = ap(t)� bp(t)2, (1.2)

for some constants a, b > 0. In this case, it’s not so easy to guess a solution
directly, as we did before (try it!), so we need to develops new tools for
solving differential equations of this form.

Example 2 (Radioactive decay). The simplest model of radioactive decay is
the following. If N(t) denotes the number of atoms of a given radioactive
substance at time t, then rate of decay of N(t) is proportional to N(t), that is:

N0(t) = �aN(t)

for a constant a > 0. As before, we can guess a solution

N(t) = N(0)e�at.

We can consider a more complicated model in which one radioactive sub-
stance A decays to another one B and then B decays further. In that case, the
equation should reflect the fact that the amount of B will at the same time (a)
increase to due radioactive decay of A to B, and (b) decay due to radioactive
decay of B. If r(t) denotes the rate of decay of A, and N(t) denotes the
number of atoms of B at time t, then

N0(t) = r(t)� aN(t),

where the first time corresponds to (a) and the second to (b). In some
situations the half-life of A is much longer than that of B. If we are interested
in how N(t) changes over a period of time much shorter than the half-life of
A, we can for all practical purposes assume that r(t) does not change much
in that period of and therefore set r(t) = const. This leads to the equation

N0(t) = r � aN(t), (1.3)

for r > 0 constant. This simple model was actually used to detect art forgeries
of Vermeer’s paintings! You can read about in section 1.3 of Braun’s book.
In this lecture will learn how to solve (1.3) and similar equations.

2 separable equations

We said that the simplest differential equations are ones of the form

x0(t) = f (t).
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We can solve it simply by integrating both sides with respect to t. The next
simplest case are separable equations of the form

x0(t) =
f (t)

g(x(t))
or simply x0 =

f (t)
g(x)

. (2.1)

They are called separable because the right-hand side can be separated into
two terms: one depending only on t and one depending only on x. Equations
(1.2) and (1.3) we just saw are examples of such equations, with f (t) = 1 in
both cases and g(x) given, respectively, by

g(x) =
1

ax � bx2 and g(x) =
1

�ax + r
.

A separable equation can be solved as follows. Suppose that x(t) is a
solution, multiply both sides by g(x) and integrate with respect to t:

Z
g(x(t))x0(t)dt =

Z
f (t)dt. (2.2)

If you remember integration by substitution, you will notice that the left-hand
side is simply Z

g(x(t))x0(t)dt =
Z

g(x)dx.

Suppose that we can compute both integrals
R

f (t)dt and
R

g(x)dx, i.e. find
antiderivatives of f and g. Denote them by F(t) and G(x). By (2.2),

G(x(t)) = F(t). (2.3)

We can the find x(t) by solving the above equation for x(t). In technical
terms, we apply the inverse function of G, i.e. a function G�1 such that
G�1(G(x)) = x. (We assume here that there exists such a function.) Applying
the inverse to both sides we find

x(t) = G�1(F(t)).

Remember that an antiderivative is determined only up to a constant. Once
we have chosen an antiderivative F of f , we can write other equations as

x(t) = G�1(F(t) + C)

for some constant C. (Similarly, G is only determined up to a constant.
However, we can choose our favorite G and incorporate the constant in the
right-hand side of (2.3).)

Example 3 (Population model). Suppose we couldn’t guess a solution to the
Malthussian model (1.1). This is an example of a separable equation so we
can apply the general method. Write (1.3) as

p0(t)
p(t)

= l

and integrate both sides with respect to t:
Z p0(t)dt

p(t)
= lt + C

for some constant C. Integrating by the substitution p = p(t) we get
Z dp

p
= lt + C,
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and since
R

p�1dp = ln |p| and we assume here that p is positive,

ln p(t) = lt + C.

Applying the exponential function to both sides and using the formulae
eln x = x and ex+y = exey, we get

p(t) = eCelt.

Since C was an arbitrary constant, we can simply rename A = eC and now
A is an arbitrary positive constant, so the solution is

p(t) = Aelt.

(Of course, for A < 0 the resulting function is also a solution but for our
model only the positive solutions make sense.)

Next week we will do more examples of separable equations and learn how
to solve first order linear equations.
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Lecture 3: First order linear equations

aleksander doan

19 January 2021

references

Boyce–DiPrima sections 1.3, 2.1, 2.5 (problems 22–24); Braun section 1.2.

1 separable equations

Last time we discussed separable equations:

y
0 =

f (t)
g(y)

.

Remark 1. Remember our convention to write for simplicity y, y
0, . . . instead

of y(t), y
0(t), . . . where y = y(t) is the unknown function in the differential

equation. The known coefficients of the equation will still be denoted
a(t), b(t), . . . to stress that they are functions of t rather than constants. For
example, today we will consider equations of the form y

0 + a(t)y + b(t) = 0.

The algorithm for solving separable equations is:

1. multiply both sides by g(y),

2. integrate both sides with respect to t,

3. integrate
R

g(y(t))y0(t)dt by substitution y = y(t),

4. solve the resulting equation for y(t) (if possible).

Example 2 (Epidemics). As an example, we will discuss a simple model
describing the spread of a contagious disease. (We will discuss more compli-
cated, and realistic, models later in the course once we develop more tools.)
Let x = x(t) and y = y(t) denote the proportion of the population which
at time t is, respectively, healthy and infected. We have x + y = 1. In this
simple model, we assume that everyone in the population is susceptible
to the disease. Moreover, we assume that the members of the population
interact freely with each other, and that the rate with which the disease
spreads is proportional to the number of contacts between healthy and in-
fected individuals. Since this number of contacts is proportional to xy, we
get the differential equation:

y
0 = axy

for some constant a > 0. There are two unknown functions in this equation,
x and y. However, using x + y = 1, we get

y
0 = ay(1 � y).
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This is a separable equation, so we solve it using our algorithm. First, we
separate the variables

y
0

y(1 � y)
= a.

(Note that in dividing by y(1� y) we assume that y 6= 0 and y 6= 1. Constant
functions y(t) = 0 and y(t) = 1 are solutions but they are not interesting as
they describe a population in which everybody is healthy or everybody is
already infected.) Integrating with respect to t and using the substitution
y = y(t) yields

Z dy

y(1 � y)
=

Z
y
0(t)

y(t)(1 � y(t))
d =

Z
adt = at + C.

The left-hand side is an example of an integral of a rational function. It will
be useful for this course if you remind yourself how to integrate rational
functions. (Just search ’integration of rational functions’ or ’integration
partial fractions’, or simply ask me during office hours.) The trick is to write

1
y(1 � y)

=
1
y
+

1
1 � y

.

Therefore,
Z dy

y(1 � y)
=

Z dy

y
+

Z dy

1 � y
= ln |y|� ln |1 � y|.

The minus sign in the second terms comes from integrating by substitution
u = 1 � y, du = �dy. Recall that y is the proportion of infected population.
In particular, 0 < y < 1 and we can drop the absolute value. (There are other
solutions to the equations which don’t satisfy this condition, but we discard
them as unimportant for our model.) In the end, we get

ln y � ln |1 � y| = at + C.

Applying the exponential function to both sides yields

y(t)
1 � y(t)

= Ae
at, (1.1)

where A = e
C is a positive constant. We can compute it by plugging t = 0:

A =
y(0)

1 � y(0)
=

y(0)
x(0)

.

We can solve equation (1.1) for y(t). Simple algebraic manipulations give us

y(t) =
Ae

at

1 + Aeat
and x(t) = 1 � y(t) =

1
1 + Aeat

.

It is interesting to see what this tells us about the long-time behavior of our
model. We easily see that

lim
t!•

y(t) = 1 or equivalently lim
t!•

x(t) = 0.

Therefore, our simple model predicts that eventually the disease spreads
through the entire population.
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2 terminology

A differential equation involves a function, say y, and its derivatives:

y
0, y

00, y
(3), y

(4), . . .

The order of a differential equation is the highest number n such that the
n–th derivative y

(n) appears on the equation. Here are some examples of
differential equations of order one, two, and three.

equation order

y
0(t) + ay(t) + by

2(t) = 0 1
(y00(t))2 + aty

0(t) + by(t) + ct
2 = 0 2

y
(3)(t) + ty

00(t) + a(1 � y
0(t)2) = 0 3

. . .

A differential equation is linear if it is of the form

an(t)y
(n) + an�1(t)y

(n�1) + . . . + a1(t)y
0 + a0(t)y + b(t) = 0 (2.1)

for some functions an, . . . , a0, b. (Recall that we often drop the variable t and
write y

0, y instead of y
0(t), y(t).) Otherwise we call the equation nonlinear.

For example, the following equations are linear

y
0 � 2ty � 1 = 0,

y
00 +

1
t

y
0 � cos t y + e

t = 0,

y
(4) + e

t
y = 0,

. . .

On the other hand, all of the examples in the table above are non-linear.
They are, in fact, equations that appear in actual scientific problems: we have
already seen the first one in the logistic model of population growth. For
more examples of interesting non-linear equations, see:

https://en.wikipedia.org/wiki/List_of_nonlinear_ordinary_

differential_equations

We say that a linear differential equation (2.1) has constant coefficients if the
functions an, an�1, . . . , a0 are all constant. However, we do not require that
b is constant. Here are some examples of linear equations with constant
coefficients (compare with the previous list):

y
0 + 5y = sin t,

y
00 + 10y = 0,

y
(4) + y = e

t,
. . .

Finally, a linear differential equation is (2.1) is homogenous if b = 0 and
non-homogenous otherwise.

To get used to this terminology, have a look at various differential equa-
tions in the textbook or on Wikipedia and determine their order and if they
are linear or non-linear. If they are linear, do they have constant coefficients?
Are they homogenous?
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3 first order linear equations

Our next goal is to learn how to solve first order linear differential equations:

y
0 + a(t)y + b(t) = 0.

Let us first consider some special cases.

3.1 Trivial case

If a(t) = 0, then the equation is y
0 = �b(t) and we can simply solve it by

integrating both sides with respect to t:

y(t) = �
Z

b(t)dt.

3.2 Homogenous case

Another special case is when the equation is homogenous, that is b(t) = 0:

y
0 + a(t)y = 0.

This is a separable equation, so we already know how to solve it. First, we
separate terms depending on y and those depending on y:

y
0

y
= �a(t).

Now we integrate both sides with respect to t

Z
y
0(t)

y(t)
dt = �

Z
a(t)dt + C,

(where we add a constant of integration C to remind ourselves that the
indefinite integral is determined only up to a constant) and use integration
by substitution Z

y
0(t)

y(t)
dt =

Z dy

y
= ln |y(t)|

and
ln |y(t)| = �

Z
a(t)dt + C

Applying the exponential function to both sides, we obtain

|y(t)| = e
�
R

a(t)dt+C = e
C

e
�
R

a(t)dt.

In other words, if we have chosen any specific indefinite integral
R

a(t)dt,
then any solution is of the form

y(t) = Ae
�
R

a(t)dt

for some constant A. Conversely, for any constant A the above function is a
solution.

Remark 3. About constants: in the previous notation, A = ±e
C where the

sign appears when we drop the absolute value. Note that since C can be
anything, the expression A ± e

C can be any non-zero real number. On the
other hand, y(t) = 0 is clearly also a solution. In our method of solving the
equation, we missed that solution by dividing the equation by y: in order to
do that, we assume that y 6= 0.
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3.3 General case

We can now solve a general first order linear equation

y
0 + a(t)y + b(t) = 0.

We already know how to solve the equation in the trivial case y
0 = �b(t).

The trick of solving the general case is to reduce it to the trivial case. We do
it by multiplying the equation by a function µ = µ(t) (called the integrating

factor), which we will specify later:

µ(t)y0 + a(t)µ(t)y = �µ(t)b(t). (3.1)

Why do we do this? To make the left-hand side look similar to the formula
for the derivative of the product

(µy)0 = µ(t)y0 + µ0(t)y.

If only we had
µ0(t) = a(t)µ(t) (3.2)

then using the formula for (µy)0 we could rewrite (3.1) as

(µy)0 = �µ(t)b(t).

But now we can compute µy simply by integrating both sides. That would
give us a formula for µy:

µ(t)y(t) = �
Z

µ(t)b(t)dt (3.3)

and after dividing by µ(t) we would get a formula for a solution y(t). Of
course, if we take any function µ, it will not satisfy equation (3.2). But the
point is that in our method we didn’t specify what µ was. We are allowed
to choose any µ, so in particular we can choose one that satisfies (3.2). How
do we find such a µ? Observe that (3.2) is a homogenous, first order linear
differential equation for µ and we already know how to solve such equations!
Therefore, we can first find a solution µ to (3.2) and then plug it to (3.3) to
find the desired solution y(t).

You should not memorize the final formula for y(t) but rather understand
the algorithm for deriving it. This algorithm is summarized as follows:

1. Multiply the equation y
0 + a(t)y + b(t) = 0 by a function µ(t).

2. Observe that this equation is equivalent to (µy)0 = �µ(t)b(t) if µ
satisfies the homogenous equation µ0 = a(t)µ.

3. Solve the homogenous equation µ0 = a(t)µ (this is a separable equa-
tion).

4. Find µy by integrating both sides of (µy)0 = �µ(t)b(t).

5. Finally, divide by µ(t) to get a formula for y.

Next time we will discuss some examples of first order linear equations.
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1 first order linear equations

Last time we discussed the following algorithm for solving a first order linear
differential equation

y0 + a(t)y + b(t) = 0.

1. Multiply the equation by a function µ(t) (the integrating factor).

2. Observe that the resulting equation

µ(t)y0 + µ(t)a(t)y = �µ(t)b(t)

is equivalent to (µy)0 = �µ(t)b(t) if µ satisfies

µ0 = a(t)µ.

3. Solve the homogenous equation µ0 = a(t)µ (it is separable).

4. Find µy by integrating both sides of (µy)0 = �µ(t)b(t).

5. Finally, divide by µ(t) to get a formula for y.

Remark 1. Observe that the equation µ0 = a(t)µ satisfied by the integrating
factor is different from the homogenous equation obtained by setting b(t) =
0 in the original equation y0 + a(t)y + b(t) = 0. They differ by a sign.

Example 2 (Newton’s law of cooling). Let u = u(t) be the temperature of
the body at time t and let T(t) be the temperature of its surroundings, which
can also vary in time. Newton’s law of cooling is:

u0 = �k(u � T(t)).

Suppose that the temperature of the surroundings oscillates periodically, for
example T(t) = T0 + T1 cos wt. We get a first order linear, non-homogenous
equation:

u0 + ku = k(T0 + T1 cos wt).

To simplify calculations suppose that k = T1 = w = 1 and T0 = 0:

u0 + u = cos t.

1



According to the algorithm from the last lecture, first we solve the corre-
sponding homogenous problem to find the integrating factor:

µ0 = µ.

Of course, µ(t) = et is a solution. We multiply the original equations by µ:

µu0 + µu = µ cos t,

which, by the definition of µ, is equivalent to

(µu)0 = µu0 + µ0u = µ cos t.

Therefore,

u(t) =
1

µ(t)

Z
µ(t) cos t dt = e�t

Z
et cos t dt.

Integrating by parts, we compute
Z

et cos tdt =
1
2

et(sin t + cos t) + C.

(If you don’t remember how to integrate functions like et cos t, tnet, etc. by
parts, please review this or ask me during office hours.) We can slightly
rewrite the right-hand side using the fact that any expression of the form

a sin t + b cos t where a2 + b2 = 1

can be written as sin(t+ j) for some angle j computed from a and b. Indeed,
for j = arctan b/a we have

a = cos j and b = sin j,

and, using the formula for sin(t + j),

a sin t + b cos t = cos j sin t + sin j cos t = sin(t + j).

In our case, we use a = b = 1/
p

2 to get j = arctan 1 = p/4 and

sin t + cos t =
p

2
✓

1p
2

sin t +
1p
2

cos t
◆
=

p
2 sin(t + p/4).

In the end, our solution is

u(t) =
p

2
2

sin(t + p/4) + Ce�t. (1.1)

We see that as t ! • the second term converges to zero and the solution is
asymptotic to the periodic function

p
2

2
sin(t + p/4).

The period is 2p, the same as that of the temperature of the surroundings
T(t) = cos t. However, as you can see by plotting the graphs of both
functions, the sinusoidal oscillation of the above function is shifted with
respect to the oscillation of T.
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2 initial value problem

The above example illustrates a general principle, which we have already
seen many times. When we solve a first order differential equation

y0 = f (t, y)

we obtain an entire family of solutions, parametrizes by a constant C, as in
(1.1). This is called the general solution. Typically, however, we are interested
in finding a specific solution solving the initial value problem, that is:

(
y0 = f (t, y),
y(t0) = y0,

for some given numbers t0, y0. In all examples that we studied earlier, the
initial condition determined the solution, that is: among all solutions of the
general form there was exactly one satisfying the given initial value condition
y(t0) = y0.

In general, given an initial value problem as the one above, we ask:

1. (Existence) Is there a solution to the initial value problem?

2. (Uniqueness) If yes, is this solution unique, i.e. is there no other
function solving the same initial value problem?

These questions are of great importance, both theoretically, and in applica-
tions. If we use a differential equation to model natural phenomena, and the
equation does not have any solutions satisfying our initial value problem,
that means that our model is wrong. On the other hand, uniqueness is
related to the question whether our model is deterministic, i.e. whether we
can predict the future behavior of our model from its past. If we can’t, then
we can’t use our model to make any predictions.

Fortunately, as we will see, for most of the initial value problems that
are important in applications, and almost all that we will study in this class,
the solution always exists and is unique. This is known as the existence and
uniqueness theorem. Before we state the general theorem, let us consider a
simple example.

Example 3 (Linear homogenous equations). Let us show that an initial value
problem for any linear homogenous equation

(
y0 + a(t)y = 0
y(t0) = y0

has a unique solution, as long a the function a(t) is continuous. (See the next
section for the discussion of continuous functions.) Suppose first that y0 6= 0
and y 6= 0. The constant function y(t) = 0 is always a solution, but it’s not
particularly interesting. The method of solution discussed in the last lecture
showed that y(t) must be of the form

y(t) = ±e
R
�a(t)dt

for some indefinite integral, or antiderivative, of the function �a(t). If a(t) is
a continuous function, there always exists an antiderivative. Moreover, given
any specific antiderivative, call it A(t), any other is of the form A(t) + c for
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a constant c. Therefore, if we choose any such antiderivative A(t), y is given
by the formula

y(t) = ±eceA(t)

for some constant c and some choice of the sign ±. Denote ec = C. This is
any positive number. Since we are also allowed to choose sign ±, we get that
y(t) must be of the form

y(t) = CeA(t) (2.1)

for some number C, now of any sign, and moreover any function of this form
satisfies the solution. To conclude: any solution of the equation y0 + a(t)y
must be of the form (2.1). Moreover, any function of this form is a solution.

Now we ask whether we can find a solution satisfying the initial condition
y(t0) = y0 and whether such a solution is unique. For that, assume we have
a solution y(t) of the form (2.1). By plugging t = t0 we see that the initial
condition determines the constant C:

y0 = CeA(t0);

therefore, C = y0eA(t0). Therefore, the initial condition determines the
constant C in (2.1). Conversely, we easily check that for this choice of C, the
function y(t) indeed is a solution satisfying the given initial condition.

We conclude that for a homogenous linear equation with continuous
coefficient a(t)

1. there always exists a solution satisfying any initial value condition,

2. such a solution is unique.

It turns out that this is a general principle. Let me stress again that in our
example we had to know that the coefficient a(t) is not some crazy function,
because we needed the integral

R
�a(t)dt to exist. It is enough, for example,

to assume that a(t) is continuous. We will see that for a general first order
differential equation the solution to the initial value problem always exists
and is unique, as long as the coefficients of the equations are sufficiently
good functions.

3 review : continuous and differentiable functions

Recall the following notions from calculus. We say that a function f defined
on an interval (a, b) is continuous if for every x0 in this interval it satisfies

lim
x!x0

f (x) = f (x0).

Geometrically, it means that the graph of f has no holes or jumps. For
example, f (x) = sin x is continuous on the real line, whereas the function

f (x) =

(
�1 if x < 0
1 if x � 0.

is continuous on the intervals (�•, 0) and (0, •) but not on any open
interval that contains x = 0 because it has a jump at that point. (Draw the
graph of f to see this.) We say that, moreover, that f defined on an interval
(a, b) is differentiable if its derivative

lim
h!0

f (x + h)� f (x)
h

4



exists for every x from the interval (a, b). Geometrically, it means that the
graph of f has no cusps. For example, the function f (x) = |x| is differentiable
everywhere but at x = 0, where the derivative does not exist.

We will also use functions of many variables, f = f (x, y, z, . . .). For
example,

f (x, y) = x2y + y3, or f (x, y, z) = x sin y + z3y2 + ex�y, . . .

For concreteness, let us focus on functions of two variables f = f (x, y). As
before, we say that such a function is continuous if for every (x0, y0) for
which the function is defined, we have

lim
x!x0,y!y0

f (x, y) = f (x0, y0).

We will also consider partial derivatives of such functions. A partial derivative
∂ f /∂x is simply obtained by looking at the expression f (x, y) as a function
of x only, with y fixed, and differentiating with respect to x. Similarly, ∂ f /∂y
is obtained by considering x fixed and differentiating with respect to y. For
example, for

f (x, y) = x2y + y3

we have

∂ f
∂x

= 2xy,

∂ f
∂y

= x2 + 3y2.

Sometimes we will denote partial derivatives by ∂x f and ∂y f .

4 existence and uniqueness theorem

We can now state the main theorem, which states that the initial value
problem (

y0 = f (t, y),
y(t0) = y0.

(4.1)

always has a unique solution provided that the function f is well-behaved
around the point (t0, y0).

Theorem 4. Consider the initial value problem (4.1). If f and ∂y f are both contin-
uous in a neighborhood of (t0, y0), then there exists a unique solution y = y(t) to
(4.1) defined for t from the interval (t0 � e, t0 + e) for some e > 0.

Remark 5. An important point to notice is that the solution y = y(t) is not
necessarily defined for all t, even if f (t, y) is defined for all t. We will see
some examples in the next lecture.

Remark 6. The proof of the theorem goes roughly as follows. Define the
Picard iterations y1, y2, y3, . . . by the inductive process

y1(t) = y0 +
Z t

t0
f (s, y0)ds,

yn+1(t) = y0 +
Z t

t0
f (s, yn(s))ds.
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The main part of the proof is to show that there exists a limit function

y(t) = lim
n!•

yn(t)

defined for t 2 (t0 � e, t0 + e) for some e > 0. The limit then satisfies the
equation

y(t) = y0 +
Z t

t0
f (s, y(s))ds.

Differentiating both sides with respect to t and using the Fundamental
Theorem of Calculus, we get

y0(t) = f (t, y(t)).

Therefore, the limiting function is a solution. Moreover, y(t0) = y0. This
procedure can be used to solve differential equations numerically. Namely,
instead of taking the limit limn!• yn, simply compute numerically the in-
tegrals defining y1, . . . , yN . For N sufficiently large, the function yN will be
a reasonable approximation to the actual solution. This algorithm can be
implemented on a computer.

We won’t have time to discuss the proof of the theorem or Picard iterations
in detail. However, if you are interested, we can talk more about this during
office hours!

In the next lecture we will discuss some examples in which the theorem
applies and some for which the solution is not unique because the hypothesis
of the theorem is not satisfied.
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1 more on existence and uniqueness

Last time we discussed the existence and uniqueness theorem, which asserts
that the initial value problem

(
y0 = f (t, y),
y(t0) = y0,

has a unique solution y = y(t) defined for t close to t0, provided that
the function f and its partial derivative ∂ f /∂y are both continuous in a
neighborhood of the point (t0, y0).

Example 1. Consider the initial value problem
(

y0 = t + ey,
y(t0) = y0.

The function f (t, y) = t + ey is continuous on the entire ty–plane because
it’s a sum of two continuous functions (t, y) 7! t and (t, y) 7! ey. Similarly,
its partial derivative ∂ f /∂y = ey is continuous on the entire ty–plane. We
conclude from the existence and uniqueness theorem that for every choice of
the initial conditions (t0, y0) there is a unique solution y = y(t) to the above
initial value problem, defined for t close to t0.

Example 2. Consider the initial value problem
(

y0 =
p
|y|,

y(t0) = y0.

The function f (t, y) =
p
|y| is continuous on the entire ty–plane (it does not

depend on t and the function y 7!
p
|y| is the composition of two continuous

functions). Moreover, for every (t, y) such that y > 0 the partial derivative

∂ f
∂y

=
1
2

y�1/2.

1



exists and this function is continuous on the half plane {y > 0}. Similarly,
the partial derivative exists and is continuous on the half-plane {y < 0}.
Therefore, by the existence and uniqueness theorem, if (t0, y0) are so that
y0 6= 0, the initial value problem has a unique solution y = y(t) defined for t
close to t0.

However, at the line {y = 0} this partial derivative does not exist, so the
hypothesis of the theorem are not satisfied for initial conditions (t0, y0 = 0).
In fact, we can see directly that in this case there are two solutions to the
initial value problem (

y0 =
p
|y|,

y(t0) = 0.

The first solution is the constant function y(t) = 0. The second solution can
be found by separation of variables. Suppose we look for a positive solution.
Separation of variables gives us

y�1/2y0 = 1,

and integrating with respect to t:

2y1/2 =
Z

y�1/2dy =
Z

y�1/2y0dt =
Z

1dt = t + C.

So any function of the form

y(t) =
1
4
(t + C)2

is a solution. A specific solution satisfying y(t0) = 0 is obtained by setting
C = �t0. We see that there are two solutions satisfying the equation with the
same initial condition. This does not contradict the existence and uniqueness
theorem: we simply cannot apply the theorem in this case because the
function f (t, y) =

p
|y| does not have a partial derivative ∂ f /∂y at points

(t, y) with y = 0.

2 maximal interval of existence

Earlier, I emphasized that the solution y = y(t) to the initial value problem
(

y0 = f (t, y),
y(t0) = y0,

whose existence is guaranteed by the existence and uniqueness theorem, is
defined for t sufficiently close to the initial time t0. It it possible that the
solution can be continued for t far away from t0.

Example 3. For all t0, y0, the initial value problem
(

y0 = y,
y(t0) = y0,

(2.1)

has a unique solution y(t) = y0et�t0 which is defined for all times t.

Remark 4. Given an interval (a, b) we will use the notation t 2 (a, b) to say
that that t is in the interval (a, b). Here we allow a = �• or b = •. We will
also use the notation R for the real line (�•, •).
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However, it is not always the case that the solution exists for all t 2 R.
The maximal interval of existence for the solution y = y(t) of the initial value
problem (2.1) is the largest open interval (a, b) such that t0 2 (a, b) that the
solution to the initial value problem y = y(t) exists for all t 2 (a, b). If a
and b are finite, that means that the solution cannot be continued either in
the past beyond a or in the future beyond b. We allow here the situation
a = �•, when the solution can be continued indefinitely in the past, or
b = +•, when the solution can be continued indefinitely in the future.

Example 5. Consider the separable equation

y0 = y2.

The constant function y(t) = 0 is a solution. All other solutions can be found
by separating the variables

�y�1 =
Z

y�2dy =
Z

y�2y0dt =
Z

1dt = t + C,

which gives us that the general solution other than y(t) = 0 is of the form

y(t) =
1

C � t

for some constant C. We can now see that the maximal interval of existence
of a solution y(t) depends on the initial value y0 = y(0). Expressing C in
terms of y0, we find that

y(t) =
1

1/y0 � t
.

There are two cases, y0 > 0 and y0 > 0. In the former, the largest open
interval containing t0 = 0 for which the solution is defined is (�•, 1/y0).
We see, moreover, that the solution is asymptotic to the constant solution
y(t) = 0 at �•:

lim
t!�•

y(t) = 0

and blows up as we approach the other endpoint of the maximal interval of
existence:

lim
t!1/y0

y(t) = •.

Similarly, for y0 < 0, the maximal interval of existence is (1/y0, •) and in
that case

lim
t!1/y0

y(t) = �•, lim
t!•

y(t) = 0.

3 direction field, integral curves

A differential equation y0 = f (t, y) can be interpreted graphically using the
direction field, or a slope field. This field is obtained by associating with each
point on the plane with coordinates (t, y) a line whose slope is f (t, y).

The graph of any solution y = y(t) to the differential equation is a curve
in the ty–plane, whose tangent line at every point (t, y(t)) agrees with the
line of the direction field at the same point. These curves are called the
integral curves of the differential equation.

Example 6. (Diagram with direction field and integral curves for the previous
example y0 = y2.)
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4 autonomous equations

The equation y0 = y2 is an example of an autonomous differential equation, that
is one of the form

y0 = f (y).

For many functions f we can simply solve this equation because it is separa-
ble. However, often we can say something about the behavior of solutions
without solving the equation.

For example, if y⇤ is such that f (y⇤) then the constant function y(t) = y0
is a solution. Moreover, by the existence and uniqueness theorem, it is the
only solution satisfying y(t0) = y⇤ for any t0. Such a point y⇤ is called an
equilibrium of the autonomous equation because it corresponds to a state
which does not change in time.

We have seen in the previous example that some of the non-constant
solutions can converge to one of these equilibrium points as t approaches
one of the endpoint of the maximal interval of existence. This, in fact, is a
general property of autonomous equations.

Theorem 7. Let y = y(t) be a solution of the autonomous equation y0 = f (y),
where f is a differentiable function on the real line. If (a, b) is the maximal integral
of existence of y, then either

lim
t!a

y(t) = ±•

or a = �• and
lim
t!a

y(t) = y⇤,

where y⇤ is an equilibrium, i.e. f (y⇤) = 0.
Similarly, either

lim
t!b

y(t) = ±•

or b = • and
lim
t!b

y(t) = y⇤,

where y⇤ is an equilibrium.

We will omit the proof of the theorem, but some of the ideas involved in
it will be presented as a bonus problem in Homework 4. We can also discuss
it during office hours.

An equilibrium y⇤ is called asymptotically stable if every solution y(t) that
starts near to y⇤ converges to y⇤ as t ! •. Similarly, an equilibrium y⇤ is
asymptotically unstable if every solution that starts near to y⇤ converges to
y⇤ as t ! �•. We can often tell whether an equilibrium is asymptotically
stable, asymptotically unstable, or neither, by drawing the direction field and
integral curves of the equation.

Example 8 (Logistic model of population growth). The logistic equation

P0 = aP
✓

1 � P
K

◆

has two equilibria P = 0 and P = K. The former is asymptotically unstable
and the latter asymptotically stable.

(Diagram with direction field and integral curves)

4



Example 9 (Logistic model with critical threshold). The equation is

P0 = �aP
✓

1 � P
T

◆✓
1 � P

K

◆

for a constant a > 0. We can analyze the behavior of solutions without
solving the equation, by looking at the direction field.

(Diagram with direction field and integral curves.)
The equilibria are P = 0, P = T and P = K. From the diagram we see

that P = 0 is asymptotically stable, P = T is asymptotically unstable, and
P = K is asymptotically stable. The interpretation is the following: if the
initial population P0 is below the critical treshold T, then the population
becomes extinct. However, if we start with the initial population P0 above
the critical threshold, it grows and reaches the carrying capacity K as t ! •.

There is a simple criterion for determining asymptotically stable and
unstable equilibria.

Theorem 10. Let y⇤ be an equilibrium of the autonomous equation y0 = f (y).

1. If f 0(y⇤) < 0, then y⇤ is an asymptotically stable equilibrium.

2. If f 0(y⇤) > 0, then y⇤ is an asymptotically unstable equilibrium.

Example 11.

1. For the autonomous equation y0 = y, the equilibrium y⇤ = 0 satisfies
f 0(y⇤) > 0 and is asymptotically unstable. Every other solution y(t) =
y0et converges to y⇤ = 0 as t ! �•.

2. For the autonomous equation y0 = �y, the equilibrium y⇤ = 0 satisfies
f 0(y⇤) < 0 and is asymptotically stable. Every other solution y(t) =
y0e�t converges to y⇤ = 0 as t ! •.

Keep in mind that the theorem does not tell us anything in the case
f 0(y⇤) = 0. The equilibrium could be asymptotically stable, asymptotically
unstable, or neither.

Example 12. For the autonomous equation y0 = y2, the equilibrium y⇤ = 0
is neither asymptotically stable or unstable. For the equation y0 = y3, the
equilibrium y⇤ = 0 is asymptotically unstable. In both cases, f 0(y⇤) = 0.
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Lecture 6: Autonomous systems

aleksander doan

28 January 2021

references

Autonomous systems: Boyce–DiPrima section 9.2, Braun sections 4.3, 4.4
(you don’t need to read this part now, as we will return to autonomous
systems after discussing systems of linear equations).

1 autonomous systems of equations

Last time, we considered autonomous equations y0 = f (y). Today we will
talk briefly about autonomous systems of equations. We have not talked
about systems of equations yet, and we will return to this topic later in the
course, but it is convenient to introduce it now to talk about exact equations.

As the name suggests, a system of differential equations consists of
multiple differential equations for multiple unknown functions. We typically
want to have the same number of equations and unknown functions. This is
similar to the case of algebraic equations. If you want to find two unknown
numbers x and y, you’d better have two equations for them, for example

(
5x + 3y = 1,
3x � 7y = 0.

Only one equation 5x + 3y = 1 would not determine x and y. Analogously,
we can consider a system of n differential equations for n unknown functions
y1 = y1(t), . . . , yn = yn(t). We say that such a system is autonomous if it has
the form 8

>>>><

>>>>:

y01 = f1(y1, . . . , yn),
y02 = f2(y1, . . . , yn),
. . .
y0n = fn(y1, . . . , yn),

for some functions f1, . . . , fn of n variables. In other words: all of the
equations are first order and the right-hand side does not involve functions
depending only on t.

We will focus on autonomous systems for two unknown functions x =
x(t) and y = y(t), that is systems of differential equations of the form:

(
x0 = f (x, y),
y0 = g(x, y).

(1.1)

We can interpret such equations and their solutions geometrically using the
direction field and integral curves as we did for first-order equations. This

1



time the direction field associates with every point (x, y) on the plane a line
whose slope is f (x, y)/g(x, y). If g(x, y) = 0, the line is vertical. Now a
solution (x(t), y(t)) to the autonomous system determines for every t a point
on the plane. As t varies, these points form a curve. As before, we call it an
integral curve. The fact that x(t), y(t) satisfy the differential equation means
that the integral curve is tangent to the direction field at every point.

Example 1. Consider the autonomous system
(

x0 = x,
y0 = y.

The direction field at the point (x, y) is the straight line from that point to
(0, 0). Integral curves are straight lines passing through (0, 0). In fact, we
can solve each equation separately to find that solutions are

(
x(t) = x0et,
y(t) = y0et.

Example 2. Consider the autonomous system
(

x0 = �y,
y0 = x.

We see that every point (x, y) the direction field is orthogonal to the line from
(0, 0) to (x, y). Without solving the equation we can see that the integral
curves are circles centered at (0, 0).

Since the direction field of the autonomous system (1.1) depends only
on the quotient f (x, y)/g(x, y), it does not change when we multiply both f
and g by the same, non-zero function q = q(x, y). Therefore, for any such q,
the autonomous system

(
x0 = q(x, y) f (x, y),
y0 = q(x, y)g(x, y)

(1.2)

has the same direction field and integral curves as the original system (1.1).

Example 3. The integral curves of the autonomous system
(

x0 = �(1 + x2 + y2)y,
y0 = (1 + x2 + y2)x

are the same as the integral curves of
(

x0 = �y,
y0 = x.

Therefore, they are circles centered at (0, 0), as discussed earlier.

2 change of variables

It is important to stress that while the integral curves of the autonomous
systems (1.1) and (1.2) are the same, the solutions (x(t), y(t)) are not the
same. They differ by a change of variable, or reparametrization, as explained by
the next result. Geometrically, the reparametrization means that we travel
along the same curve but with different speed.

2



Theorem 4. If (x(t), y(t)) is a solution to the autonomous system
(

x0 = q(x, y) f (x, y),
y0 = q(x, y)g(x, y),

such that q(x(t), y(t)) 6= 0 for all t, then there is a function s = s(t), called
reparametrization, such that the functions x̃(t) = x(s(t)) and ỹ(t) = y(s(t)) are
a solution to the autonomous system

(
x̃0 = f (x̃, ỹ),
ỹ0 = g(x̃, ỹ).

Proof. We need to find the reparametrization s so that x̃ and ỹ solve the
second set of equations. Using the chain rule, we compute

x̃0(t) = x0(s(t))s0(t),
ỹ0(t) = y0(s(t))s0(t).

Using that (x(t), y(t)) solve the first set of equations, we get
(

x̃0 = s0(t)q(x̃, ỹ) f (x̃, ỹ),
ỹ0 = s0(t)q(x̃, ỹ)g(x̃, ỹ).

Therefore, we want to find s = s(t) such that s0(t)q(x̃(t), ỹ(t)) = 1 or,
equivalently,

s0 =
1

q(x(s), y(s))

This equation has a solution s = s(t) by the uniqueness and existence
theorem, provided that q and its partial derivatives are continuous.

The proof gives us a way of finding solutions to the modified equation
(1.2) by reparametrizing solutions to the original equation (1.1).

Example 5. Let us apply the above theorem to solve the autonomous system
8
<

:
x0 = x

x2+y2 ,

y0 = y
x2+y2 .

(2.1)

We will consider only solutions with x2 + y2 6= 0, so that the right-hand side
is well-defined. The integral curves of this system as the same as the integral
curves of (

x0 = x,
y0 = y,

which are straight lines x(t) = x0et, y(t) = y0et, with (x0, y0) 6= (0, 0). Let us
find a reparametrization s = s(t) such that the new functions

x̃(t) = x(s(t)) and ỹ(t) = y(s(t))

satisfy equation (2.1). The chain rule gives us

x̃0(t) = x0(s(t))s0(t) = x(s(t))s0(t) = s0(t)x̃(t),
ỹ0(t) = y0(s(t))s0(t) = y(s(t))s0(t) = s0(t)ỹ(t),

3



so we want s to satisfy

s0 =
1

x(s)2 + y(s)2 =
1

x2
0 + y2

0
e�2s.

This is a separable equation. We find a solution by separating variables and
integrating:

1
2

e2s = (x2
0 + y2

0)t.

(We don’t need a constant of integration because we only need to find some
solution s = s(t), not all of them.) Therefore,

s(t) =
1
2

ln(2(x2
0 + y2

0)t),

and the general solution to (2.1) is

x̃(t) = x(s(t)) = x0

q
2(x2

0 + y2
0)t,

ỹ(t) = y(s(t)) = y0

q
2(x2

0 + y2
0)t,

for any (x0, y0) 6= (0, 0).

3 equilibria

A point (x⇤, y⇤) is called an equilibrium of the autonomous system (1.1) is

f (x⇤, y⇤) = 0 and g(x⇤, y⇤) = 0.

For such a point, the constant functions

x(t) = x⇤, y(t) = y⇤

solve (1.1). As we did for autonomous equations for one function, we will
call an equilibrium of an autonomous system

• asymptotically stable if any other solution (x(t), y(t)) which starts close
to (x⇤, y⇤) converges to (x⇤, y⇤) as t ! •,

• asymptotically unstable if any other solution (x(t), y(t)) which starts
close to (x⇤, y⇤) converges to (x⇤, y⇤) as t ! �•.

Example 6. We see that (0, 0) is an equilibrium of the autonomous systems
considered in Example 1 and Example 2. In the first example, the equilibrium
is asymptotically stable. In the second example, the equilibrium is neither
asymptotically stable nor asymptotically unstable.

Equilibria of two-dimensional autonomous systems are much more inter-
esting than those of one-dimensional systems, discussed in the last lecture.

Example 7. Draw the integral curves of the autonomous systems
(

x0 = x,
y0 = �y

and (
x0 = ex � y,
y0 = x + ey

to see more interesting examples of equilibria. In the first example, we have
two directions: one along which solutions converge to the equilibrium, and
one along which they escape from it. In the second example, the circular
integral lines from Example 2 are now perturbed to trajectories which either
escape from or converge to the equilibrium, depending on the sign of e.

4



4 first order equations as autonomous systems

Observe that every first order equation for one function

y0 = g(t, y)

can be written as an autonomous system for two functions x = x(t) and y(t)
(

x0 = 1,
y = g(x, y).

The first equation gives us x(t) = t, up to adding a constant. Plugging this
to the second equation gives us y0 = g(t, y). Therefore, every first order
equation for one function naturally leads to an autonomous system for two
functions. Solving one is equivalent to solving the other.

Similarly, often we can reduce an autonomous system to a first order
equation for one function. Suppose we have an autonomous system

(
x0 = f (x, y),
y0 = g(x, y),

and suppose that we can invert the function y = y(t) to express t as a
function of y, that is: t = t(y). We can then consider x as a function of y as
well, by x(y) = x(t(y)), and look for a differential equation satisfied by that
function. According to the chain rule, x = x(y) will satisfy the equation

dx
dy

=
dx
dt

dt
dy

=
x0

y0
=

f (x, y)
g(x, y)

. (4.1)

If we can find a solution to this equation, we can solve the original equation
by solving the equation for y = y(t):

dy
dt

= g(x(y), y).

Observe that what we are discussing here is the special case of the change of
variables, or reparametrization, we already discussed earlier. Solutions of
equation (4.1) are equivalent to solutions to the autonomous system

(
x0 = f (x,y)

g(x,y)

y0 = 1,

and we already know that the integral curves of this system are the same as
the integral curves of the original system. Once we solve (4.1), solving the
equation for y = y(t) is the same as finding a reparametrization, as we did
earlier.

Example 8. Here is an alternative, but really equivalent, solution to (2.1).
Let us look for solutions (x, y) such that x = x(y) is a function of y. This
function satisfies then the first order equation

dx
dy

=
x
y

.

This is a separable equation. Separating the variables and integrating, we get

ln |x| = ln |y|+ C

5



and, therefore x(y) = ±eCy = Ay for some constant A 6= 0. This is the
equation of a straight line passing through (0, 0). To find x and y as functions
of t, we need to solve the equation for y = y(t):

y0 =
y

y2(1 + A2)
=

1
(1 + A2)y

.

Again, this is a separable equation, with general solution (after renaming
constants) of the form

y(t) = B
p

t, B = const,

which is the same as the solution we found earlier. Now x(t) can be computed
using the relation to y(t), x(t) = AB

p
t. We see that the solution (x(t), y(t))

is in the end determined by two constants A and B, which can be computed
from the constants x0, y0 we used earlier.

6



O R D I N A RY D I F F E R E N T I A L E Q UAT I O N S ( M AT H 2 0 3 0 )

Lectures 7 and 8: Exact and closed autonomous systems

aleksander doan
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references

Boyce–DiPrima section 2.6, Braun section 1.9.

1 exact and closed autonomous systems

An autonomous system (
x
0 = f (x, y),

y
0 = g(x, y)

(1.1)

is called exact if there is a function H = H(x, y) such that

f = �∂H

∂y
and g =

∂H

∂x
.

Remark 1. Observe that a function H such that f = �∂H/∂y and g = ∂H/∂x

is not unique. It can always be modified by adding a constant.

While these conditions seem arbitrary at first, the point of this definition
is that we can solve such differential equations by reducing them to algebraic
equations.

Theorem 2. If (x(t), y(t)) is a solution to the exact autonomous system

(
x
0 = � ∂H

∂y
(x, y),

y
0 = ∂H

∂x
(x, y),

(1.2)

then

H(x(t), y(t)) = constant.

Proof. This is a consequence of the chain rule for functions of two variables:

d
dt

(H(x, y)) =
∂H

∂x

dx

dt
+

∂H

∂y

dy

dt
.

Using the differential equation for (x, y), we write the right-hand side as

�∂H

∂x

∂H

∂y
+

∂H

∂y

∂H

∂x
= 0.

Therefore,
d
dt

(H(x, y)) = 0,

and the function H(x(t), y(t)) is constant.

1



We conclude that the integral curves of the exact autonomous systems
can be simply found by solving the algebraic equation

H(x, y) = constant.

Remark 3. If you learned classical mechanics you will immediately recognize
that the exact autonomous system (1.2) is a Hamiltonian system with a
Hamiltonian function H independent of time. In classical mechanics, it is
well-known that the Hamiltonian function is constant along trajectories.

Example 4. The autonomous system
(

x
0 = �y,

y
0 = x

is exact because for H(x, y) = 1
2 (x

2 + y
2) we have

�∂H

∂y
= �y and

∂H

∂x
= x.

We conclude that the integral curves are circles described by the equation

x
2 + y

2 = constant.

In this example, it was easy to see that the system is exact: we simply
guessed the function H. However, in general, it is not obvious from looking
at (1.1) whether it is exact and what H is. Fortunately, there is an easy
criterion to determine whether an autonomous system is exact. First, recall
from multivariable calculus that for any function H we have

∂2
H

∂x∂y
=

∂2
H

∂y∂x
.

Example 5. For H(x, y) = x
2
y

3 we have

∂2
H

∂x∂y
=

∂

∂x

✓
∂H

∂y

◆
=

∂

∂x

⇣
3x

2
y

2
⌘
= 6xy

2,

and
∂2

H

∂y∂x
=

∂

∂y

✓
∂H

∂x

◆
=

∂

∂y

⇣
2xy

3
⌘
= 6xy

2.

In particular, if the system (1.1) is exact, that is

f = �∂H

∂y
and g =

∂H

∂x
,

then f an g must satisfy

∂ f

∂x
= � ∂2

H

∂x∂y
= � ∂2

H

∂y∂x
= �∂g

∂y
,

or equivalently
∂ f

∂x
+

∂g

∂y
= 0. (1.3)

We call an autonomous system (1.1) for which the function f and g satisfy
the above equation closed. We have just shown that every exact autonomous
system is closed. Observe that while it might be hard to check that an
autonomous system is exact, it is easy to check that it is closed: it suffices
to compute the partial derivatives of f and g. Fortunately, it turns out
that closed systems are exact and, moreover, we can find a formula for the
function H.

2



Theorem 6. Let (
x
0 = f (x, y),

y
0 = g(x, y)

be an autonomous system defined on a rectangle [x0, y0]⇥ [x1, y1] in the xy–plane.

If the system is closed, i.e. (1.3) holds, then it is exact, that is

f = �∂H

∂y
and g =

∂H

∂x
, (1.4)

where H is given by the formula (1.5) below.

Proof. Our goal is to find H so that (1.4) holds. In particular, integrating the
first equation with respect to y we see that there must be a function of one
variable j = j(x) such that

H(x, y) = �
Z

y

y0
f (x, s)ds + j(x).

(When we integrate functions of one variable y, we get an integration constant.
However, in this case, we get a different constant for every x, so the result is a
function of x rather than a constant. Note that the expression j(x) vanishes
when we take the partial derivative with respect to y.) Any such function H

will satisfy ∂y H = � f . We still have the freedom of choosing any function of
one variable j. We look for j so that the second equality

g(x, y) =
∂H

∂x
(x, y)

holds. Expanding the right-hand side using our formula for H and differen-
tiating with repsect to x under the integral sign, we get

g(x, y) = �
Z

y

y0

∂ f

∂x
(x, s)ds + j0(x).

Now we use the fact that the equation is closed. Using (1.3) and the Funda-
mental Theorem of Calculus, we write the right-hand side as

g(x, y) =
Z

y

y0

∂g

∂y
(x, s)ds + j0(x)

= g(x, y)� g(x, y0) + j0(x).

We see that this equation is satisfied if j obeys the differential equation

j0(x) = g(x, y0).

We solve this equation by integrating with respect to x:

j(x) =
Z

x

x0
g(s, y0)ds.

In the end we get the following formula for H:

H(x, y) =
Z

x

x0
g(s, y0)ds �

Z
y

y0
f (x, s)ds. (1.5)

By construction, H satisfies (1.4).

You should not memorize the formula for H. Rather, understand the
method of finding H and apply it in specific cases.

3



Remark 7. Of course, we can always add a constant to H and (1.4) will still
hold. Observe also that we could have started our construction using g rather
than f . That is, integrating ∂x H = g, we would get

H(x, y) =
Z

x

x0
g(s, y)ds + j(y)

for some function of one variable j = j(y). The condition ∂y H = � f then
leads, in the same way as before, to the equation for j:

j0(y) = � f (x0, y),

which we solve by integrating:

j(y) = �
Z

y

y0
f (x0, s)ds.

The final formula for H is then

H(x, y) = �
Z

y

y0
f (x0, s)ds +

Z
x

x0
g(s, y)ds.

One can check directly that this formula gives the same result as (1.5).

Example 8. We will show that the following system is exact and construct H

following the method from the proof of Theorem 6:
(

x
0 = f (x, y) = 2ye

x,
y
0 = g(x, y) = �e

x
y

2 + 2x.

First, let us check that this system is closed:

∂ f

∂x
+

∂g

∂y
= 2ye

x � 2ye
x = 0.

Since the system is closed, we can use the method from the proof of Theo-
rem 6 to find a function H = H(x, y) such that

∂H

∂y
= � f (x, y) and

∂H

∂x
= g(x, y).

To find such H, we integrate the first of these equations with respect to y:

H(x, y) = �
Z

f (x, y)dy = j(y)� y
2
e

x,

for some function j = j(x) depending only on x and not on y. To find j,
we use the second equation

∂H

∂x
= g(x, y) = �y

2
e

x + 2x,

that is,
j0(x) = 2x,

which gives us
j(x) = x

2.

(We need only one solution so we can disregard the constant of integration.)
We find that

H(x, y) = x
2 � y

2
e

x

and integral curves are given by the equation

x
2 � y

2
e

x = const.

4



Remark 9. In the proof of the theorem, it was important that the functions f

and g were defined on a rectangle, for example so that we could integrate
f (x, y) with respect to y for every value of x. In fact, the theorem is true for
autonomous systems defined on any region in the xy–plane that doesn’t have
any holes (such regions are called simply-connected). However, the theorem is
false for regions with holes. For such regions, there are closed autonomous
systems which are exact. For example, consider the the autonomous system

8
<

:
x
0 = x

x2+y2

y
0 = y

x2+y2

defined on the entire plane without the point (0, 0). By direct calculation we
check that it is exact. On the other hand, it is not exact. The integral curves
of this system are the same as the curves of the system

(
x
0 = x,

y
0 = y,

which we discussed earlier. Thus, the integral curves are straight lines
starting from (0, 0). There is no continuous function H defined on the plane
without the origin which is constant on such lines. One way to see this
is to consider a point g(t) going around (0, 0) along a circle. Choose the
speed of this point so that the loop closes after time t = 1, i.e. g(0) = g(1).
Suppose, by contradiction, that there is such a function H. The path g(t)
is orthogonal to the lines H = const, so basic multivariable calculus shows
that the function H(t) must be increasing in t. On the other hand, we have
H(g(0)) = H(g(1)), a contradiction which shows that such H cannot exist.

This is related to the theory of differential forms and de Rham’s theorem in
the field of mathematics called topology. If you are interested, we can talk
more about this during office hours.

2 integrating factor

Sometimes an autonomous system (1.1) is not exact but we can find a function
µ = µ(x, y) such that the modified system

(
x
0 = µ(x, y) f (x, y),

y
0 = µ(x, y)g(x, y)

is exact. Such a function µ is called an integrating factor. Recall from the last
lecture that the integral curves of the modified system as the same as those
of the original system. Therefore, if we can find an integrating factor, we
can solve the equation and find the integral curves even though the original
autonomous system is not exact.

Example 10 (First order linear equations). We already saw integrating factors
in the lecture on first order equations

y
0 + a(t)y + b(t) = 0.

We can interpret our algorithm of solving first order equations using au-
tonomous systems. First, as in the previous lecture, we observe that solutions
to the above equation for one function can be identified with solutions to the
autonomous system

(
x
0 = f (x, y) = 1,

y
0 = g(x, y) = �a(x)y � b(x).

5



This system is not closed:

∂ f

∂x
+

∂g

∂y
= �a(x),

which is not zero for a general coefficient a(x). So we look for a function
µ = µ(x, y) such that the modified system

(
x
0 = µ(x, y) f (x, y),

y
0 = µ(x, y)g(x, y)

is exact. That means we want the following to be true:

∂(µ f )
∂x

+
∂(µg)

∂y
= 0.

Using the chain rule, we compute the left-hand side:

∂(µ f )
∂x

+
∂(µg)

∂y
=

∂µ

∂x
+

∂µ

∂y
g � µ(x)a(x).

Observe that if µ(x, y) = µ(x) depends only on x and not on y, the condition
that the above sum is zero, reduces to:

µ0(x) = µ(x)a(x).

This is exactly the same equation for an integrating factor that we considered
when discussing first order linear equations. If we find µ = µ(x) solving
this equation, we can use it as an integrating factor. The modified system is
then exact and we can find an equation describing integral curves. Therefore,
autonomous systems lead us to the same method of solving first order linear
equations we already discussed.

However, for a general non-exact autonomous systems it is usually diffi-
cult to find an integrating factor.
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1 second order equations as systems

We will now consider second order differential equations, that is differential
equations of the form

y00 = f (t, y, y0). (1.1)

Here y = y(t) is an unknown function of variable t and f is a function of
three variables. Here are some examples of second order equations:

y00 = �y,

y00 = yt + at5

y00 = �ay0 � bt + ct3 = 0,

y00 = a(y0)2 + by0 + cy�1 � t5.

The right-hand side can be any expression depending on t, y, and y0.
An important observation is that a second order equation can be under-

stood as a system of two first order equations. (In general, a differential
equation of order n can be written as a system of n first order equations.)
Here is how to do it. Suppose that we have a solution y to (1.1). Introduce a
new function x(t) = y0(t). We have, using the fact that y is a solution,

x0(t) = y00(t) = f (t, y, y0) = f (t, y, x).

Therefore, the pair of functions (x, y) satisfies the following system of first
order differential equations

(
x0 = f (t, y, x),
y0 = x.

(1.2)

We see that any time we have a solution y to the second order equation (1.1)
we can produce a pair of functions (x, y) solving the system of first order
equations (1.2). Conversely, given a pair of functions (x, y) solving (1.2), we
get a solution y to (1.1). Therefore, these two points of view are completely
equivalent. Depending on what we want to do, sometimes it may be easier
to consider the second order equation for one function or the system of first
order equations for two functions.

1



Example 1. The second order equation y00 = �y is equivalent to the system
(

x0 = �y,
y0 = x.

Recall that we have studied this system in the lecture about autonomous
systems! (Important point: in general, the system (1.2) does not have to be
autonomous because the right-hand side may depend on t.)

Example 2. The second order equation y00 = a(y0)2 + by0 + cy�1 � t5 is
equivalent to the system

(
x0 = ax2 + bx + cy�1 � t5,
y0 = x.

2 existence and uniqueness for second order equations

We can use the observation that second order equations are equivalent to sys-
tems of first order equations to deduce a uniqueness and existence theorem
for second order equations from the theorem for first order equations.

Theorem 3. Let t0, y0, y00 be given numbers. Consider the initial value problem
8
><

>:

y00 = f (t, y, y0)
y(t0) = y0,
y0(t0) = y00.

If the functions f , ∂ f /∂y and ∂ f /∂y0 (by this we mean the partial derivatives of f
with respect to the second and third variable) are continuous in a neighborhood of the
point (t0, y0, y00), then there exists a solution y(t) to the initial value problem defined
for t from some interval (t0 � e, t0 + e) containing t0. Moreover, the solution is
unique in that interval.

An important point to notice is that for second order equations we have
to prescribe the value of y at t0 and the value of y0 at t0 in order to get a
unique solution. This is in contrast with first order equations, for which it
was enough to prescribe y(t0).

Proof. From what we said in the previous section, finding a solution y(t) to
the second order equation is equivalent to finding a solution to the system

(
x0 = f (t, y, x),
y0 = x.

(2.1)

We, moreover, prescribe the initial value y(t0) = y0 and x(t0) = y00. In
general, we can consider a system of second order equations

(
x0 = f (t, y, x)
y0 = g(t, y, x)

with initial value y(t0) = y0 and x(t0) = y00, for any functions f and g.
The existence and uniqueness theorem for first order equations tells us that
the solution exist for t close to t0 and is unique for such t provided that
f , g, and their partial derivatives with respect to x and y are continuous
around (t0, y0, y00). (This is not exactly the theorem we stated in the lecture
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on existence and uniqueness, because we dealt with only a single equation
and not a system. But the proof for systems of first order equations is exactly
the same as the proof for a single first order equation.) So we see that our
case is a special case of this situation, with g(t, y, x) = x (which is continuous
and has continuous partial derivatives). We conclude that the system (2.1)
has a unique solution defined for t close to t0. If (x, y) is a solution to the
system (2.1), then y is a solution to the initial value problem for the original
second order equation y00 = f (t, y, y0).

Example 4. In the first lecture, we considered the harmonic oscillator equa-
tion

y00 + y = 0.

We observed that the functions y1(t) = cos t and y2(t) = sin t are solutions.
Suppose now that we want to find a solution satisfying the initial condition

y(0) = y0 andy0(0) = y00

for some prescribed numbers y0, y00. We can look for a solution of the form

y(t) = C1 cos t + C2 sin t

for some constants C1 and C2. To compute the constant, we use the initial
value condition. Plugging t = 0, we get

y0 = y(0) = C1 cos 0 + C2 sin 0 = C1.

On the other hand, taking the derivative of y(t), we get

y0(t) = �C1 sin t + C2 cos t.

Plugging t = 0 to this equation and using the initial value condition, we get

y00 = y0(0) = �C1 sin 0 + C2 cos 0 = C2.

We conclude that C1 = y0 and C2 = y00 so the solution to our initial value
problem is

y(t) = y0 cos t + y00 sin t.

Even though we only guessed this solution, the existence and uniqueness
theorem tells us that this is the only solution to our initial value problem!
Since y0 and y00 are allowed to be anything, we conclude that any solution to
the equation y00 + y = 0 has the form

C1 cos t + C2 sin t

for some constants C1 and C2.

3 linear second order equations

The harmonic oscillator equation is an example of a linear second order
equation, that is a differential equation of the form

y00 + p(t)y0 + q(t)y + r(t) = 0.

Here p(t), q(t), r(t) are given functions of t. The equation is called homogenous
if r(t) = 0 for all t. Otherwise we call it non-homogenous.
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Linear equations have particularly nice properties and our goal for the
next three lectures is to learn how to solve second order linear equations.
Second order linear equations appear in all sort of applications, and even if
you want to study non-linear equations you have to first understand linear
equations as they provide easier models for more complicated equations.

For now, let us focus on homogenous equations, that is assume that
r(t) = 0 and consider

y00 + p(t)y0 + q(t)y = 0. (3.1)

Recall from Homework 1 that:

1. If y is a solution to (3.1) and C is any constant, then the function Cy is
a solution to (3.1).

2. If y1 and y2 are two solutions to (3.1) then their sum y1 + y2 is also a
solution to (3.1).

3. If y1 and y2 are two solutions to (3.1) and C1 and C2 are constants, then
the function

C1y1 + C2y2

is a solution to (3.1). We call functions of this form linear combinations
of the functions y1 and y2.

(The third part follows from combining the first and second part.)

Example 4 illustrates an important general principle. In order to find
a general solution to a second order linear homogenous equation we need
to find two independent solutions y1 and y2 and then any other solution
will be of the form C1y1 + C2y2 for some constants C1 and C2. What do we
mean by independent here? Of course, the solutions y1 and y2 have to be
different, but that’s not enough. We want them to be independent in the
sense that there is no constant C such that y2 = Cy1. In the example, we had
y1(t) = cos t and y2(t) = sin t and it’s intuitive that these two functions are
independent.

4 the wronskian

In general, however, if we find to solutions y1 and y2 to (3.1), how do we tell
that they are independent? And how do we see that any other solution is a
linear combination of y1 and y2? The next theorem we discuss will answer
these questions. However, before stating the theorem, let us introduce the
following notion.

Definition 5. For two functions y1 and y2, the Wronskian W[y1, y2] is a
function defined by

W[y1, y2](t) = y1(t)y02(t)� y01(t)y2(t).

[The Wronskian is named after the Polish mathematician Jozef Hoene–
Wronski (1776–1853).]

An important point: the Wronskian of two functions is itself a function,
that is for every t it returns a number.

Example 6. The Wronskian of the functions y1(t) = et and y2(t) = te�t

W[y1, y2](t) = et(e�t � te�t)� et(te�t) = �2t.

4



At the moment, the definition of the Wronskian seems unmotivated:
it’s not clear why we would consider such an expression. However, if you
understand the proof of the theorem, you will understand how the Wronskian
naturally appears. For now, let us observe the following.

Example 7. If the functions y1 and y2 are linearly dependent, that is y2 = Cy1
for a constant C, then their Wronskian is zero. Indeed,

W[y1, y2] = W[y1, Cy1] = y1(Cy1)
0 � y01(Cy1) = Cy1y01 � Cy1y01 = 0.

We see that the Wronskian being zero or not has something to do with
whether the functions are independent or not.

Without further ado, here is the main theorem of today’s lecture. We will
assume that the coefficients p(t) and q(t) in the equation are defined for all t
and continuous.

Theorem 8. Let y1 and y2 be two solutions to the second order homogenous equation

y00 + p(t)y0 + q(t)y = 0.

If the Wronskian W[y1, y2](t) is non-zero for all t, then any other solution to the
equation is a linear combination of y1 and y2, that is, any other solution has the form

y(t) = C1y1(t) + C2y2(t)

for some constants C1 and C2.

Proof. Choose any numbers t0, y0, y00. If we can show that any initial problem
8
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>:

y00 + p(t)y0 + q(t)y = 0
y(t0) = y0,
y0(t0) = y00.

has a solution of the form y(t) = C1y1(t) + C2y2(t) for some constants C1
and C2, then we are done. Indeed, any solution to the equations satisfies
some initial value problem – we can choose any t0 and declare y0 and y00 to
be the value of the solution and its derivative at t0. Now the solution to the
initial value problem is unique by the existence and uniqueness theorem. So
if we can show that any initial value problem has a solution which is a linear
combination of y1 and y2, we will conclude that all solution to the equation
are such linear combinations.

To solve the initial value problem, given t0, y0, y00, we proceed in the same
way as in Example 4, that is we want to use the initial value conditions to
determine the constants C1 and C2. Our solution should satisfy the system
of algebraic equations

(
y0 = y(t0) = C1y1(t0) + C2y2(t0)

y00 = y0(t0) = C1y01(t0) + C2y02(t0).
(4.1)

(Since we plug t = t0, these are just equations for numbers and not functions!)
This is a system of two algebraic equations with two unknowns C1 and C2.
To solve it, we want to eliminate one of the unknowns, for example C2. We
do it by multiplying the first equation by y02(t0) and the second equation by
y2(t0) and then subtracting them:

y0y02(t0)� y00y2(t0) = C1(y1(t0)y02(t0)� y01(t0)y2(t0)).
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This gives us a formula for C1:

C1 =
y0y02(t0)� y00y2(t0)

y1(t0)y02(t0)� y01(t0)y2(t0)
,

and plugging this to the first equation we can also solve for C2. The formula
itself is not important, but there is one important point. We can solve the
equation for C1 and C2 only if the formula makes sense, that is if we can
divide by

W[y1, y2](t0) = y1(t0)y02(t0)� y01(t0)y2(t0).

Observe that this number is the value of the Wronskian at t0. So in order for
our problem to have a solution we need that W[y1, y2](t0) 6= 0. But that was
our original assumption: that the Wronskian was non-zero for all values of t.
We conclude that we can find C1 and C2 satisfying equations (4.1). For such
constants, the function

y(t) = C1y1(t) + C2y2(t)

is a solution to the equation y00 + p(t)y0 + q(t)y = 0 (indeed any linear
combination of y1 and y2 is) and by construction it satisfies the initial value
problem y(t0) = y0 and y0(t0) = y00. We conclude that any initial value
problem has a solution which is a linear combination of y1 and y2, which is
what we wanted to show.

Remark 9. This is a general fact of algebra that the system of linear algebraic
equations for two unknowns x and y

(
ax + by = e
cx + dy = f

has a unique solution if ad � bc 6= 0. The number ad � bc is called the
determinant of the equation. We will talk more about this when we discuss
linear algebra. For now I want simply to make the point that the Wronskian
appears naturally in the proof of the theorem as the determinant of the linear
system (4.1).

You might remember that not every quadratic equation has two solutions.
Indeed, if p2 � 4q = 0, there is only one root l of the characteristic polyno-
mial. In this case, if elt is a solution. But how do we find another solution?
The situation seems worse when p2 � 4q < 0; in this case the characteristic
polynomial has no roots so our method of finding solutions does not seem
to work. We will discuss what to do in these two cases in the next lecture.
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Lecture 10: Second order homogenous equations with constant
coefficients

aleksander doan

16 February 2021

references

Boyce–DiPrima sections 3.1, 3.2, 3.4; Braun section 2.2.

1 abel’s formula for the wronskian

Last time we considered second order homogenous linear equations

y00 + p(t)y0 + q(t)y = 0. (1.1)

Given two solutions y1 and y2 we wanted to check if every other solution is
of the form C1y1 + C2y2 for some constants C1, C2. We proved that this is the
case provided that the Wronskian

W[y1, y2](t) = y1(t)y02(t)� y01(t)y2(t)

is non-zero for all t. It seems complicated to verify that the Wronskian is
non-zero for all values of t. Fortunately, the following result due to the
Norwegian mathematician Niels Abel (1802–1892) shows that it is enough to
verify that the Wronskian is non-zero for only one value of t.

Theorem 1 (Abel’s formula). If y1 and y2 are two solutions to equation (1.1) then
their Wronskian W = W[y1, y2] satisfies the differential equation

W 0 + p(t)W = 0. (1.2)

Therefore, the Wronskian is given by the formula

W(t) = Ce�
R

p(t)dt.

In particular, either W(t) = 0 for all t or W(t) 6= 0 for all t.

Proof. First, we show that the function W = W[y1, y2] satisfies differential
equation (1.2). Using the product rule, we compute

W 0 = (y1y02 � y02y1)
0

= y01y02 + y1y002 � y002 y1 � y02y01
= y1y002 � y002 y1.

On the other hand, since both y1 and y2 solve (1.1), the right-hand side is
equal to

y1y002 � y002 y1 = �y1(py02 + qy2) + y2(py01 + qy1)

= �p(y1y02 � y01y2) = �pW.
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Therefore, W 0 = �pW as desired. This is a separable equation. Dividing by
W and integrating we get

ln |W(t)| = �
Z

P(t)dt

so, after exponentiating,

W(t) = Ce�
R

P(t)dt

for some constant C. We have two possibilities: C = 0 or C 6= 0. If C = 0,
then W(t) = 0 for all t. On the other hand, since ex is non-zero for every x,
if C 6= 0, then W(t) 6= 0 for all t.

Example 2. Consider the equation y00 + y = 0. We verify by direct calculation
that y1(t) = cos t and y2(t) = sin t are solutions. We compute the Wronskian

W[y1, y2](t) = cos2 t + sin2 t = 1.

Let’s see that Abel’s formula indeed works in this case. We have p(t) = 0 in
this case so

Ce�
R

p(t)dt = C,

and indeed the formula holds for C = 1. The Wronskian W(t) is non-zero
for all t. We conclude that every solution to y00 + y = 0 is of the form

C1 cos t + C2 sin t

for some constants C1 and C2.

Example 3. Consider the equation y00 � y = 0. Again, by direct calculation
we check that the function y1(t) = et and y2(t) = e�t are solutions. The
Wronskian is

W[y1, y2](t) = et · (�e�t)� et · e�t = �2.

In this case p(t) = 0 as before, so the right-hand side of Abel’s formula is
agaqin

Ce�
R

p(t)dt = C,

and we see that Abel’s formula holds with C = �2. Since W[y1, y2](t) 6= 0
for all t, we conclude that every solution to y00 � y = 0 is of the form

C1et + C2e�t

for some constants C1 and C2.

2 characteristic polynomial ; distinct roots

The last example gives us a general way of solving second order linear
homogenous equations with constants coefficients, that is equations of the
form

y00 + py0 + qy = 0 (2.1)

where now p and q are constant. Inspired by the example, we can look for
solutions of the form

y(t) = elt

for some constant l. The requirement that this function satisfies equation
(2.1) will give us an equation for l which we can then solve. To see this, it is
convenient to introduce the following notation. For every function y, write

L[y] = y00 + py0 + qy.
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Here L can be seen as a "function of functions", that is: L is an operation
that takes as an input a function y of variable t and returns another function
of variable t. This is similar to how regular functions work: as an input
they take a number and return another number. The only difference here
is that L operates on functions on numbers. This notation is useful because
now saying that y is a solution to (2.1) is equivalent to saying that L[y] = 0.
(Important point: the right-hand side has to be understood as a constant
function zero, that is: the function L[y] takes value zero for every t.)

In any case, we compute

L[elt] = (elt)00 + p(elt)0 + qelt

= l2elt + plelt + qelt

= (l2 + pl + q)elt

= c(l)elt,

(2.2)

where
c(l) = l2 + pl + q

is the characteristic polynomial of the equation. Moreover, the function y(t) =
elt is a solution to the equation if and only if c(l) = 0.

Note that this is simply a quadratic equation for l so we know how to
solve it! If p and q satisfy

p2 � 4q > 0

then there are two solutions

l1 =
�p +

p
p2 � 4q

2
and l2 =

�p �
p

p2 � 4q
2

.

Consequently, in this case we have two solutions

y1(t) = el1t and y2(t) = el2t.

We can summarize this by the following theorem.

Theorem 4. Consider a second order linear homogenous equation with constant
coefficients:

y00 + py0 + qy = 0.

If p2 � 4q > 0, and l1 and l2 are the two distinct roots of the characteristic
polynomial c(l) = l2 + pl + q, then the functions

y1(t) = el1t and y2(t) = el2t.

are solutions to the equation. Moreover, every solution is of the form

C1y1 + C2y2

for some constants C1 and C2.

Proof. We already verified that y1 and y2 are solutions (this is essentially by
construction). To see that every other solution is their linear combination we
need to check that the Wronskian W = W[y1, y2] is non-zero. We compute

W(t) = y1(t)y02(t)� y01(t)y2(t) = l2el1tel2t �l1el1tel2t = (l1 �l2)e(l1+l2)t.

Since l1 6= l2 by assumption, and ex is non-zero for all x, the right-hand side
is non-zero. We conclude that the Wronskian is non-zero so indeed every
solution to the equation is a linear combination of y1 and y2.
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Lecture 11: Repeated and complex roots

aleksander doan

18 February 2021

references

Boyce–DiPrima sections 3.3, 3.4; Braun section 2.2.

1 distinct real roots

Last time we considered a second order homogenous equation

y00 + py0 + qy = 0 (1.1)

with p and q constant. We looked for solutions of the form y(t) = elt for l
constant, and found that a function of this form is a solution if and only if l
is a root of the characteristic polynomial

ch(l) = l2 + pl + q.

This is a quadratic function of l. There are three cases:

• p2 � 4q > 0: there are two distinct roots l1, l2,

• p2 � 4q = 0: there is only one root l1,

• p2 � 4q < 0: there are no roots.

In the previous lecture we studied the first situation. We proved that in this
case any solution to (1.1) is of the form

y(t) = C1el1t + C2el2t

for constants C1, C2.

Example 1. Consider the equation

y00 + y0 � 2y = 0.

The characteristic polynomial is

c(l) = l2 + l � 2.

We see that
p2 � 4q = 9 > 0

so there are two distinct roots. We compute that the roots are

l1 = �2 and l = 1,

so every solution is of the form

y(t) = C1e�2t + C2et

for constants C1 and C2.

In today’s lecture we discuss what to do in the remaining two cases.
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2 repeated root

Suppose that p2 � 4q = 0, so that there is only one root

l1 = �p/2,

and, according to the general principle from the last section, the function
y1(t) = el1t is a solution to the differential equation. How do we find another
solution? We use the following trick. First, observe that t he characteristic
polynomial in this case can be written as

c(l) = l2 + pl + q = l2 + pl + p2/4 = (l + p/2)2 = (l � l1)
2.

This is just a factorization of this quadratic polynomial. From our previous
calculation in the last lecture we know that for every l

L[elt] = c(l)elt = (l � l1)
2elt.

(Recall that here for any function y, L[y] is the function

L[y] = y00 + py + q

and y is a solution to the equation if and only if L[y] = 0.) Since this equation
holds for all l we can differentiate it with respect to l. Note that we can
move the differentiation inside L. The definition of L involves taking first
and second derivatives with repsect to t. Recall from Multivariable Calculus
that taking the derivative first with respect to t and then with respect to l is
the same as first taking the derivative with respect to l and then with respect
to t. So we have

∂

∂l
L[elt] = L[

∂

∂l
elt] = L[telt]

and the right-hand side is

∂

∂l
(l � l1)

2elt = 2(l � l1)elt + l(l � l1)
2elt.

Putting both things together, we get

L[telt] = 2(l � l1)elt + l(l � l1)
2elt.

Now observe that the right-hand side is zero for l = l1. That means that
the function

y2(t) = tel2t

satisfies
L[y2] = 0.

Therefore, we have found a second solution to the differential equation! We
can summarize this in the following theorem.

Theorem 2. Consider a second order linear homogenous equation with constant
coefficients:

y00 + py0 + qy = 0.

If p2 � 4q = 0, and l1 = �p/2 is the unique root of the characteristic polynomial,
then the functions

y1(t) = el1t and y2(t) = tel1t.

are solutions to the equation. Moreover, every solution is of the form

C1y1 + C2y2

for some constants C1 and C2.
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Proof. We already checked that y1 and y2 are solutions. It remains to verify,
as before, that their Wronskian is non-zero. Using the product rule, we get

W[y1, y2](t) = y1(t)y02(t)� y01(t)y2(t)

= el1t(el1t + tl1el1t)� l1tel1tel1t

= e2l1t.

The right-hand side is non-zero for all t. We conclude that the Wronskian is
non-zero, and therefore any solution is a linear combination of y1 and y2.

3 review of complex numbers

When p2 � 4q < 0 the equation

l2 + pl + q = 0 (3.1)

has no roots, so it seems that our method does not produce any solutions.
However, we can still find solutions using this method if we only look for
solutions l which are complex numbers. In this section we briefly review the
theory of complex numbers. We will apply this theory to the problem of
solving linear differential equations in the next section.

The starting observation is this. Not every quadratic equation has roots.
The simplest example is the equation

l2 = �1.

Indeed, a square of any number is non-negative, so there cannot be l
satisfying this equation. Imagine, however, that there exists such a solution,
and call it i (’i’ stands for ’imaginary’ since it cannot be any standard, real
number) that is: i is a number satisfying

i2 = �1.

Other than this odd property, we declare that i can be treated like any other
number: we can add it to other numbers, multiply by it, and so on. All rules
of addition and multiplication hold, for example

(5 + i)(2 � i) = 10 + 2i � 5i � i2 = 10 � 3i � (�1) = 9 � 3i,

and so on. If we only accept that there is such a number i, then it turns out
that we can solve any quadratic equation! For example, if we want to find l
such that solve

l2 = �15

we can simply take l = i
p

15 because

l2 = (i
p

15)2 = i2
p

15
2
= �1 ⇥ 15 = �15

and similarly for l = �i
p

15. More generally, if we have a quadratic equation
(3.1) with p2 � 4q < 0, we can now take the square root of p2 � 4q:

q
p2 � 4q = i

q
|p2 � 4q|

and the usual formula gives us two roots

l1 =
�p � i

p
|p2 � 4q|

2
and l2 =

�p + i
p
|p2 � 4q|

2
. (3.2)

We verify by direct calculation that l1 and l2 indeed are roots (3.1).
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Example 3. Consider the quadratic equation

l2 + 4l + 5 = 0.

We have p2 � 4q = 16 � 20 = �4. The roots are given by (3.2), that is:

l1 =
�4 � 2i

2
= �2 � i

l2 =
�4 + 2i

2
= �2 + i.

To get used to these sort of calculations, let us verify that l1 is indeed a root.
We have

l2 + 4l + 5 = (�2 � i)2 + 4(�2 � i) + 5

= 4 + 4i + i2 � 8 � 4i + 5
= (4 � 1 � 8 + 5) + (4 � 4)i = 0.

The summary of this discussion is that we can now solve any quadratic
equation. However, there is a price to pay: solutions are not ordinary, real
numbers, but rather complex numbers, that is numbers of the form

z = a + ib

where a and b are real. That is: a complex number is a pair of two real
numbers. They are called the real and imaginary part of z respectively, we
write:

a = Rez and b = Imz.
We will now discuss some natural operations on complex numbers.

Addition and multiplication

As we said, the rules of addition and multiplication for these numbers are
the same as for real numbers.

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

and for multiplication,

(a1 + ib1)(a2 + ib2) = a1a2 � b1b2 + i(a1b2 + a2b1).

Division

We can also define division of complex numbers. In order to divide, we
simply remove i from the denominator using the following trick:

a1 + ib1
a2 + ib2

=
a1 + ib1
a2 + ib2

· a2 � ib2
a2 � ib2

=
(a1 + ib1)(a2 � ib2)

a2
2 + b2

2
.

Now the denominator is a real number and we can compute the numerator
using our rules of multiplication. You don’t need to remember this formula,
just remember the trick to make the denominator into a real number. (This
is similar to the way we remove a square root from the denominator, for
example 1/

p
2 =

p
2/2.)

Example 4. Let us divide 1 + 2i by 3 � i:

1 + 2i
3 � i

=
1 + 2i
3 � i

3 + i
3 + i

=
(1 + 2i)(3 + i)
(3 � i)(3 + i)

=
1 + 7i
9 � i2

=
1 + 7i

10
=

1
10

+
7

10
i.
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Conjugation and absolute value

Given a complex number z = a + bi its conjugate is the complex number

z̄ = a � bi.

Note that for any z we have (z̄) = z. The absolute value of z is defined by

|z| =
p

a2 + b2.

Observe that for any complex number z we have

zz̄ = |z|2.

Indeed, we have

zz̄ = (a + bi)(a � bi) = a2 � abi + abi � b2i2 = a2 + b2 = |z|2.

Example 5. If z =
p

2 + 4i, then z̄ =
p

2 � 4i and

|z| =
p

2 + 16 =
p

18 = 3
p

2.

An important observation is that given a quadratic equation with real
coefficients, its roots l1 and l2 given by the formula (3.2) are conjugate to
each other, that is:

l2 = l̄1.

Exponentiation

We want to make sense of the expression ez for any complex number z =
a + bi. We want the exponential to have the same properties that we know
for real numbers that is

ez+w = ezew.

In particular, for a and b real we should have

ea+bi = eaebi.

Here ea is the standard exponential function for real numbers, so we only
need to make sense of ebi. One way to define it is to declare that the following
Euler’s formula hold, that is, by definition,

eib = cos b + i sin b.

To see that this is a sensible definition, we should check that for all real
numbers b1 and b2 we have

eib1 eib2 = ei(b1+b2).

The left-hand side is

(cos b1 + i sin b1)(cos b2 + i sin b2)

= cos b1 cos b2 � sin b1 sin b2 + i(sin b1 cos b2 + cos b2 sin b1)

= cos(b1 + b2) + i sin(b1 + b2),

where in the last line we used the formulae for sine and cosine of the sum
of two angles. We see that the right-hand side is, by definition, ei(b1+b2), the
our exponential of an imaginary number has the desired property. This tells
us that our definition is sensible. To summarize, for an arbitrary complex
number z = a + bi, the exponential is given by

ez = eaeib = ea(cos b + i sin b).
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Example 6. Let’s compute e2+ip/4. We have

e2+ip/2 = e2(cos p/4 + i sin p/4) =
e2
p

2
2

(1 + i).

In the next lecture we will talk about how to use complex numbers to
solve second order equations y00 + py0 + q = 0 with p2 � 4q < 0.
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1 complex solutions

We are interested in solving second order homogenous equations with con-
stant coefficients:

y00 + py0 + q = 0

for p and q constant. We proved that a function y(t) = elt where l is a
constant, is a solution to this equation if and only if l is the root of the
characteristic polynomial

c(l) = l2 + pl + q,

that is, if l satisfies c(l) = 0. This is a quadratic equation for l. Last time
we discussed two cases

1. If p2 � 4q > 0, then there are two real roots l1, l2. The functions
y1(t) = el1t and y2(t) = el2t are solutions and any other solution is
their linear combinations.

2. If p2 � 4q = 0, then there is only one, repeated real root l1. The function
y1(t) = el1t is a solution as before, and we proved that there is another
solution y2(t) = tel1t. Any other solution is a linear combination of
these two,

In the remaining case p2 � 4q < 0 the characteristic polynomial has no
real roots. However, it still has two complex roots l1, l2, and l2 is conjugate
to l1, that is:

l2 = l1.

Recall from the last lecture that the conjugate of a complex number z = a+ bi
is the complex number z = a � bi.

Even though l1 and l2 are complex numbers, we can still define functions

y1(t) = el1t and y2(t) = el2t.

The difference now is that these functions are complex functions, that is: for
every t the numbers y1(t) and y2(t) are complex. Nevertheless, complex
functions can be differentiated in the same way as real functions (we simply

1



differentiate separately the real and the imaginary part), and these two
complex functions satisfy our differential equation.

We can write these complex solutions more explicitly using Euler’s for-
mula for ez where z = a + bi is a complex number:

ea+bi = ea(cos b + i sin b).

(In fact, this is how we defined the exponential of a complex number last
time. There are other ways of defining it, for example, using power series.)
Now if we write l1 = a + bi with a and b real, then

y1(t) = el1t = e(a+bi)t = eat(cos(bt) + i sin(bt)).

Similarly, using that l2 = l1 = a � bi,

y2(t) = e(a�bi)t = eat(cos(�bt) + i sin(�bt)) = eat(cos(bt)� i sin(bt)).

Observe that
y2(t) = y1(t)

so the second solution can be recovered from the first one by conjugation.

2 from complex solutions to real solutions

In applications, we are interested in finding real solutions, since our function
y(t) usually has an interpretation as a real-life quantity, which should be
a real number rather than a complex number. Fortunately, we can use our
complex solutions to find real solutions.

We do this by taking the real and imaginary part of the complex solutions.
Recall that for a complex number z = a + bi, we call a the real part of z and
b the imaginary part of z (despite the name, both a and b are real numbers!).
We write

a = Re(z) and b = Im(z).

An important observation is that for any complex number z we have

Re(z) =
z + z

2
and Im(z) =

z � z
2i

,

so the real and imaginary part of z and linear combinations of z and z (with
complex coefficients in the latter case). The second observation to make is
that z is a real number if and only if z = z. Indeed, if z = z, then it follows
from the above formula that Im(z) = 0, that is z has no imaginary part so is
a real number.

We can now prove the following result relating complex and real solutions
to homogenous differential equations.

Theorem 1. Let y(t) be a complex function which is a solution of the homogenous
differential equation

y00 + p(t)y0 + q(t)y = 0

with p(t) and q(t) real functions. (They don’t have to be constant.) Then the conju-
gate y(t) and the real and imaginary parts Re(y(t)), Im(y(t)) are also solutions of
the same equation.

Remark 2. Note that y(t) is a complex solution whereas Re(y(t)) and
Im(y(t)) are real solutions.
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Proof. The operation of conjugating complex number has the following two
properties, for any complex numbers z and w we have

z + w = z + w and z · w = z · w.

Using this and the fact that y is a solution to our differential equation and
that p and q are real, i.e. p = p and q = q, we get

y00 + p(t)y0 + q(t)y = y00 + p(t)y0 + q(t)y = 0 = 0.

Therefore, y is a solution. Since the equation is linear, any linear combination
of solutions is a solution. Since the functions

Re(y(t)) =
y(t) + y(t)

2
and Im(y(t)) =

y(t)� y(t)
2i

,

are linear combinations of y and y, which are solutions, we conclude that
they are also solutions.

The above theorem shows that if we take the real and imaginary part of
our complex solutions y1(t) = el1t and y2(t) = el2t, where l1 and l2 are
complex roots of the characteristic polynomial, then we find real solutions to
our differential equation. Observe that it suffices to use only either y1 or y2
because

y2(t) = y1(t)

and therefore

Re(y2(t)) = Re(y1(t)) and Im(y2(t)) = �Im(y1(t)).

So by taking the real and imaginary part of y2 we don’t find new solutions.
We can summarize this discussion by the following theorem.

Theorem 3. Consider the second order homogenous equation

y00 + py0 + q = 0,

with p and q constant and real. Suppose that p2 � 4q < 0. Let l1 and l2 = l1 be
the complex roots of the characteristic polynomial c(l) = l2 + pl + q. Then the
following holds

1. The complex functions

y1(t) = el1t and y2(t) = el2t = y1(t)

are complex solutions and any other complex solution has the form

y(t) = C1y1(t) + C2y2(t)

for complex constants C1 and C2.

2. The real functions
Re(y1(t)) and Im(y1(t))

are real solutions and any other real solution has the form

y(t) = C1Re(y1(t)) + C2Im(y2(t))

for real constants C1 and C2.
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Proof. We already proved that the given functions are solutions. It remains to
see that any other solution is their linear combination. To do that, we simply
compute the Wronskian and see that it is non-zero. This is a straightforward
computation similar to the ones we did in the previous lectures.

Example 4 (Harmonic oscillator). Consider the harmonic oscillator equation
y00 + y = 0. The characteristic polynomial is c(l) = l2 + 1. Its roots are
l1 = i and l2 = �i. Therefore, the complex solutions are

y1(t) = eit = cos t + i sin t and y2(t) = e�it = cos t � i sin t.

The real solutions are

Re(y1(t)) = cos t andIm(y1(t)) = sin t.

Any real solution is their linear combination:

y(t) = C1 cos t + C2 sin t

with C1 and C2 real constants.

Example 5. Consider the equation

y00 � 10y0 + 29y = 0.

The characteristic polynomial is

c(l) = l2 � 10l + 29.

Since p2 � 4q = �16 < 0, there are two complex roots. We find them to be

l1 = 5 � 2i and l2 = 5 + 2i.

The complex solutions are

y1(t) = e(5�2i)t = e5t(cos(2t)� i sin(2t)),

y2(t) = e(5+2i)t = e5t(cos(2t) + i sin(2t)).

Any real solution is a linear combination of the real and imaginary part (for
example, of y2), that is any real solution is of the form

y(t) = C1e5t cos(2t) + C2e5t sin 2t

for real constants C1 and C2.

3 summary

Let us summarize what we did in the last two lectures. We considered a
second order homogenous equation with constant coefficients:

y00 + py0 + qy = 0,

with p and q constant. The first step to solving this equation is to find roots
of the characteristic polynomial of the equation

c(l) = l2 + pl + q.

We look for l such that c(l) = 0. This is a quadratic equation, so there are
three cases.
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Real distinct roots

If p2 � 4q > 0 then there are two distinct real roots l1, l2. The functions

y1(t) = el1t and y2(t) = el2t

are solutions and the general solution is their linear combination:

y(t) = C1el1t + C2el2t

for any constants C1 and C2.

Repeated root

If p2 � 4q = 0 then there is real one double root l1. In this case, the functions

y1(t) = el1t and y2(t) = tel1t

are solutions and the general solution is their linear combination:

y(t) = C1el1t + C2tel1t.

Complex roots

If p2 � 4q < 0 then there are two complex roots l1 and l2 which are
conjugate, that is: l2 = l1. In this case, the function

y1(t) = el1t and y2(t) = el2t = el1t = y1(t)

are complex solutions. To find real solutions we take the real and imaginary
part of y1 (or we can also use y2, it doesn’t matter since Re(y2) = Re(y1) and
Im(y2) = �Im(y1). The general real solution is

y(t) = C1Re(y1(t)) + C2Im(y1(t)).

To write down the formula explicitly, we write l1 = a + bi where a = Re(l1)
and b = Im(l1). Then

Re(y1(t)) = eat cos(bt),

Im(y1(t)) = eat sin(bt)

so the general real solution is

y(t) = C1eat cos(bt) + C2eat sin(bt).

However, it is not practical to remember these formulae. Rather, understand
the process by which we found them, that is: first we write the complex
solutions in the same way as we did for real roots, then we take their real
and imaginary parts.
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1 non-homogenous equations

Last time we discussed an algorithm for solving second order homogenous
equations with constant coefficients

y00 + py0 + qy = 0.

Now we turn to non-homogenous equations. In fact, for now let us consider
the general case of a second order non-homogenous equation

y00 + p(t)y0 + q(t) = r(t)

where p(t), q(t), r(t) are functions, not necessarily constant. The following
theorem tells us how to find general solutions to non-homogenous equations.
Recall that by a general solution we mean the general expression for all
functions satisfying the differential equation, whereas a particular solution
is any such function. For example, the general solution to the harmonic
oscillator equation

y00 + y = 0

is
y(t) = C1 sin t + C2 cos t

for C1 and C2 any constants, whereas the function

y(t) = 5 sin t � 11 cos t

is a particular solution. When we want to find all solutions to the equation,
we look for the general solution. When we solve an initial value problem, we
look for a particular solution.

Theorem 1. Consider a second order non-homogenous equation

y00 + p(t)y0 + q(t) = r(t). (1.1)

If x(t) is a particular solution of the non-homogenous equation (1.1), and if

C1y1(t) + C2y2(t)

1



is the general solution of the corresponding homogenous equation

y00 + p(t)y0 + q(t) = 0, (1.2)

then the general solution of the non-homogenous equation (1.1) is

y(t) = C1y1(t) + C2y2(t) + x(t). (1.3)

In other words, the theorem says that

general solution of non-homogenous = general solution of homogenous +
particular solution of non-homogenous

that is: in order to find all solutions to a non-homogenous equation we need
to find or guess one solution and then find all solutions to the corresponding
homogenous equation.

Proof. We want to show that all solutions of the non-homogenous equation
(1.1) are of the form (1.3). Suppose that y(t) is any solution of (1.1). Define a
function

z(t) = y(t)� x(t).

We will show that z(t) is a solution of the homogenous equation (1.2). In
order to do that, observe that

z0 = y0 � x0 and z00 = y00 � x00.

Since both x(t) and y(t) satisfy (1.1), we get

z00 + p(t)z0 + q(t)z = y00 � x00 + p(t)(y0 � x0) + q(t)(y � x)
= (y00 + p(t)y0 + q(t)y)� (x00 + p(t)x0 + q(t)x)
= r(t)� r(t) = 0.

Therefore, z(t) is a solution of the homogenous equation (1.2). By assumption,
all solutions of the homogenous equations are linear combinations of y1(t)
and y2(t), so there exist constants C1 and C2 such that

y(t)� x(t) = z(t) = C1y1(t) + C2y2(t).

This shows that y(t) is of the form (1.3), as we wanted to show.

Example 2. Let us find the general solution to the non-homogenous equation

y00 + y = t.

First, we can guess that the function x(t) = t is a particular solution. Indeed,
we have x0(t) = 1, x00(t) = 0, so

x00(t) + x(t) = 0 + t = t.

On the other hand, we know that the general solution to the corresponding
homogenous equation

y00 + y = 0

is
C1 sin t + C2 cos t.

Using our theorem, we conclude that the general solution to the non-
homogenous equation is

y(t) = C1 sin t + C2 cos t + t.
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2 guessing solutions

Theorem 1 tells us that if we happen to know one solution of a non-
homogenous equation, we can find the general solution by finding the
general solution of the corresponding homogenous equation. But how do
we find that one particular solution? There are essentially two methods. One
is the method of variation of parameters, which works in a variety of cases.
This method is described in detail in the textbook and I encourage you to
read about it. We won’t have time to discuss this method in class; instead,
we focus on examples. Another method is guessing. The basic idea is that
given a non-homogenous equation with constant coefficients

y00 + py0 + qy = r(t) (2.1)

we look for a solution of a particular form, depending on what the function
r(t) is. This is similar to how we found solutions to homogenous equations
by looking at functions of the special form y(t) = elt. Let us see how this
method works in some special cases.

Polynomial right-hand side

Consider equation (2.1) with right-hand side being a polynomial, that is a
function of the form

r(t) = r0 + r1t + · · ·+ rntn.

In that case, we can look for a particular solution of (2.1) which is also a
polynomial. Typically we look for a solution which is a polynomial of the
same degree n, that is:

y(t) = a0 + a1t + . . . + antn.

Plugging this to (2.1) we get a bunch of linear equations for the coefficients
a0, . . . , an, which we can solve.

Example 3. Let us find a particular solution of

y00 + y0 + y = t2.

We look for a solution of the form

y(t) = a0 + a1t + a2t2.

We need to find the coefficients a0, a1, a2. We compute

y0(t) = a1 + 2a2t,
y00(t) = 2a2.

We compute the left-hand side of the differential equation and group all the
terms according to the powers of t:

y00 + y0 + y = 2a2 + (a1 + 2a2t) + (a0 + a1t + a2t2)

= (2a2 + a1 + a0)t0 + (2a2 + a1)t1 + a2t2.

In order for this expression to be equal to t, we need a0, a1, a2 to satisfy the
following equations

2a1 + a1 + a0 = 0,
2a2 + a1 = 0,
a2 = 1.
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We find that a2 = 1, a1 = �2, a0 = 0, so the function

y(t) = �2t + t2

is a particular solution to our non-homogenous equation.

Remark 4. In some cases it happens that the resulting system of linear
equations for the coefficients a0, . . . , an has no solutions. In that case, we look
for solution of the form

y(t) = t(a0 + a1t + . . . + antn + antn)

that is, a polynomial of degree one higher than the degree of r(t). (This is
similar to how we found solutions to linear homogenous equations in the
case of repeated root. For a detailed discussion, see Boyce–DiPrima section
3.5 and Braun section 2.5.)

Exponential right-hand side

Now consider the case

r(t) = (r0 + r1t + rntn)eat

for some constants a0, . . . , an and a. That is: the right-hand side is a polyno-
mial times the exponential function. This is similar to the polynomial case
(and, in fact, can be reduced to that one, see the textbook). In that case, we
look for a solution of the same form:

y(t) = (a0 + a1t + antn)eat.

As before, by plugging this to the differential equation we get a system of
equations for the coefficients a0, . . . , an, which we then solve.

Example 5. Let us find a particular solution of

y00 � 2y = tet.

We look for a solution of the form

y(t) = (a0 + a1t)et.

We compute, using the product rule and factoring out et,

y0(t) = (a0 + a1 + a1t)et,

y00(t) = (a0 + 2a1 + a1t)et.

Therefore, the left-hand side of the differential equation is

y00 � 2y = {(a0 + 2a1 + a1t)� 2(a0 + a1t)} et

= (�a0 + 2a1 � a1t)et.

We want this to be equal to tet. By comparing coefficients next to the powers
of t we see that we must have

� a0 + 2a1 = 0,
�a1 = 1.

Therefore, a0 = �2, a1 = �1 and the function

y(t) = �2et � tet

is a particular solution.

4



Remark 6. As in the polynomial case, sometimes it happens that the resulting
equations for the coefficients a0, . . . , an have no solutions. This happens, for
example, if the right-hand side is a polynomial times eat, where a is the root
of the characteristic polynomial

c(l) = l2 + pl + q.

In that case, we look for a particular solution of the form

y(t) = t(a0 + . . . + antn)eat

or
y(t) = t2(a0 + . . . + antn)eat.

For a detailed discussion, see Boyce–DiPrima section 3.5 and Braun section
2.5. In general, you don’t have to memorize all these cases. What is important
that you know that if the right-hand side r(t) of the non-homogenous equa-
tion is of a special type, we can often find a particular solution by guessing
the general form of the function and then finding coefficients.

Trigonometric right-hand side

We can also consider the case

y00 + py0 + qy = (r0 + r1t + rntn) cos(at) (2.2)

or
y00 + py0 + qy = (r0 + r1t + rntn) sin(at). (2.3)

This case can be reduced to the exponential case by considering the complex
equation

y00 + py0 + qy = (r0 + r1t + rntn)eiat. (2.4)

Observe that by taking the real and imaginary part we get (2.2) and (2.3).
Therefore, as in the exponential case, we can look for a complex solution of
the form

y(t) = (a0 + a1t + antn)eiat.

First, we find a complex solution of (2.4) of the above form. Then its real and
imaginary part are solutions of (2.2) and (2.3) respectively.
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1 importance of second order equations

Second order equations model many natural phenomena. Newton’s law
F = ma is a second order differential equation: a is the acceleration which
is the second derivative of the position with respect to time. In many cases,
Newton’s law leads a linear second order differential equation. Even when
the equation is nonlinear it can be often approximated by a linear one.

An important difference between first and second order linear equation
is that for first order linear equations all solutions were either growing to
infinity or decaying, such as, for example, e

t and e
�t. Second order linear

equations admit also solutions which are periodic in time, such as sin t and
cos t. As we have seen, this is intimately related to complex numbers. We
will now discuss some examples of linear second order equations describing
a system that is vibrating (for example, a body on a spring, or an elastic
material, or an electric circuit).

2 free vibrations

The simplest model is the harmonic oscillator, or free vibration. If y(t) is the
deformation of the system at time t (for example, the displacement of a body
attached to a spring from the equilibrium position), and the force acting on
the system is proportional to this deformation and acting in the opposite
direction, then Newton’s law gives us

my
00 = �ky

where m is the mass of the system and k > 0 is some constant depending
on the system (for example, on the material comprising the spring). We can
write this equation in the form

my
00 + ky = 0.

To solve this equation, we look for roots of the characteristic polynomial

c(l) = ml2 + k.

The roots are complex: l1 = i
p

k/m and l2 = �i
p

k/m. Introduce the
constant

w0 =
p

k/m,

1



so that the roots are iw0 and �iw0. The complex solutions are e
iw0t and

e
�iw0t. We conclude that the general real solution is

y(t) = C1Im(eiw0t) + C2Im(eiw0t) = C1 cos(w0t) + C2 sin(w0t).

In order to see how this solution behaves and to draw its graph, we use the
following algebraic trick. Suppose that the solution is non-zero and write it
in the form

y(t) = C1 cos(w0t) + C2 sin(w0t) = A(Ĉ1 cos(w0t) + Ĉ2(w0t))

where
A =

q
C2

1 + C2
2, Ĉ1 = C1/A, C2 = C2/A.

We simply divided and multiply both terms by A. We did it so that the new
constants Ĉ1 and Ĉ2 satisfy the

Ĉ
2
1 + Ĉ

2
2 = 1.

This looks like the formula

sin q2 + cos q2 = 1.

Indeed for any numbers Ĉ1, Ĉ2 satisfying Ĉ
2
1 + Ĉ

2
2 = 1 there is an angle q

such that
sin q = Ĉ1 and cos q = Ĉ2.

You can check that the angle given by q = arctan(Ĉ1/Ĉ2) has this property.
Plugging this to the formula for y(t) we get

y(t) = A(sin q cos(w0t) + cos q sin(w0t)) = A sin(w0t + q),

where we used the formula for sine of the sum of two angles. Therefore, any
solution to the harmonic oscillator equation has the form

y(t) = A sin(w0t + q)

for some constants A and q. We can easily graph this function. From the
graph we see that A is the amplitude of the motion, that is the maximal value
of y(t); w0 is the frequency: it tells us how many oscillation happen within a
given period of time, and q is the phase shift, meaning that the graph of y(t)
is shifted with respect to the graph of sin(w0t) by q.

3 damped vibrations

We now consider a different model

my
00 + cy

0 + ky = 0

with m and k as before, and c > 0. Here the term cy
0 corresponds to damping,

that is resistance to the motion of the system which is proportional to the
velocity. For example, this could be the resistance of the surroundings of the
system. We will see that damping causes the system to eventually stop.

As before, to find solutions we look for roots of the characteristic polyno-
mial

c(l) = ml2 + cl + k.

There are three cases, depending on m, c, and k:
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1. Overdamped. If c
2 � 4km > 0 there are two distinct real roots l1, l2.

You can check from the formula that they are negative. The general
solution is

y(t) = C1e
l1t + C2e

l2t.

Since the roots are negative, we see that the solution decays exponen-
tially with time. Damping is so strong that the system doesn’t vibrate
at all.

2. Critically damped. If c
2 � 4km = 0, there is a single repeated root l1,

which again is negative. The general solution is

y(t) = C1e
l1t + C2te

l2t.

When t is small, the second term can cause y(t) to grow for some time
(depending on the values of C1 and C2). However, for large values of t

the exponential decay dominates and the system behaves similarly to
the previous case; the movement eventually decays.

3. Underdamped. If c2 � 4km < 0, there are two distinct complex roots
l1 and l2 = l1. Write them as l1 = a + bi. We can check from the
formula that a < 0. The general solution is

y(t) = C1e
at cos(bt) + C2e

at sin(bt).

Using the same algebraic trick as in the harmonic oscillator case, we
can write it simply as

y(t) = Ae
at sin(bt + q)

for some A and q. We see that the system vibrates. However, because
a < 0, the amplitude of the vibration decays exponentially with time.
Eventually, the vibration decays as in the previous two cases.

4 forced vibrations

We have seen that in the presence of damping, all vibrations eventually
disappears. We can sustain it by acting on the system with external force.
Such an external force adds another term to the equation

my
00 + cy

0 + ky = F(t)

where F(t) is the external force at time t. This is a second order linear
non-homogenous equation. Suppose that the external force is of the form

F(t) = F0 sin(wt),

that is it’s a simple sine vibration with frequency w.
Consider first the case when there is no damping, that is c = 0 and the

equation is
my

00 + ky = F0 sin(wt). (4.1)

The general solution is the sum of the general solution of the homogenous
equation my

00 + ky = 0 and any particular solution of the nonhomogenous
equation. To find a particular solution, we first find for a particular solution,
denote it by yc, of the complex equation

my
00 + ky = F0e

iwt.

3



If yc is a solution of this equation, then its imaginary part y = Im(yc) is a
solution to (4.1) because

Im(eiwt) = sin(wt).

We look for yc of the form
yc(t) = Be

iwt.

We have
y
0
c(t) = iwBe

iwt and y
00
c (t) = �w2

Be
iwt.

Therefore,
my

00
c + kyc = B(�mw2 + k)eiwt.

In order for this expression to be equal to F0e
iwt, we need

B =
F0

�mw2 + k
=

F0/m

w2
0 � w2 . (4.2)

Here w0 =
p

k/m is the frequency of the free vibrations of the system. This
expression makes sense only when w0 6= w. The complex solution is then

yc(t) = Be
iwt,

with B given by formula (4.2), and the imaginary part

y(t) = Imyc(t) = B cos(wt)

is a particular solution of (4.1). We see that if the frequency of the external
force w is different than the frequency of the system w0, then the general
solution of (4.1) is

y(t) = A sin(w0t + q) + B sin(wt).

Here the first term is the general solution of the harmonic oscillator equation
my

00 + ky = 0: A and q are any constants, and B is given by formula (4.2).
Therefore, if w0 6= w, the solution is simply a composition of two simple sine
vibrations with different frequencies. (You can plot the solution for different
values of w and w0 using a website such as Wolfram Alpha to see the graph.)

The more interesting case is w = w0, that is when the frequency of the
external force is the same as that of the system. In that case, there is no
particular solution of the complex equation of the form B cos(wt). As you
can see, (4.2) does not produce a solution in this case. In that case, we look
for a complex solution of the form

yc(t) = Bte
iwt.

Indeed, a somewhat tedious calculation shows that we can find such a
solution, with B given by an explicit formula depending on F0, m, w0, and w:

B = �i
F0

2mw0
.

In that case, the imaginary part is

y(t) = |B|t cos(w0t)

(we take the absolute value to get a real number since B is imaginary) and
the general solution is

y(t) = A sin(w0t + q) + |B|t sin(w0t).

4



The second term grows linearly in time! In particular, the amplitude of the
vibration increases to infinity. This is the phenomenon of resonance: when the
frequency of the external force is equal to the frequency of the system, the
resulting vibrations become larger and larger with time. This phenomenon
can have catastrophic results, as it happened in the case of the Tacoma
Narrows Bridge. You can read about this in section 2.6 of Braun’s textbook.

This phenomenon can be prevented by introducing some damping in the
system. The differential equation for vibration with external sinusoidal force
and damping is

my
00 + cy

0 + ky = F0 sin(wt).

You can compute that when c > 0, that is we have some damping, the
equation has a particular solution of the form

B sin(wt � d)

for some constants B and d. Therefore, the general solution is the sum of the
general solution to the homogenous equation my

00 + cy
0 + ky = 0, discussed

in the previous system, and the above particular solution. We see that the
solution is always a bounded vibration, regardless of w. You can read the
derivation in Boyce–DiPrima section 3.8 and Braun section 2.6.
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Lecture 15: Higher order linear equations

aleksander doan

March 11 2021

references

Boyce–DiPrima sections 4.1, 4.2; Braun sections 2.15.

1 higher order equations as systems

A general differential equation of order n has the form

y(n) = f (t, y, y0, y00, . . . , y(n�1))

for a function of n variables f . Recall that in Lecture 9 we reinterpreted a
second order equation as a system of two first order equations. In the same
way, a differential equation of order n is equivalent to a system of n first
order equations. If y is a solution, we can define n functions

x1(t) = y(t), x2(t) = y0(t), x3(t) = y00(t), xn(t) = y(n�1)(t).

We compute that the derivatives of x1, . . . , xn satisfy
8
>>>><

>>>>:

x01(t) = y0(t) = x2(t),
x02(t) = y00(t) = x3(t),
. . .
x0n(t) = y(n) = f (t, y, y0, . . . , y(n�1)) = f (t, x1, . . . , xn�1).

We see that the collection of functions x1, . . . , xn solves the system of first
order equations 8

>>>><

>>>>:

x01 = x2,
x02 = x3,
. . .
x0n = f (t, x1, . . . , xn�1).

2 existence and uniqueness

This is pretty much the same as for the second order equations. The only
difference is that now we have to specify the initial value of the function and
its n � 1 derivatives.
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Theorem 1. Let f be a function of n variables such that f and its partial derivatives
are continuous around the point (t0, y0, y1, . . . , yn�1). The initial value problem

8
>>>>>><

>>>>>>:

y(n) = f (t, y, y0, y00, . . . , y(n�1))

y(t0) = y0,
y0(t0) = y1,
. . . ,
y(n�1)(t0) = yn�1

has a unique solution y = y(t) defined for t from the interval (t0 � e, t0 + e) for
some e > 0.

3 linear equations

A linear differential equation of order n has the form

y(n) + pn�1(t)y(n�1) + . . . + p1(t)y0 + p0(t)y = r(t),

where p1, . . . , pn�1 and r are given functions. We say that such an equation
is homogenous if r(t) = 0. Otherwise we say it is nonhomogenous. We say
that it has constant coefficients if all functions p1, . . . , pn�1 are constant (if the
equation is nonhomogenous we don’t require r to be constant).

As for second order equations, we have the following.

Theorem 2. If y1, . . . , yk are solutions of a homogenous linear equation

y(n) + pn�1(t)y(n�1) + . . . + p1(t)y0 + p0(t)y = 0.

Then any linear combination

y(t) = C1y1(t) + . . . + Ckyk(t)

is also a solution.

Theorem 3. Let x be a solution of a nonhomogenous linear equation

y(n) + pn�1(t)y(n�1) + . . . + p1(t)y0 + p0(t)y = r(t).

Any other solution of this equation is of the form

y(t) = x(t) + z(t)

where z is a solution of the corresponding homogenous equation

y(n) + pn�1(t)y(n�1) + . . . + p1(t)y0 + p0(t)y = 0.

This can be summarized by saying that the general solution of a nonho-
mogenous equation is the sum of a particular solution of the nonhomogenous
equation and the general solution of the corresponding homogenous equa-
tions. This is exactly the same as for second order linear equations.

From now on, we focus on homogenous equations. For second order
equations, we wanted to find two linearly independent solutions and then
the general solution was their linear combination. Similarly, for linear ho-
mogenous equations of order n, we want to find n linearly independent
solutions y1, . . . , yn. By linearly independent I mean that there is no linear
combination

C1y1(t) + . . . + Cnyn(t)
which is zero for all t, except for the trivial combination C1 = . . . = Cn = 0.
Once we find n linearly independent solutions, the general theory tells us
that any other solution is their linear combination. (We will prove this when
we talk about linear systems of first order equations.)
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4 homogenous equations with constant coefficients

How do we find n linearly independent solutions? This is, in general, a
difficult task. However, we can solve this problem for homogenous equations
with constant coefficients, that is equations of the form

y(n) + pn�1y(n�1) + . . . + p1y0 + p0y = 0, (4.1)

where p0, . . . , pn�1 are constant. As for second order equations, we will look
for solutions of the form

y(t) = elt

for some constant l. It is convenient to introduce the following notation.
Given a function y, define a function L[y] by

L[y] = y(n) + pn�1y(n�1) + . . . + p1y0 + p0y

Therefore, solutions of (4.1) are exactly those functions y for which L[y] = 0.
Now we can compute L[y] for y(t) = elt. We find, after using the chain rule,
that

L[elt] = c(l)elt,

where
c(l) = ln + pn�1ln�1 + pn�2ln�2 . . . + p1l + p0

is the characteristic polynomial of the equation. Therefore, the function y(t) =
elt is a solution if and only if l is a root of the characteristic polynomial.
Remember that we look for n different solutions, so it would be nice to have
n roots. This is, indeed, the case, except we have to allow complex roots
and also we need to count roots with multiplicity. This is the content of the
Fundamental Theorem of Algebra.

Theorem 4 (Fundamental Theorem of Algebra). Any polynomial

c(l) = ln + pn�1ln�1 + pn�2ln�2 . . . + p1l + p0

of degree n has n complex roots, counted with multiplicity. That is, there are complex
numbers l1, . . . , ln such that

c(l) = (l � l1)(l � l2) · · · (l � ln).

Note that in the above decomposition some of the roots might be equal
to each other. So another way would be to say that there are k distinct
complex numbers l1, . . . , lk for some k  n, and positive integers m1, . . . , mk
(multiplicities of the roots) such that

c(l) = (l � l1)
m1(l � l2)

m2 · · · (l � lk)
mk

and
m1 + m2 + . . . + mk = n.

Now we have an algorithm for finding the general solution of a homoge-
nous linear equation with constant coefficients. First, we look for roots of the
characteristic polynomial l1, . . . , ln. If they are all different and real, we get
n different real solutions el1t, . . . , elnt and the general solution is

y(t) = C1el1t + . . . + Cnelnt.
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If some of the roots are complex, they come in conjugate pairs l0, l̄0. Then
the function el0t is a complex solution and to get two real solutions, we take
its real and imaginary part:

Re(el0t), Im(el0t).

We repeat this process for every pair of conjugate complex roots to get two
real solutions for every such pair. Finally, if a root l0 is repeated with
multiplicity m, that is the factor (l � l0)m appears in the decomposition of
c, then, similarly to what we did for second order equations, we can produce
m solutions of the form:

el0t, tel0t, t2el0t, . . . , tmel0t.

We repeat this process for every eigenvalue so that in total we produce n
different solutions. The general solution is their linear combination.

Remark 5. For polynomials of degree two, three, and four there are explicit
formulae for the roots, in terms of the coefficients p0, . . . , pn�1. However, for
a general polynomial of degree higher than four there are not such formulae.
Interestingly, it’s not only that we don’t know a formula. In fact, the French
mathematician Evariste Galois proved in 1832, that there cannot exist such a
formula. This is a fascinating part of mathematics and if you want to learn
more about it, you can take a class on abstract algebra and Galois theory.

Example 6. Consider the third order equation

y(3) � 3y00 + 2y0 = 0.

The characteristic polynomial

c(l) = l3 � l2 + 2l

has roots l = 0, 1, 2. The general solution is

y(t) = C1 + C2et + C3e2t.

Example 7. For the following fourth order equation

y(4) + y = 0

the characteristic polynomial is

c(l) = l4 + 1.

How to find all l such that l4 = �1? It follows from this equation that
|l| = 1. Here |l| is the norm of the complex number, that is, if l = a + bi,
then |l| =

p
a2 + b2. Any complex number with |l| = 1 is of the form

l = eiq for some real number q. To find q, we use the equation

e4iq = l4 = �1 = epi.

Therefore, q = p/4 is a solution. But since eiq is 2p-periodic, so is

q = p/4 + 2kp

for any integer k. Taking k = 1, 2, 3, we get q = 3p/4, 5p/4, 7p/4. Taking
larger k won’t give us new roots because, for example ei9p/4 = eip/4 by
periodicity. So we get roots

eip/4, ei3p/4, ei5p/4, ei7p/4.
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Observe that the first and fourth one are conjugate to each other, and so are
the second and the third one. So to get four linearly independent solutions
we take the functions

Re(eipt/4), Im(eipt/4), Re(ei3pt/4), Im(ei3pt/4).

You can write them in terms of trigonometric functions using Euler’s formula.
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Lecture 16: Systems of first order differential equations

aleksander doan

March 16 2021

references

Boyce–DiPrima sections 7.1, 7.2, 7.4; Braun section 3.1.

1 systems of differential equations

So far we have studied differential equations for one unknown function y(t).
In the remaining part of the course, we will study systems of first order
differential equations for a collection of unknown functions y1(t), . . . , yn(t).
The general form of such a system is

8
>>>><

>>>>:

y01 = f1(t, y1, . . . , yn),
y02 = f2(t, y1, . . . , yn),
. . .
y0n = fn(t, y1, . . . , yn)

where f1, . . . , fn are known functions of n variables. Observe, that like for
algebraic equations, if we have n unknowns we also need to have n equations.

Such systems are ubiquitous in science. For example, in physics Newton’s
law F = ma can be applied to systems of many bodies. For each body we
will have one equation, relating its acceleration (i.e. the second derivative of
the position function) to the total force acting on the body. This total force,
in general, will depend on the positions, velocities, etc. of all bodies since
they can all interact (for example, through electromagnetic or gravitational
interactions). An interesting example is our Solar system: all planets and
the Sun attract each other so the trajectory of each body in the Solar system
affected by the positions of the other bodies. This leads to a complicated
system of differential equations.

At the beginning of the course, we discussed various models of population
growth. However, in reality populations of different species interact with each
other. For example, you can consider models for population growth of two
different species: predator and prey. The growth of the predator population
will depend on the availability of food, so on the prey population. Similarly,
the growth of the prey population will depend on the predator population,
since predators hunt prey. This leads to a system of two differential equations
for two functions, known as the Lotka–Volterra system.

Another example are epidemics models which we will discuss towards
the end of the class. In such models you are interested in how the percentage
of infected individuals in the population, denoted by I(t), changes in time.
But this number depends also on the percentage of susceptible individuals

1



S(t), since if there are more susceptible individuals, the number of infected
individuals will grow faster. You can also introduce the percentage of
recovered individuals R(t). Together, these numbers give us the entire
population S + I + R = 1. The SIR model of epidemics describes how
these quantities vary in time by a system of three differential equations for
functions I, S, and R.

In essence, any time your model contains a number of quantities which
affect each other, you are likely to use systems of differential equations rather
than a single differential equation.

Finally, as we have already learned, every order n differential equation
is equivalent to a system of n first order differential equations. A general
differential equation of order n has the form

y(n) = f (t, y, y0, y00, . . . , y(n�1))

for a function of n variables f . If y is a solution, we can define n functions

x1(t) = y(t), x2(t) = y0(t), x3(t) = y00(t), xn(t) = y(n�1)(t).

We compute that the derivatives of x1, . . . , xn satisfy
8
>>>><

>>>>:

x01(t) = y0(t) = x2(t),
x02(t) = y00(t) = x3(t),
. . .
x0n(t) = y(n) = f (t, y, y0, . . . , y(n�1)) = f (t, x1, . . . , xn�1).

We see that the collection of functions x1, . . . , xn solves the system of first
order equations 8

>>>><

>>>>:

x01 = x2,
x02 = x3,
. . .
x0n = f (t, x1, . . . , xn�1).

In some situations it is convenient to study the order n equation, and in some
the system of n first order equations.

2 existence and uniqueness

There is an existence and uniqueness theorem for systems of differential
equations, which is similar to the theorems we already discussed. Note that
in order for the initial value problem to have a unique solution, we need to
specify n initial conditions, where n is the number of unknown functions
(and also the number of equations).

Theorem 1. Consider the system of first order differential equations
8
>>>><

>>>>:

y01 = f1(t, y1, . . . , yn),
y02 = f2(t, y1, . . . , yn),
. . .
y0n = fn(t, y1, . . . , yn)
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with the initial value problem
8
>>>><

>>>>:

y1(t0) = a1,
y2(t0) = a2,
. . .
yn(t0) = an.

for given t0, a1, . . . , an. If the functions f1, . . . , fn and all their partial derivatives
with respect to y1, . . . , yn are continuous around the point (t0, a1, . . . , an), then
the initial value problem has a solution y1(t), . . . , yn(t) defined in an interval
(t0 � e, t0 + e) for some e > 0. Moreover, this solution is unique in that interval.

3 linear systems

General systems of differential equations are hard to solve. However, many
models are described (or approximated) by linear systems. A linear system
of differential equations has the form

8
>>>><

>>>>:

y01 = a11(t)y1 + a12(t)y2 + . . . + a1n(t)yn + r1(t),
y02 = a21(t)y2 + a22(t)y2 + . . . + a2n(t)yn + r2(t),
. . .
y0n = an1(t)y1 + an2(t)y2 + . . . + ann(t)yn + rn(t),

for given functions aij(t), ri(t). Here the indices i and j can be any numbers
from 1 to n. The system is called homogenous if

r1(t) = . . . = rn(t) = 0.

Otherwise we say that the system is non-homogenous. The following is a direct
analog of what we proved for second order linear equations.

Theorem 2.

1. If functions (y1(t), . . . , yn(t)) and (x1(t), . . . , xn(t)) solve a homogenous
linear system of differential equations, then so do (y1(t) + x1(t), . . . , yn(t) +
xn(t)) and (cy1(t), . . . , cyn(t)) for any constant c.

2. Every solution of a non-homogenous linear system of differential equation
is the sum of any particular solution to that equation and a solution of the
corresponding homogenous linear system.

In the next few lectures we will discuss a general method of finding solu-
tions to homogenous linear systems of differential equations with constant
coefficients 8

>>>><

>>>>:

y01 = a11y1 + a12y2 + . . . + a1nyn,
y02 = a21y2 + a22y2 + . . . + a2nyn,
. . .
y0n = an1y1 + an2y2 + . . . + annyn,

Here aij are constant. Recall that to solve second order equations we were
looking for solutions of the form y(t) = elt. This led us to the characteristic
equation for l. Similarly, for systems we can look for solutions of the form

y1(t) = x1elt, y2(t) = x2elt, . . . , yn = xnelt
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for some constants x1, . . . , xn and l. We are left with the task of finding
appropriate constants for which the above functions are indeed solutions.
Plugging the formula for yi to the equations and dividing by elt, we see that
to get solutions we need the constants xi, l to satisfy the following

8
>>>><

>>>>:

lx1 = a11x1 + a12x2 + . . . + a1nxn,
lx2 = a21x2 + a22x2 + . . . + a2nxn,
. . .
lxn = an1x1 + an2x2 + . . . + annxn.

This is a system of algebraic equations, namely equations for numbers rather
than functions. So we are naturally led to the problem: for what l does
the above system of linear algebraic equations have a solution, which is a
collection of numbers (x1, . . . , xn). And how do we find this solution? Such
problems are studied by the field of mathematics called linear algebra. In the
next two lectures we will discuss basic concepts and results of linear algebra.
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Lecture 17: Review of linear algebra

aleksander doan
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references

Boyce–DiPrima sections 7.2, 7.3; Braun sections 3.2, 3.3, 3.5, 3.6, 3.7.

1 vectors and matrices

The starting point of linear algebra is this question: how do we solve a
system of linear algebraic equations

8
>>>><

>>>>:

a11x1 + a12x2 + . . . + a1nxn = b1,
a21x1 + a22x2 + . . . + a2nxn = b2,
. . .
an1x1 + an2x2 + . . . + annxn = bn.

(1.1)

Here aij and bi are given and a solution consists of a collection of n numbers
(x1, . . . , xn). Because there are so many variables and equations, this looks
like a complicated problem in general. The first step is to introduce notation
which will simplify it and helps us deal with such all these expressions.

To do that, we introduce the notion of a vector. An n–dimensional vector
is simply a collection of n numbers (x1, . . . , xn). In order to distinguish
vectors from numbers, we will denote them by bold font: x = (x1, . . . , xn). It
is customary to put all these numbers in a column and to write

x =

2

664

x1
x2
. . .
xn

3

775 .

Note that a vector can be interpreted as a point in the n-dimensional space.
For example, for n = 2, a vector has two coordinates, so it defines a point
on the plane. For n = 3 we get three numbers, so they define a point in
the three-dimensional space which has these numbers as coordinates. For
general n, you can think of a vector as a collection of n coordinates which
gives us a point in the n-dimensional space. The set of all n-dimensional
vector is denoted by Rn. To say that x is an element of this set, we write
x 2 Rn (read: ’x is an element of Rn’).

1



A vector can be multiplied by a number (which in linear algebra is also
called a scalar). Given l 2 R and x 2 Rn as above, define

lx =

2

664

lx1
lx2
. . .

lxn

3

775 .

Similarly, given another vector

y =

2

664

y1
y2
. . .
yn

3

775

we define the sum of vectors x and y by

x + y =

2

664

x1 + y1
x2 + y2

. . .
xn + yn

3

775

Example 1. If l = 2 and x, y 2 R3 are given by

x =

2

4
1
0
�3

3

5 and y =

2

4
0
2
1

3

5

then

lx =

2

4
2
0
�6

3

5 and ly =

2

4
0
4
2

3

5 ,

and

x + y =

2

4
1
2
�2

3

5 .

Let us return to the problem of rewriting equations (1.1) in a more
compact form. The given collection of numbers bi also defines a vector in Rn

b =

2

664

b1
b2
. . .
bn

3

775 .

How do we interpret the collection of n2 numbers aij? Instead of putting
them in one column, we put them in a matrix. In general, a matrix with n
columns and m rows (or an n ⇥ m matrix) is a table of the form

A =

2

664

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

3

775

where aij are all numbers, for i = 1, 2, . . . , m and j = 1, 2, . . . n. Matrices can
be added to each other (term by term) and multiplied by scalars in the same
way as vectors. Moreover, gven an n vector x and an n ⇥ m matrix A as

2



above, we define an m vector Ax by multiplying each of the rows of A by
the column x:

Ax =

2

4
a11x1 + a12x2 + . . . + a1nxn

. . .
am1x1 + am2x2 + . . . + amnxn

3

5 .

So an n vector can be multiplied by an n ⇥ m matrix and the result is an m
vector. This multiplication has some nice properties. For two matrices A and
B and for two vectors x and y of the right dimension, we have

(A + B)x = Ax + Bx and A(x + y) = Ax + Ay.

To summarize: we defined a notion of an n vector and an n ⇥ m matrix.
Vectors of the same dimension can be added to each other and multiplied
by scalars. Matrices of the same dimension can be added to each other and
multiplied by scalar. An n vector can be multiplied by an n ⇥ m matrix and
the result is an m vector.

Example 2. Given a 2 ⇥ 3 matrix

A =

2

4
1 0
3 1
0 �2

3

5

and a vector x 2 R2

x =


�1
5

�

the product Ax 2 R3 is

Ax =

2

4
1 0
3 1
0 �2

3

5

�1
5

�
=

2

4
1 · (�1) + 0 · 5
3 · (�1) + 1 · 5

0 · (�1) + (�2) · 5

3

5 =

2

4
�1
2

�10

3

5

Returning to linear equations (1.1), we see that our collection of coeffi-
cients (ai j) defines an n ⇥ n matrix A and equation (1.1) can be written in
the matrix form as

Ax = b.

Here A is a given n ⇥ n matrix, b is a given n vector and x is an unknown
n vector. By introducing vectors and matrices we significantly simplified
(1.1). Now we have to learn how to actually solve it. Before we do so, it is
convenient to introduce some notions of linear algebra.

2 vector spaces

The fact that we can always add two vectors and get a vector, or multiply
a vector by a number, also called a scalar, and get a vector is the starting
point of linear algebra. Observe that the same was true for solutions of
linear differential equations (for example, second order equations that we
studied extensively). A sum of two solutions was also a solution. A solution
multiplied by a constant was also a solution.

This leads to the notion of a vector space. A vector space is a set V
consisting of some elements for which we have an operation of addition
+ and multiplication by scalars ·. That is, given elements x, y 2 V and a
number l we have elements x + y 2 V and l · x 2 V (we will often drop ·

3



from the notation and write simply lx). We require that these operations
satisfy the usual properties, for example addition is commutative

x + y = y + x

and associative
(x + y) + z = x + (y + z),

and similarly multiplication by scalars. We also require that V contains a
distinguished element 0 such that

x + 0 = x

and
x + (�1) · x = 0.

As with numbers, we will abbreviate this to x � x = 0. There are also other
conditions that the operations + and · have to satisfy – in essence, they
should behave exactly like operations + and · defined for Rn. You can find
the full list in section 3.2 of Braun’s textbook.

An important thing to keep in mind that V does not have to consist of
vectors in Rn. It can be a collection of arbitrary elements, and the operations
+ and · can be defined arbitrarily and don’t have to do anything with the
standard addition and multiplication. (Although in this course we will
mostly deal with operations + and · that are actually given by the standard
operations.)

To summarize, for a set V to be a vector space it has to have

1. an operation + which takes two elements x and y in V and produces a
new element x + y in V,

2. an operation · which takes a number l and an element x in V and
produces a new element l · x in V,

3. an element 0 in V,

such that all the usual properties of addition and multiplication by scalars
are satisfied.

Remark 3. Given a vector space V we will often refer to its elements as
vectors. From the context it will be usually clear whether we talk about usual
vectors in Rn or elements of some other vector space.

Example 4. V = Rn with the standard addition of vectors and multiplication
by numbers is a vector space. Similarly, if V is the set of all n ⇥ m matrices,
the operation of addition of matrices and multiplication by numbers make V
into a vector space.

Given a matrix A, the set of all x 2 Rn satisfying the equation Ax = 0
is also a vector spaces. Indeed, A0 = 0, and if Ax = 0 and Ay = 0, then
A(x + y) = Ax + Ay = 0. Moreover, Alx = lAx = l · 0 = 0.

Example 5. If V is the set of all continuous functions on an interval [a, b], we
can define the sum of two functions f + g and multiplication of a function
by a number l f in the obvious way. Observe that if f and g are continuous,
then so is f + g so by taking sums we don’t leave the class of continuous
functions. Similarly, l f is continuous. Finally, the constant function 0 is
continuous, so 0 is in V. We conclude that the set of all continuous functions
on an interval is a vector space. Similarly, the set of differentiable, twice
differentiable, etc. functions is a vector space.

4



Example 6. Let V be the set of solutions to a linear homogenous differential
equation

y00 + p(t)y0 + q(t)y = 0.

The constant function 0 is a solution. Moreover, a linear combination of two
solutions is also a solution. Therefore, V with the operations of adding two
functions and multiplying them by scalars is a vector space.

It is also instructive to see some examples of sets which do not form a
vector space in a natural way.

Example 7. Let V be the set of vectors x = (x1, . . . , xn) 2 Rn whose first
coordinate satisfies x1 � 0. We can ask if this set, with the standard opera-
tions of addition and multiplication by scalars, forms a vector space. It does
contain the vector 0 = (0, . . . , 0). Moreover, if x and y are in V, then so is
x + y because the first coordinate of x + y is x1 + y1 � 0. However, if x is in
V and satisfies x1 > 0, then lx is not in V for any l < 0. So a multiplication
of an element of V by a negative scalar does produce an element in V and V
is not a vector space.

Example 8. Let V be the set of all continuous functions on the interval [a, b]
such that f (a) = 1. The standard operations of addition and multiplication
by scalars do not make V into a vector space. First of all, the zero function
is not in V. Moreover, the sum of two functions in V is not in V because,
if f and g are two functions in V, so that f (a) = 1 and g(b) = 1, then
( f + g)(a) = 2. Similarly V is not preserved by multiplication by scalars.

Example 9. Let V be the set of solutions of the non-linear differential equa-
tion

y0 = y2.

Is V a vector space, with the standard operations of addition and multipli-
cation by scalars? The function y(t) = 0 is a solution. However, since the
equation is nonlinear, the sum of two solutions or a solution multiplied by a
constant are no longer solutions, in general. For example, by separation of
variables we find that the function y(t) = �t�1 is a solution, but it is easy to
check that ly(t) is not a solution for any l 6= 0.

Similarly, the set of solutions of a linear nonhomogenous equation such
as

y00 + p(t)y0 + q(t)y = r(t)

with r(t) 6= 0, is not a vector space in a natural way.

3 linear independence

Let V be a vector space. We say that a collection of vectors v1, . . . , vn in V is
linearly dependent if there are numbers l1, . . . , ln, not all equal to zero, such
that

l1v1 + l2v2 + . . . + lnvn = 0. (3.1)

(Of course, for any collection of vectors this sum is zero if we take l1 =
. . . = ln = 0, that’s why in the definition of linear dependence we add the
condition that not all li are zero.) A collection of vectors is linearly dependent
if and only if one of them can be expressed as a linear combination of the
others. For example, if l1 6= 0, then we can divide the equation by l1 and
express v1 as the linear combination of v2, . . . , vn:

v1 = �l2
l1

v2 � . . . � ln
l1

vn.
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If there exist no numbers l1, . . . , ln other than l1 = . . . = ln such that the
sum (3.1) is zero, we say that the collection of vectors v1, . . . , vn is linearly
independent.

A basis of a vector space is a linearly independent collection of vectors
v1, . . . , vn with the property that any other vector in V is a linear combination
of v1, . . . , vn, that is for every v 2 V there are numbers l1, . . . , ln such that

v = l1v1 + . . . + lnvn.

Observe that such numbers l1, . . . , ln are unique. Indeed, if we can write v
as a linear combination of v1, . . . , vn with any other coefficients

v = µ1v1 + . . . + µnvn

then
0 = v � v = (l1 � µ1)v1 + . . . + (ln � µn)vn

which, since v1, . . . , vn are linearly independent, implies that

l1 = µ1, . . . , ln = µn.

It can be shown that any vector space has a basis and, moreover, that any
two bases consist of the same numbers of vectors; in the notation above this
is the number n. The number of vectors in the basis is called the dimension
of a vector space. Since any vector of V is a linear combination of v1, . . . , vn
in a unique way, it follows that vectors of V correspond to collections of n
numbers, i.e. they can be identified with the usual vectors in Rn:

v = l1v1 + . . . + lnvn $

2

4
l1
. . .
ln

3

5 .

An important point, however, is that this identification between vectors in V
and vectors in Rn is not unique. It depends on the choice of basis, and there
are infinitely many such choices.

Example 10. The vectors

e1 =


1
0

�
and e2 =


0
1

�

are linearly independent and form a basis of R2. Indeed, any other vector in
R2 can be written in a unique way as a linear combination of e1 and e2:


x1
x2

�
= x1e1 + x2e2.

Therefore, R2 is a vector space of dimension two because it has a basis
consisting of two vectors. However, we could choose another basis of R2,
consisting, for example, of vectors


1
1

�
and e2 =


1
�1

�
.

Example 11. In general, for i = 1, 2, . . . , n, let ei be the vector whose i-th
coordinate is equal to 1 and all other coordinates are 0. Then the collection
of n vectors e1, . . . , en is a basis of Rn. Therefore, Rn is a vector space of
dimension n, as expected.
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Example 12. The space of solutions of the harmonic oscillator equation

y00 + y = 0

has a basis consisting of functions

y1(t) = cos t and y2(t) = sin t.

Therefore, the space of solution has dimension two. Of course, there are
other choices of bases, for example, the functions

y1(t) = cos t � sin t and y2(t) = 2 sin t

also form a basis of the space of solutions.
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Lectures 18 and 19: Review of linear algebra, part 2

aleksander doan
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1 linear transformations

Let V and W be vector spaces. A map L : V ! W (read: a map L from V to
W) is a way of associating to every vector v of V a vector L(v) in W. We say
that such L is a linear map if it satisfies the following conditions:

1. L(v + w) = L(v) + L(w) for all v, w 2 V, and

2. L(lv) = lL(v) for all v 2 V and l 2 R.

Observe that the third condition, for l = 0 implies that L(0) = 0, that is: the
zero vector in V is mapped to the zero vector in W.

Remark 1. Linear maps are also called linear operators or linear transformations.
We will use all of these names. If L is a linear transformation, it is customary
to write Lv instead of L(v).

Example 2. For every vector space V the identity map I : V ! V:

I(v) = v for all v 2 V

is obviously a linear map. More generally, for any l 2 R we can consider
the map lI given by

lI(v) = lv.

Example 3. Let V = W = R be the vector space of real numbers. The map

L(x) = 5x

is a linear map. The map
K(x) = x2

is not a linear map. Indeed, we have K(x + y) = (x + y)2 and K(x) + K(y) =
x2 + y2, so in general K(x + y) 6= K(x) + K(y).

Example 4. The map L : R2 ! R2 given by

L(x) =


x1 � x2
x1 + x2

�
for x =


x1
x2

�

is linear. Observe that this map can be written using matrix multiplication as

L(x) =


1 �1
1 1

�
x.
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Example 5 (Linear maps given by matrices). In general, an m ⇥ n (m rows, n
columns) matrix A gives rise to a linear map L : Rn ! Rm defined by

L(x) = Ax for x 2 Rn.

A vector x 2 Rn is a column of size n, so we can indeed multiply it by an
m ⇥ n matrix and a result is a column of size m, i.e. a vector in Rm. As we
said in the last lecture, for two vectors x, y 2 Rn we have

A(x + y) = Ax + Ay

and for any l 2 R we have

A(lx) = l(Ax)

so L is indeed a linear map.

Example 6 (Differentiation). Let V be the vector space of polynomials of
degree at most n, for some positive integer n. Define a map

L : V ! V

by

L( f ) =
d f
dx

for a polynomial f (x) of degree at most n. First, observe that this is indeed a
map from V to V, that is if f is a polynomial of degree at most n, then L( f )
is also a polynomial of degree at most n. Indeed, if

f (x) = a0 + a1x + a2x2 + . . . + anxn

then
L( f ) =

d f
dx

= a1 + 2a2x + . . . + nanxn�1

so L( f ) is a polynomial of degree at most n � 1; in particular, of degree
smaller than n, so L( f ) is also a vector in V. Let us verify that the map
L : V ! V is linear. For two polynomials f and g we have

L( f + g) =
d( f + g)

dx
=

d f
dx

+
dg
dx

= L( f ) + L(g).

For any constant l 2 R we have

L(l f ) =
d(l f )

dx
= l

d f
dx

= lL( f ),

so indeed L is a linear map.

Given three vector spaces U, V, and W and linear maps

L : U ! V, K : V ! W

we define their composition

KL : U ! W

by
KL(v) = K(L(v)) for v 2 U.

Observe that this formula makes sense: for v 2 U, L(v) is a vector in V and
therefore we can apply K to it. The result K(L(v)) is a vector in W, so in the
end KL defines a map from U to W. An important point to keep in mind
that in the composition KL you first apply L and then K. It is easy to check
that if both L and K are linear maps, then their composition KL is also a
linear map.
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Example 7. Let U = V = W = R and let

L(x) = 5x K(x) = 2x.

Then
KL(x) = K(L(x)) = K(5x) = 2 ⇥ 5x = 10x.

Example 8 (Position and momentum operators). Let V be the vector space
of functions f of variable x which have derivatives of any order. Define
L : V ! V by

L( f ) =
d f
dx

.

(Since we assume here that f has derivatives of any order, so does L( f ), and
so L( f ) is also an element of V.) As in Example 6, we verify easily that L is a
linear map. Define another map K : V ! V by

K( f ) = x f

Since the function x has derivatives of any order, so does x f if f does, so
indeed the function x f is an element of V. We easily verify that K is a linear
map. To see a concrete example, for f (x) = x2 � 1, we have

L( f ) = 2x, K( f ) = x(x2 � 1) = x3 � x.

Let us compute the composition KL. For a function f ,

KL( f ) = K(L( f )) = K(
d f
dx

) = x
d f
dx

.

Since both K and L are maps from V to V, we can define also the composition
LK, that is: first apply K and then L. Let us see that in this example KL and
LK are actually different linear maps. Using the product rule, we compute

LK( f ) = L(K( f )) = L(x f ) =
d

dx
(x f ) = f + x

d f
dx

.

So the difference between LK and KL (which is also called the commutator of
L and K) is nonzero:

LK( f )� KL( f ) = f .

We see that not only LK 6= KL but their difference is, in fact, the identity
map. In quantum mechanics, the linear maps K and L are known as the
position and momentum operators. The fact that LK 6= KL is a mathematical
description of Heisenberg’s uncertainty principle.

2 matrix representation

We have seen in Example 5 that matrices give rise to linear maps. In fact,
every linear map can be represented by a matrix. Let V and W be vector
spaces of dimension n and m and let L : V ! W be a linear map.

Suppose we have chosen bases v1, . . . vn of V and w1, . . . , wm of W. Every
vector in V is of the form

v = l1v1 + . . . + lnvn

for l1, . . . , ln 2 R. Let us compute L(v). Since L is a linear map:

L(v) = L(l1v1 + . . . + lnvn) = l1L(v1) + . . . + lnL(vn),
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so in order to compute L(v) for any vector v is suffices to know L(vi) for
every i. Since L(vi) is a vector in W and every vector in W is a linear
combination of the elements of the basis, there are numbers aij such that

L(v1) = a11w1 + a21w2 + . . . + am1wm,
L(v2) = a12w1 + a22w2 + . . . + am2wm,
. . .
L(vn) = a1nw1 + a2nw2 + . . . + amn.

Now we can write L(v) in the basis w1, . . . , wm as

L(v) =
n

Â
i=1

liL(vi) =
n

Â
i=1

n

Â
j=1

liajiwj.

This looks similar for the formula for multiplying vectors by matrices. Indeed,
introduce the m ⇥ n matrix

A =

2

664

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn.

3

775

that is: the i–th column contains the numbers appearing when we write L(vi)
in the basis w1, . . . , wm. Now a vector in V given by

v = l1v1 + . . . + lnvn

can be identified with a column of n numbers

v =

2

4
l1
. . .
ln

3

5 .

Similarly, a vector in W given by

w = µ1w1 + . . . + µmwm

can be identified with a column of m numbers. Under these identifications,
the linear map L is simply given by

L(v) = Av

where the right-hand side is the multiplication of a column of n numbers
by an m ⇥ n matrix. The result is a column of m numbers, which defines a
vector in W. This is exactly the situation from Example 5.

The summary of this discussion is: if we choose a basis of V, every vector
in V can be identified with a column of n numbers, i.e. a vector in Rn.
Similarly, if we choose a basis of W, every vector in W can be identified
with a vector in Rm. With respect to these identifications, every linear map
L : V ! W can be represented by an m ⇥ n matrix and to compute L(v) for
any v 2 V we simply perform multiplication of the column by the matrix. It
is important to keep in mind that the matrix representing the map L depends
on the choice of bases of V and W. Different choices of bases will yield
different matrices representing the same linear map.
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Example 9 (Matrix multiplication). Let A = (aij) be an m ⇥ n matrix and let
B = (bij) be an n ⇥ k matrix, so that A defines a linear map A : Rn ! Rm

and B defines a linear map B : Rk ! Rn as in Example 5. The matrix of the
composition AB : Rk ! Rn is given by the product matrix, that is an n ⇥ k
matrix AB = (cij) whose entry in the i-th row and j-th column is

cij = ai1b1j + ai2b2j + . . . + ainbnj.

For example, for

A =


1 2
3 4

�
, B =


2 0
1 2

�

we have

AB =


1 2
3 4

� 
2 0
1 2

�
=


1 ⇥ 2 + 2 ⇥ 1 1 ⇥ 0 + 2 ⇥ 2
3 ⇥ 2 + 4 ⇥ 1 3 ⇥ 0 + 4 ⇥ 2

�
=


4 4
10 8

�
.

Example 10 (Rotations). For an angle q, let Lq : R2 ! R2 be the counter-
clockwise rotation of the plane around the point (0, 0) by q. This is a linear
map. Let us compute its matrix representation in the standard basis

e1 =


1
0

�
, e2 =


0
1

�
.

Using elementary trigonometry, we compute that

Lqe1 = cos qe1 + sin qe2,
Lqe2 = � sin qe1 + cos qe2.

Therefore, the matrix of Lq is

Lq =


cos q � sin q
sin q cos q

�
.

It is geometrically clear that for two angles q and j, the composition of
the rotation by j with the rotation by q is the rotation by q + j, that is:
Lq Lj = Lq+j. As an exercise, let us verify that this is what we get by
multiplying the matrices of these linear maps:

Lq Lj =


cos q � sin q
sin q cos q

� 
cos j � sin j
sin j cos j

�

=


cos q sin j � sin q sin j � cos q sin j � sin q sin j
sin q cos j + cos q sin j � sin q sin j + cos q cos j

�

=


cos(q + j) � sin(q + j)
sin(q + j) cos(q + j)

�
= Lq+j.

Example 11 (Differentiation). Let V be the vector space of polynomials of
degree at most n and let L = d

dx be the differentiation map defined in
Example 6. Let us find the matrix of L in the basis of V given by the
polynomials

e0 = 1, e1 = x, e2 = x2, . . . , en = xn.
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We have

Le0 =
d

dx
(1) = 0,

Le1 =
d

dx
(x) = 1 = e0,

Le2 =
d

dx
(x2) = 2x = 2e1,

. . . ,

Len =
d

dx
(xn) = nxn�1 = nen�1.

The matrix of L is

L =

2

6666664

0 1 0 0 . . . 0
0 0 2 0 . . . 0
0 0 0 3 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 0 n
0 0 0 0 0 0

3

7777775
.

3 invertible transformations ; determinant

Let V be a vector space and let L : V ! V be a linear map. We say that L is
invertible if there is a linear map K : V ! V such that

LK = KL = I

where I denotes the identity map: Iv = v for every v 2 V. The map K is
called the inverse of L and denoted

K = L�1.

Remark 12. More generally, we could say that a linear map between two
vector spaces L : V ! W is invertible if there is a linear map K : W ! V such
that the above relation holds. In this lecture, we will mostly consider linear
maps between the same vector space.

Example 13. The rotation Lq : R2 ! R2 defined in Example 10 is invertible.
Indeed, we have

Lq L�q = L�q Lq = Lq�q = L0 = I,

since the rotation by angle 0 is the identity map. Therefore, L�q is the inverse
of Lq . Geometrically, this is clear: L�q is the clockwise rotation by angle q,
which, of course, is the inverse of the counterclockwise rotation Lq by the
same angle.

The notion of invertibility is related to the problem of solving linear
equations. Suppose L : V ! V is a linear map and w 2 V. Suppose we want
to find v 2 V satisfying the equation

Lv = w. (3.1)
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For example, if V = Rn, then L is represented by an n ⇥ n matrix L = (aij)
and the equation Lv = w is simply a system of n equations for n unknown
numbers v1, . . . , vn

a11v1 + . . . + a1nvn = w1,
a21v1 + . . . + a2nvn = w2,
. . .
an1v1 + . . . + annvn = wn.

If L is invertible, we can solve (3.1) by applying L�1 to both sides:

v = L�1Lv = L�1w.

So v = L�1w is the unique solution. In particular, for w = 0 we see that if L
is invertible, then the equation

Lv = 0

has a unique solution v = L�10 = 0.

Example 14. As we have seen, the rotation operator Lq : R2 ! R2 is invert-
ible. Therefore, the equation for x = (x1, x2) 2 R2

Lqx = 0

or equivalently, (
cos qx1 � sin qx2 = 0,
sin qx1 + cos qx2 = 0.

has only one solution x = (0, 0).

Example 15. Let V be the vector space of polynomials of degree at most n
and let L = d

dx be the differentiation map defined in Example 6. The constant
polynomial 1 is a nonzero element of V. It satisfies the equation

L(1) =
d

dx
(1) = 0.

Therefore, we have found a nonzero solution of the equation Lv = 0. It
follows that L is not invertible.

Given a linear map L : V ! V, how do we determine if it is invertible?
After choosing a basis of V, we can write L as an n ⇥ n matrix where n is
the dimension of V, so it is enough to consider this problem for matrices, i.e.
linear maps from Rn to Rn. Let us begin with the case n = 2.

Proposition 16. A 2 ⇥ 2 matrix

A =


a b
c d

�

is invertible only if its determinant

det A = ab � cd

is non-zero. In that case, the inverse of A is given by

A�1 =
1

det A


d �b
�c a

�

7



Proof. One way to find the inverse, is to solve the equation

Ax = y.

Here y 2 R2 is given, and we want to solve for x 2 R2. Once we find the
solution x, it will be given by

x = A�1y,

so the formula for the solution will give us the coefficients of A�1. Explicitly,
Ax = y is the system (

ax1 + bx2 = y1

cx1 + dx2 = y2.

In Homework 4 we proved that this system has a unique solution if and only
if ab � cd 6= 0 and in that case, the solution is given by

x1 =
1

ab � cd
(dy1 � by2)

x2 =
1

ab � cd
(�cy1 + ay2),

which in the matrix form can be written as

x =
1

det A


d �b
�c a

�
y.

This shows that A�1 is the matrix on the right-hand side.

The determinant can be defined for an n ⇥ n matrix for any n using the
following inductive procedure. We have already defined the determinant
of a 2 ⇥ 2 matrix, so let us define it for 3 ⇥ 3 matrices. Let A = (ai j) be a
3 ⇥ 3 matrix. Here aij is the entry in the i-th row and j-th column. Define
Mij to be the 2 ⇥ 2 matrix obtained by removing from A the i-th row and the
j-th column. Now we can define det A by "expanding the determinant with
respect to the first row" by

det A = a11M11 � a12M12 + a13M13

or, equivalently, by expanding it with respect to the first column

det A = a12M11 � a21M21 + a31M31.

In fact, you can define the determinant by expanding it with respect to any
column or row, as long as you keep track of the signs. The result will not
depend on which column or row you chose. (For details see section 3.5 of
Braun’s textbook; the Wikipedia article on determinants is also well-written
and has many examples.)

Example 17. Let us compute

det

2

4
1 2 0
0 3 0
2 0 1

3

5 = 1 det


3 0
0 1

�
� 2 det


0 0
2 1

�
+ 0 det


0 3
2 0

�

= 1 ⇥ 3 � 2 ⇥ 0 + 0 ⇥ (�6) = 3.

Alternatively, we could expand with respect to the first column:

det

2

4
1 2 0
0 3 0
2 0 1

3

5 = 1 det


3 0
0 1

�
� 0 det


2 0
0 1

�
+ 2 det


2 0
3 0

�

= 1 ⇥ 3 � 0 ⇥ 2 + 2 ⇥ 0 = 3.

8



In the same way we can define the determinant of a 4 ⇥ 4 matrix as a
sum of determinant of 3 ⇥ 3 matrices, and so on. This gives us a definition
of the determinant of an n ⇥ n matrix for any n.

Theorem 18. A matrix A is invertible if and only if det A 6= 0. In particular, if
det A 6= 0, then for every y 2 Rn the equation

Ax = y

has a unique solution x = A�1y.

Computing determinants directly from the definition can be tedious; it is
helpful to use various properties of determinants. These properties, together
with examples of how to use them, are listed in section 3.5 of Braun’s textbook
(available on Canvas).

4 eigenvalues and eigenvectors

Let L : V ! V be a linear map. A nonzero vector v 2 V is an eigenvector of L
with eigenvalue l 2 R if

Lv = lv.

Observe that if v is an eigenvector with eigenvalue l, then so is the vector rv
for any nonzero real number r.

Example 19. Let A : Rn ! Rn be the linear map given by the matrix

A =

2

664

l1
l2

. . .
ln

3

775

(All other entries are 0. Such a matrix is called diagonal.) Let e1, . . . , en be the
standard basis of Rn, i.e. ei is the column whose i-th entry is 1 and all other
entries are 0. We see that

Aei = liei,

that is: ei is an eigenvector of A with eigenvalue li.

Example 20. The rotation Lq : R2 ! R2 has no eigenvectors unless q is a
multiple of 2p (in which case Lq = I is the identity map and every vector is
an eigenvector with eigenvalue 1).

We will see that finding eigenvalues and eigenvectors of a linear map is
crucial for solving linear systems of differential equations. How do we do
this? Observe that if v is an eigenvector with eigenvalue l, then

(L � lI)v = Lv � lv = 0.

Since v is assumed to be nonzero, that means that the linear map

L � lI

is not invertible. (Recall: if a linear map K is invertible, then the equation
Kv = 0 has only one solution v = 0.) Therefore,

det(L � lI) = 0.

9



The expression on the left-hand side is called the characteristic polynomial of
the linear map L and denoted

c(l) = det(L � lI).

This is a function of l. It can be shown that, in fact, c is a polynomial of
degree n, where n is the dimension of the vector space V, that is:

c(l) = a0 + a1l + a2l2 + . . . + anln

for some a0, . . . , an 2 R.

Theorem 21. A real number l is an eigenvalue of a linear map L if and only if it is
a root of the characteristic polynomial:

c(l) = 0.

This gives us a way of finding eigenvalues of a linear map. Suppose
we have found such an eigenvalue l. To find an eigenvector v with this
eigenvalue, we need to solve the linear equation

(L � lI)v = 0.

Example 22. Let A : R2 ! R2 be a linear map given by the matrix

A =


�2 1
�4 3

�
.

Let us find its eigenvalues and eigenvectors. The characteristic polynomial is

c(l) = det(A�lI) = det

�2 � l 1
�4 3 � l

�
= (�2�l)(3�l)+ 4 = l2 �l� 2.

We find that the roots are

l1 = 2, l2 = �1.

To find an eigenvector v1 with eigenvalue l1, we need to solve

(A � 2I)v1 = 0.

Write v1 as a column with entries (a, b), so that:

(A � 2I)v1 =


�4 1
�4 1

� 
a
b

�
.

Therefore, a and b satisfy
�4a + b = 0,

so b = 4a and any eigenvector with eigenvalue 2 is of the form

v1 = a


1
4

�
for a 2 R.

Similarly we find that any eigenvector v2 with eigenvalue �1 is of the form

v2 = a


1
1

�
for a 2 R.

Theorem 23. Let L : V ! V be a linear map. If v1, . . . , vn are eigenvectors of
L with distinct eigenvalues l1, . . . , ln, then the collection v1, . . . , vn is linearly
independent. If, moreover, this collection is a basis of V, then with respect to that
basis L is given by the diagonal matrix

L =

2

664

l1
l2

. . .
ln

3

775 .
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Lecture 20: Systems of first order linear equations

aleksander doan

1 April 2021

references

Boyce–DiPrima sections 7.4–7.8; Braun sections 3.1, 3.4, 3.8, 3.9, 3.10.

1 linear systems

In the next two lectures we will consider systems of first order linear equa-
tions 8

>>>><

>>>>:

y01 = a11(t)y1 + . . . + a1n(t)yn + b1(t),
y02 = a21(t)y2 + . . . + a2n(t)yn + b2(t),
. . .
y0n = an1(t)y1 + . . . + ann(t)yn + bn(t).

Here y1(t), . . . , yn(t) are unknown functions and aij(t) and bi(t) are given.
We can write this system in the matrix form. Set

y(t) =

2

4
y1(t)

. . .
yn(t)

3

5 , b(t) =

2

4
b1(t)
. . .

bn(t)

3

5 .

For each t, y(t) and b(t) are vectors in Rn. We say that y and b are functions
with values in Rn, or vector-valued functions. Similarly, we can define

A(t) =

2

664

a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

. . . . . . . . . . . .
an1(t) an2(t) . . . ann(t)

3

775 .

We say that A is a matrix-valued function, since for every t it gives us an
n ⇥ n matrix A(t). Now our linear system can be written as

y0 = A(t)y + b(t), (1.1)

where y is an unknown vector-valued function and A and b are given
functions (matrix-valued and vector-valued, respectively). The derivative y0

is defined by taking derivatives of each entry, that is y0 is a vector-valued
function given by

y0(t) =

2

4
y01(t)

. . .
y0n(t)

3

5 .

We say that the linear system (1.1) is homogenous if b(t) = 0. We say that it
has constant coefficients if the matrix-valued function A is constant i.e. each
function aij does not depend on t.

1



2 vector space of solutions

As for second order linear equations, solving a general linear system (1.1)
can be reduced to solving the corresponding homogenous linear system

y0 = A(t)y, (2.1)

provided we happen to know any solution of the nonhomogenous system.

Theorem 1. If x is a particular solution of the nonhomogenous linear system (1.1),
then any other solution of (1.1) has the form

y = x + z

where z is a solution of the corresponding homogenous system (2.1).

Proof. Let y be any solution of (1.1). Define z = y � x. Since both x and y
satisfy (1.1), we have

z0 = (y� x)0 = y0 � x0 = A(t)y+b(t)�A(t)x�b(t) = A(t)(y� x) = A(t)z,

so z is a solution of the homogenous system (2.1) and

y = x + z.

The conclusion is: to find the general solution of a nonhomogenous linear
system, we need to know a particular solution and the general solution of the
corresponding homogenous system. Therefore, from now on, we will focus
on homogenous linear systems. Recall that for second order linear equations,
the general solution was a linear combination of two linearly independent
solutions. The same thing happens for linear systems. (As we discussed
in Lecture 16, a second order equation for one function can be written as
a system of first order linear equations for two functions, so the theory we
developed for second order linear equations is a special case of the general
theory for systems.)

Theorem 2. Let A be an n ⇥ n matrix-valued function.

1. If y1, . . . , yk are solutions of the homogenous linear system (2.1), then y1, . . . , yk

are linearly independent as functions if and only if for every t the vectors
y1(t), . . . , yk(t) are linearly independent in Rn.

2. The set of all functions satisfying (2.1) is a vector space of dimension n.

Remark 3. Before we prove the theorem, observe that it is not always
true that if functions y1, . . . , yk are linearly independent, then their val-
ues y1(t), . . . , yk(t) are linearly independent for all t. For example, the
vector-valued functions

y1(t) =


1
t

�
, y2(t) =


1
t2

�

are linearly independent, that is: there is no nontrivial linear combination
C1y1 + C2y2 which is zero for all values of t. However, for t = 0, the vectors

y1(0) =


1
0

�
, y2(0) =


1
0

�

are linearly dependent in R2. The theorem tells us that this cannot happen if
y1, . . . , yk are all solutions of the same homogenous linear system.

2



Proof. Let us prove the first part of the theorem. Suppose that y1, . . . , yk are
linearly dependent, that is there are numbers C1, . . . , Ck, not all equal to zero,
such that

C1y1(t) + . . . + Ckyk(t) = 0

for all t. Since this equality holds for all t, it follows that for every t the
vectors y1(t), . . . , yk(t) are linearly dependent in Rn.

Conversely, suppose that y1, . . . , yk are linearly independent as functions.
Our goal it to show that for every t the vectors y1(t), . . . , yk(t) are linearly
independent in Rn. Fix any t⇤ and suppose that there are numbers C1, . . . , Ck
such that

C1y1(t⇤) + . . . + Ckyk(t⇤) = 0

Consider the function
y = C1y1 + . . . + Ckyk.

Since the equation y0 = A(t)y is linear, and y is a linear combination of
solutions, it is itself a solution of this differential equation. Its value at t = t⇤
is

y(t⇤) = C1y1(t⇤) + . . . + Ckyk(t⇤) = 0.

However, there is another solution of the equation y0 = A(t)y whose value
at t = t⇤ is zero: the constant function equal to zero! By the existence and
uniqueness theorem, any two solutions which have the same value at any
time, must be equal for all times. We conclude that y(t) = 0 for all t. But
that means that

C1y1(t) + . . . + Ckyk(t) = 0

for all t. Since y1, . . . , yk are linearly independent as functions, it follows that

C1 = C2 = . . . = Ck = 0.

Therefore, the only linear combination of the vectors y1(t⇤), . . . , yk(t⇤) which
is zero is the trivial combination. That shows that these vectors are linearly
independent in Rn.

Let us prove the second part of the theorem. Since the differential
equation y0 = A(t)y is linear, a linear combination of solutions is again a
solution. This shows that the set of solutions is a vector space. To compute
its dimension, we need to find a basis of this vector space. Let

e1, . . . , en

be any basis of Rn (for example, the standard basis). Let y1, . . . , yn be the
solutions of y0 = A(t)y satisfying the initial condition

yk(0) = ek.

Such solutions exist by the existence and uniqueness theorem. By the first
part of the theorem, the functions y1, . . . , yn are linearly independent since
the vectors y1(0), . . . , yn(0) are. To show that y1, . . . , yn form a basis of the
space of solution, it remains to show that any other solution is their linear
combination. Let y be any solution. Since e1, . . . , en is a basis of Rn, the
vector y(0) is their linear combination, that is: there are C1, . . . , Cn such that

y(0) = C1e1 + . . . + Cnen.

Now consider the function

x = C1y1(t) + . . . + Cnyn.

3



Since x is a linear combination of solutions, it is itself a solution of our
differential equation. At t = 0 it satisfies

x(0) = C1y1(0) + . . . + Cnyn(0) = C1e1 + . . . + Cnen = y(0).

Therefore, the solutions x and y have the same value at t = 0. By the
uniqueness part of the existence and uniqueness theorem, they must be
equal, that is x(t) = y(t) for all t. This shows that y is a linear combination
of the solutions y1, . . . , yn (since, by construction, x is). Therefore, y1, . . . , yn

is a linearly independent collection of solutions such that every other solution
is their linear combination, i.e. they form a basis of our space of solutions.

3 homogenous linear systems with constant coefficients

Theorem 2 tells us that in order to find the general solution of a homogenous
linear system given by an n ⇥ n matrix function, we need to find n linearly
independent solutions. We will now discuss a method of finding such
solutions for homogenous linear systems with constant coefficients:

y0 = Ay. (3.1)

Here A is a constant matrix. If you remember from the lectures about second
order linear equation, the exponential function plays a very important role
in the theory of differential equations. The simplest example of a linear
differential equation is

y0 = ly,

where y is a single function and l 2 R. This equation has a solution
y(t) = elt. Similarly, for n-dimensional linear systems (3.1) we look for
solutions of the form

y(t) = eltv

for some constant l and a vector v 2 Rn.

Theorem 4. A function y(t) = eltv is a solution of the linear system (3.1) if and
only if v is an eigenvector of the matrix A with eigenvalue l, that is Av = lv.

Proof. This is a straightforward computation. Let y(t) = eltv. We have

y0(t) = leltv,

so y satisfies (3.1) if and only if

leltv = eltAv,

that is: lv = Av.

Theorem 5. If v1, . . . , vk are eigenvectors of A with distinct eigenvalues l1, . . . , lk,
then the solutions

y1(t) = el1tv1, . . . , yk(t) = elktvk

are linearly independent. In particular, if A is an n ⇥ n matrix with n distinct
eigenvalues l1, . . . , ln, and eigenvectors v1, . . . , vn, then the general solution of
(3.1) has the form

y(t) = C1el1tv1 + . . . + Cnelntvn.

4



Proof. From Lecture 19, we know that eigenvectors corresponding to different
eigenvalues are linearly independent, so v1, . . . , vk are linearly independent.
Observe that

yi(0) = e0vi = vi.

From Theorem 2 we know that solutions whose value at t = 0 are linearly
independent, are linearly independent. Therefore, y1, . . . , yk are linearly
independent.. Since the set of solutions has dimension n, again by Theorem 2,
if there are n distinct eigenvectors, we have n linearly independent solutions
y1, . . . , yn, and they must form the basis of the space of solutions, i.e. any
other solution is their linear combination.

Example 6. Consider the linear system

y0 =


�2 1
�4 3

�
y.

In Lecture 19 we computed its eigenvalues

l1 = 2, l2 = �1.

The corresponding eigenvectors are

v1 =


1
4

�
, v2 =


1
1

�
.

(Of course, we can always multiply an eigenvector by a constant, but we can
choose any eigenvector.) Since this is a system of two equations and we have
two distinct eigenvalues, the general solution, according to our theorem, is

y(t) = C1e2t


1
4

�
+ C2e�t


1
1

�
.

Suppose now that we are interested in finding the particular solution
satisfying the initial condition

y(0) =


1
�1

�
.

Therefore, we look for constants C1 and C2 such that

C1


1
4

�
+ C2


1
1

�
=


1
�1

�
,

or, equivalently, (
C1 + C2 = 1,
4C1 + C2 = �1.

We find that C1 = �2/3 and C2 = 5/3 so the solution to our initial value
problem is the function

y(t) = �2
3

e2t


1
4

�
+

5
4

e�t


1
1

�
.
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1 roots of the characteristic polynomial

We continue studying homogenous systems with constant coefficients:

y0 = Ay, (1.1)

where A is a constant n ⇥ n matrix. Last time we proved that if A has n dis-
tinct eigenvalues l1, . . . , ln, then the corresponding eigenvectors v1, . . . , vn
are linearly independent. Consequently, the solutions

y1(t) = el1tv1, . . . , yn(t) = elntvn

are linearly independent and the general solution of (1.1) is a linear combi-
nation of y1, . . . , yn, that is:

y(t) = C1y1(t) + . . . + Cnyn(t).

Recall that the eigenvalues of A are the roots of the characteristic polynomial:

c(l) = det(A � lI)

where I is the identity matrix. This is a degree n polynomial. As you
remember from the discussion of second order linear equation, not every
polynomial of degree n has n distinct real roots. Two things can happen:

• some roots are complex numbers, and/or

• some roots are repeated.

In this lecture we will discuss how to find n linearly independent solutions
if one of these situations happen.

2 complex roots

Since the characteristic polynomial has real coefficients, its roots come in
conjugate pairs, that is: if l = a + bi is a complex root of c, then so is its

1



conjugate l̄ = a � bi. Given such complex roots, we can look for complex
eigenvectors with eigenvalue l. A complex eigenvector is a vector

v =

2

664

z1
z2
. . .
zn

3

775

where now z1, . . . , zn are complex numbers, such that

Av = lv. (2.1)

Here we define the multiplication of vectors by matrices and by complex
numbers in the same way as for real numbers. We can similarly look for an
eigenvector with eigenvalue l but this is not necessary. If v is an eigenvector
with eigenvalue l, then, by conjugating equation (2.1) and using the fact that
A is a real matrix, so that Ā = A, we get

Av̄ = Av = lv = l̄v̄,

so the vector

v̄ =

2

664

z̄1
z̄2
. . .
z̄n

3

775

is an eigenvector with eigenvalue l̄. This is convenient: once we find one
complex eigenvector v with complex eigenvalue l, then automatically v̄ is
an eigenvector with eigenvalue l̄. Moreover, since l is not real, then l 6= l̄
so, by the general principle, v and v̄ are linearly independent.

Example 1. Let us find eigenvectors of the matrix

A =

2

4
1 0 0
0 �1 �1
0 2 �1

3

5 .

The characteristic polynomial is

c(l) = det(A � lI) = det

2

4
1 � l 0 0

0 �1 � l �1
0 2 �1 � l

3

5

= (1 � l)det

�1 � l �1

2 �1 � l

�

= (1 � l)((1 + l)2 + 2)

= (1 � l)(l + 1 � i
p

2)(l + 1 + i
p

2),

so there is one real root and two conjugate complex roots

l1 = 1, l2 = �1 + i
p

2, l3 = l̄2 = �1 � i
p

2.

From the first column of the matrix we see that

v1 =

2

4
1
0
0

3

5

2



is an eigenvector with eigenvalue l1 = 1. Let us find a complex eigenvector
v2 with eigenvalue l2. We need to solve the equation

(A � l2I)v2 = 0,

that is, if

v2 =

2

4
a
b
c

3

5

for complex numbers a, b, c, then
2

4
2 � i

p
2 0 0

0 �i
p

2 �1
0 2 �i

p
2

3

5

2

4
a
b
c

3

5 = 0.

We find that
a = 0 and c = �i

p
2b

and b can be any complex number (nonzero, since we want v2 to be a nonzero
vector). In particular, for b = 1, we get

v2 =

2

4
0
1

�i
p

2

3

5 .

Since l3 = l̄2 we automatically get an eigenvector for l3:

v3 = v̄2 =

2

4
0
1

i
p

2

3

5 .

Once we find a pair of complex eigenvalues l, l̄ of the characteristic
polynomial, and the corresponding pair of complex eigenvectors v, v̄, this
gives us two complex solutions of the differential equation (1.1):

yc(t) = eltv, ȳc(t) = el̄tv̄.

To get two real solutions, we take the real and imaginary part of one of the
complex ones, for example yc:

Reyc(t), Imyc(t).

The real and imaginary part are simply defined by taking the real and
imaginary part of each entry in the column yc(t). Of course, we can also
have other real solutions, corresponding to other real or complex eigenvalues.
The point is that we always want to find n linearly independent solutions.

Example 2. Consider the homogenous system corresponding to the matrix
from Example 1:

y0 =

2

4
1 0 0
0 �1 �1
0 2 �1

3

5 y.

The real eigenvector v1 with eigenvalue l1 = 1 gives us a real solution:

y1(t) = el1tv1 = et

2

4
1
0
0

3

5 .

3



The complex eigenvector v2 with eigenvalue l2 = �1 + i
p

2 gives us two
complex solutions, one is

yc(t) = el2tv2 = e�t+i
p

2

2

4
0
1

�i
p

2

3

5

and the other is its conjugate ȳc(t). To find two real solutions, we take the
real and imaginary part of yc(t). We use Euler’s formula to expand and
group together all terms with and without i:

yc(t) = e�t(cos(
p

2t)+ i sin(
p

2t))

2

4
0
1

�i
p

2

3

5 = e�t

2

4
0

cos
p

2p
2 sin(

p
2t)

3

5+ ie�t

2

4
0

sin(
p

2t)
�
p

2 cos(
p

2t)

3

5 .

Therefore

Reyc(t) = e�t

2

4
0

cos
p

2p
2 sin(

p
2t)

3

5 ,

Imyc(t) = e�t

2

4
0

sin(
p

2t)
�
p

2 cos(
p

2t)

3

5 .

In total, we have found three linearly independent real solutions y1, Reyc,
and Imyc. The general solution is their linear combination:

y(t) = C1et

2

4
1
0
0

3

5+ C2e�t

2

4
0

cos
p

2p
2 sin(

p
2t)

3

5+ C3e�t

2

4
0

sin(
p

2t)
�
p

2 cos(
p

2t)

3

5 .

3 repeated eigenvalues

It can also happen that some of the eigenvalues are repeated, that is the
characteristic polynomial has the form

c(l) = (l � l1)
k p(l)

for some k > 1 and p a polynomial such that l1 is not a root of p. In this case,
we may still be able to find k linearly independent eigenvectors v1, . . . , vk
with the same eigenvalue l1. This would produce k linearly independent
solutions

y1(t) = el1tv1, . . . , yk(t) = el1tvk.

Example 3. Let

A =

2

4
0 1 1
1 0 1
1 1 0

3

5 .

The characteristic polynomial is

c(l) = det

2

4
�l 1 1
1 �l 1
1 1 �l

3

5 .
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We can simplify this determinant to immediately see one of the roots. After
subtracting the third row from the first row (which does not change the
determinant), we get

c(l) = det

2

4
�l � 1 0 1 + l

1 �l 1
1 1 �l

3

5 = (l + 1)det

2

4
�1 0 1
1 �l 1
1 1 �l

3

5 .

We see that l = �1 is a root. We can simplify things further by adding the
first row to the second and third rows and expanding with respect to the
first column:

c(l) = (l + 1)

2

4
�1 0 1
0 �l 2
0 1 �l + 1

3

5

= (l + 1)det

�l 2
1 �l + 1

�

= (l + 1)(l2 � l � 2)
= (l + 1)2(l � 2).

So l1 = �1 is a repeated eigenvalue, and another eigenvalue is l2 = 2. We
find, as in the previous examples, that the equation (A � l1I)v = 0 has two
linearly independent solutions

v1 =

2

4
1
0
�1

3

5 and v2 =

2

4
0
1
�1

3

5

so there are two linearly independent eigenvectors with eigenvalue l1. We
also find an eigenvector with eigenvalue l2 = 2,

v3 =

2

4
1
1
1

3

5 .

This gives us three linearly independent solutions of the differential equation

y0 = Ay,

namely

y1(t) = e�t

2

4
1
0
�1

3

5 , y2(t) = e�t

2

4
0
1
�1

3

5 , y3(t) = e2t

2

4
1
1
1

3

5 .

The general solution is their linear combination.

However, in some cases it happens that l1 is a repeated root of the
characteristic polynomial with multiplicity k:

c(l) = (l � l1)
k p(l)

but there are no k linearly independent eigenvectors with eigenvalue l1.
Therefore, we cannot produce k linearly independent solutions of y0 = Ay of
the form y(t) = eltv.
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Example 4. A simple computation shows that the matrix

A =


1 �1
1 3

�

has characteristic polynomial

c(l) = (l � 2)2

and every eigenvector with eigenvalue 2 is of the form

c


1
�1

�

for some constant c. Therefore, we cannot find two linearly independent
eigenvectors.

Suppose that l1 is a repeated eigenvalue and we don’t have enough
eigenvectors to construct n linearly independent solutions of the differential
equation y0 = Ay. Since l1 is an eigenvalue, there is still at least one
eigenvector v1, so we can find at least one solution:

y1(t) = el1tv1.

How do we find more solutions? If you remember from the lecture about
second order linear equations, sometimes we also look for solutions that
have the function tel1t or, more generally, a polynomial in t times el1t. Here
we do something similar. A natural guess would be that maybe the function

y(t) = tel1tv1

is also a solution. This, however, does not work. Let us try to correct this
initial guess by adding another function:

y(t) = tel1tv1 + el1tv

for some vector v. What vector v do we need to choose so that this function
is a solution? We compute

y0(t) = el1tv1 + l1tel1tv1 + l1el1tv.

We want this to be equal to Ay(t), that is:

el1tv1 + l1tel1tv1 + l1el1tv = tel1tAv1 + el1tAv.

Using the fact that Av1 = l1v1 and dividing by el1t, we get that this equation
is equivalent to

(A � l1I)v = v1. (3.1)

This equation is similar to the equation for an eigenvector with eigenvalue
l1. Now, instead of looking for a solution of (A � l1)v = 0, we look
for a solution of the above equation, where v1 is a given eigenvector with
eigenvalue l1. Note that this equation implies that

(A � l1I)2v = (A � l1I)(A � l1I)v = (A � l1I)v1 = 0.

In general, a vector v satisfying equation

(A � l1I)kv = 0

6



for some k, is called a generalized eigenvector with eigenvalue l1.
Suppose that we have found a vector v satisfying (3.1). It follows from

our calculation that then the function

y2(t) = tel1tv1 + el1tv

is a solution of the differential equation y0 = Ay. It is easy to show that this
solution is linearly independent from y1. Thus, we have achieved our goal:
we have found a new solution.

Example 5. Consider a differential equation given by the matrix from Exam-
ple 4:

y0 = A =


1 �1
1 3

�
.

The eigenvalue l1 = 2 and eigenvector

v1 =


1
�1

�

give us one solution

y1(t) = e2t


1
�1

�
.

To find another solution, we look for a generalized eigenvector, that is v2
satisfying

(A � l1)v2 = v1,

so if we write v2 as a column with entries a and b, we want to solve

�1 �1
1 1

� 
a
b

�
=


1
�1

�
.

We find that a = �1 � b and b can be anything, so for example we can take
b = 0 and

v2 =


�1
0

�
.

This gives us a new solution

y2(t) = te2t


1
�1

�
+ e2t


�1
0

�
.

We have found two linearly independent solutions so the general solution is
their linear combination:

y(t) = C1e2t


1
�1

�
+ C2

✓
te2t


1
�1

�
+ e2t


�1
0

�◆
.

For n ⇥ n matrices, where n � 2 we might have to continue the process of
finding generalized eigenvector to produce n linearly independent solutions.
That is, given a repeated eigenvalue l1, we look for a chain of generalized
eigenvectors v1, . . . , vl satisfying

(A � l1I)v1 = 0,
(A � l1I)v2 = v1,
(A � l1I)v3 = v2,

. . .
(A � l1I)vl = vl�1.

7



This gives us l linearly independent solutions:

y1(t) = el1tv1,

y2(t) = el1t
✓

t
1!

v1 + v2

◆
,

y3(t) = el1t
✓

t2

2!
v1 + tv2 + v3

◆
,

. . .

yl(t) = el1t

 
tl�1

(l � 1)!
v1 +

tl�2

(l � 2)!
v2 + . . . +

t
1!

vl�1 + vl

!
.

Here l! = 1 ⇥ 2 ⇥ · ⇥ (l � 1) ⇥ l is the factorial of l. For each repeated
eigenvalue with multiplicity k, we find as many of such chains as we can in
order to find k linearly independent solution of the differential equation. A
general theorem of linear algebra tells us that this is always possible. This
process is related to finding the so-called Jordan normal form of the matrix A.

The appearance of factorials in the formula is related to the exponential
function. Recall from calculus, that the function ex has a power series
expansion

ex = 1 +
x
1!

+
x2

2!
+

x3

3!
+ . . . .

In the process of finding generalized eigenvectors, we essentially try to find
the exponential of the matrix A, that is a matrix defined as the infinite sum

eA = I + 1 +
A
1!

+
A2

2!
+

A3

3!
+ . . . .

It turns that computing such a matrix for a given A can be reduced to finding
n linearly independent vectors which are either eigenvectors or sequences of
generalized eigenvectors, as described above. Once we find eA, the general
solution of the differential equation

y0 = Ay

has the form
y(t) = eAtv,

for any vector v 2 Rn, which has the interpretation of the initial condition
of the solution v = y(0). Therefore, once we can define and compute the
matrix eAt, solving linear system is very similar to solving first order linear
equation for one function: recall that the solution to the equation y0 = ay for
a constant a, is y(t) = eaty0.

You can read more about the Jordan normal form and the exponential of
a matrix in section 3.10 and 3.11 of Braun’s textbook. This is a fascinating
and important topic in linear algebra, theory of computations, differential
equations, and other fields of mathematics. However, we will not develop
this general theory any further in this course.
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1 nonlinear systems

A general system of n first order differential equations has the form
8
>>>><

>>>>:

y
0
1 = f1(t, y1, . . . , yn),

y
0
2 = f2(t, y1, . . . , yn),

. . .
y
0
n = fn(t, y1, . . . , yn),

where y1, y2, . . . , yn are unknown functions of one variable t and f1, . . . , fn

are given functions of n + 1 variables. We can succinctly write such a system
in a vector form

y0 = f(t, y), (1.1)

where y = (y1, . . . , yn) is a vector-valued function of one variable t, and
f = ( f1, . . . , fn) is a vector-valued functions of n + 1 variables. (Following the
usual convention, we will typically write them as columns with n elements.)

We say that such a system is linear if there is function A of one variable t

with values in n ⇥ n matrices (that is: for every t, A(t) is an n ⇥ n matrix),
such that

f(t, y) = A(t)y

where the right-hand side is given by multiplying the n vector y by the n ⇥ n

matrix. A system is called nonlinear if it is not linear.
For linear systems with constant coefficients, which we studied in the

last few lectures, the matrix-valued function A is constant. More generally,
we say that the system is autonomous if the function f(t, y) = f(y) does not
depend on t.

Unlike for linear systems with constant coefficients, there is no general
method for finding solutions of a nonlinear system (1.1). Moreover, for
nonlinear systems, a linear combination of solutions is typically not a solution,
so we can’t use methods of linear algebra to study the space of solutions, as
we did for linear systems. Nevertheless, we still can ask various qualitative

questions about the behavior of solutions, even though we cannot typically
write down an explicit formula for solutions. Here are some typical questions
we ask about nonlinear systems.

1



Equilibria

Are there any solutions which are constant in t? Such a solution is called
an equilibrium of the system. These solutions are important because many
natural system "want" to achieve an equilibrium. Think of some of the
examples we studied in the first part of the course: using Newton’s law of
cooling we computed that if the temperature of the surroundings of a body
is constant, then the temperature of the body converges to the temperature
of the surroundings as t ! •. Another example is the logistic model of
population growth: if we start with a non-zero population, the model predicts
that the population grows and as t ! • converges to the constant solution
given by the carrying capacity of the environment.

Suppose that a constant function y(t) = y⇤ is a solution of (1.1); then

0 = y0 = f(t, y⇤)

so the condition for such a function to be a solution is that the vector y⇤
satisfies f(t, y⇤) = 0 for all t. This is an algebraic rather than a differential
equation, so we can often solve it and find all equilibria of the system.

Example 1. Consider a homogenous linear system with constant coefficients:

y0 = Ay.

For what vectors y is the right-hand side zero? Certainly for y = 0, so zero
is always an equilibrium of such a system. We know from linear algebra that
zero is the only solution of the equation Ay = 0 if A is invertible. In that
case, y = 0 is the only equilibrium. If A is not invertible, then there is an
entire vector space of eigenvector with eigenvalue zero (the so-called kernel

of A). All vectors y from this vector space are equilibria of the system. This
is, however, a very special case, because if you pick a random matrix A, it
will be invertible.

Stability

Are the solutions stable, that is: can the behavior of a solution change
drastically when we change the initial conditions slightly? Let y be a solution
of (1.1). We say that it is stable if every other solution x of (1.1) which starts
at t = 0 at point x(0) close to y(0) remains close to y for all t � 0. A precise
definition is this: y is stable if for every e > 0 there is d > 0 such that if x is
another solution and

|x(0)� y(0)|  d

then
|x(t)� y(t)|  e for all t � 0.

If a solution is stable, we say that it is asymptotically stable if every solution x
which starts at t = 0 at a point x(0) close to y(0), converges to y as t ! •.
A precise definition is: y is asymptotically stable if for every e > 0 there is
d > 0 such that if x is another solution and

|x(0)� y(0)|  d

then
lim
t!•

|x(t)� y(t)| = 0.

We say that a solution is unstable if it is not stable.

2



Long-time behavior

Given a solution y, what happens to it as t ! • or t ! �•, i.e. in infinite
future or infinite past? How does the long-time behavior of the solution
depend on the initial condition y(0)? This problem is closely related to the
previous two questions.

Example 2. It follows from Newton’s law F = ma that the motion of a
pendulum is described by the second order equation

y
00 + k sin y = 0.

Here y is the angle between the pendulum and vertical axis, and k > 0 is
a constant depending on the mass of the pendulum and the gravitational
constant. Introduce the velocity function x(t) = y

0(t). Then this second order
equation is equivalent to the nonlinear system of first order equations:

(
x
0 = �k sin y,

y
0 = x.

Equilibria are the pairs (x, y) such that the right-hand side is zero, that is:
x = 0, y = 0, and x = 0, y = p. (We have sin y = 0 for y = np for any integer
n, but since y denotes an angle, the equilibrium y = 2p is the same as y = 0,
and so on.) Equation x = 0 says that in the equilibrium the velocity of the
pendulum is zero. The first equilibrium y = 0 corresponds to the pendulum
being in the lowest position. The second equilibrium y = p corresponds
to the pendulum being in the highest position. One can show that the first
equilibrium is stable, while the second isn’t. This is physically clear: if you
move the pendulum slightly from the position y = 0, it starts swinging and
remains close to the angle y = 0. However, if you move it only slightly
from the highest position y = p, then gravity immediately causes it to move
downward so y(t) goes away from y = p.

By the way, observe that for y small, sin y is very close to y. So as long
as we are interested in the movement of the pendulum close to the stable
equilibrium y = 0, we can approximate the nonlinear equation

y
00 + k sin y = 0

by the linear equation
y
00 + ky = 0,

or equivalently, by the system:
(

x
0 = �ky,

y
0 = x,

that is: the harmonic oscillator equation. Of course, we can solve this
equation: we know that solutions are given by sine and cosine, so describe a
periodic oscillation around y = 0. The movement of the actual pendulum
will be different, but as long as we stay close to y = 0 the sine/cosine solution
will be a good approximation. This is a general principle: we often try to
understand nonlinear systems by approximating them by linear systems.

2 stability of linear systems

As we just saw in Example 2, we can try to understand nonlinear systems by
approximating them by linear ones. I will talk more about this idea in the
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next section. For now, let us accept this as a motivation for studying stability
of linear systems with constant coefficients. Since for such systems we can
write explicit formulae for solutions, it is easy to study whether solutions
are stable or not.

Theorem 3. Let A be an n ⇥ n matrix. Consider the homogenous linear system

with constant coefficients

y0 = Ay.

1. If all eigenvalues of A have negative real part, then every solution of the

system is asymptotically stable.

2. If at least one eigenvalue of A have positive real part, then every solution of

the system is unstable.

Note that the theorem does not tell us what happens when all eigenvalues
of A have real part zero (that is: they are imaginary numbers). There is, in
fact, a refined version of the theorem which covers also that case. Since the
statement is a bit more complicated, and this is a rather special situation, we
will not discuss it. You can read about it in Braun’s textbook: see Theorem 1
in section 4.2. Let us outline the proof of the theorem to see how eigenvalues
of A are related to stability.

Outline of the proof. First, even though the theorem is about stability of all
solutions, it is, in fact, sufficient to consider only the constant solution
y0(t) = 0. Let us show that the following statement is true: the zero solution is

stable if and only all solutions are stable (and similarly for asymptotic stability).
Of course, if all solutions are stable, then, in particular, the zero solution

is stable, so we need to show that if the zero solution is stable, then all
solutions are. Let y be any solution. In order to show that y is stable, we
need to show that given any other solution x such that x(0) is close to y(0),
we have that x(t) is close to y(t) for all t � 0. So, for any e > 0 we can find
d > 0 such that if

|x(0)� y(0)|  d then |x(t)� y(t)|  e for all t � 0. (2.1)

Since we have assumed that the zero solution is stable, there is a d > 0 such
that if

|z(0)|  d then |z(t)|  e for all t � 0. (2.2)

Now since the equation is homogenous and linear, z(t) = x(t)� y(t) is a
solution. Plugging in this choice of z to equation (2.2) above gives us (2.1),
which is the condition for y to be stable. So we have shown that stability
of the zero solution implies stability of any solution y. In the same way we
can show that asymptotic stability of the zero solution implies asymptotic
stability of any solution.

In order to prove the theorem, it remains to investigate stability of the
zero solution. Let us focus on the case when A has n linearly independent
eigenvectors v1, . . . , vn with n eigenvalues l1, . . . , ln, possibly complex and
possibly repeated. (As you remember, it is not always true that we have n

linearly independent eigenvectors when the roots are repeated, but let us
ignore that and focus on the proof in this special case, as other cases are
similar.) The general complex solution is

y(t) = C1e
l1tv1 + C2e

l2tv2 + . . . + Cne
lntvn. (2.3)
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Let lk = ak + ibk where ak and bk are real and imaginary parts. Suppose first
that all ak are negative. In that case, the expression

e
lkt = e

akt(cos(bkt) + i sin(bkt))

converges to zero as t ! •. So no matter what constants C1, . . . , Cn we
choose in (2.3), we always have that

lim
t!•

y(t) = 0.

This shows that if all ak are negative, then the zero solution is asymptotically
stable. Suppose now that at least one ak is positive. Then e

lkt goes to infinity
as t ! •. Pick a solution (2.3) with all Ci being zero apart from Ck:

y(t) = Cke
lktvk.

This solution goes to infinity as t ! •. By making Ck as small as we want, we
can make y(0) as close to zero as we want. So we have found solutions which
start arbitrarily close to zero, but as t ! • go away from it. That means that
the zero solution is unstable. To conclude: if all ak are negative, then the zero
solution is asymptotically stable. If at least one ak is positive, then the zero
solution is unstable. This concludes the proof of the theorem.

We will now look at some examples. In order to understand them, you
should look at the pictures of the integral curves of each of the systems.
You can find them, with a detailed discussion, in section 9.1 of Boyce and
DiPrima’s textbook. Alternatively, you can plot them using any of these or
similar free online tools:

• https://www.wolframalpha.com/input/?i=plot+a+vector+field

• https://www.geogebra.org/m/QPE4PaDZ

• https://www.desmos.com/calculator/eijhparfmd

Example 4. The matrix of the linear system

y0 =


l1 0
0 l2

�
y

has eigenvalues l1, l2.

• If both of them are positive, all solutions go away from zero, so the
system is unstable. (Remember that for homogenous linear systems it
is enough to study stability of the zero solution.)

• If, say, l1 > but l2 < 0, then almost all solutions go away from zero,
so the system is unstable as well. The only solutions that go to zero
are the ones that start along the horizontal axis (i.e. the line of the
eigenvector with eigenvalue l2).

• If both eigenvalues are negative, all solutions converge to zero, so the
system is asymptotically stable.

Example 5. The matrix of the linear system

y0 =


a b

�b a

�
y

has complex eigenvalues a + bi and a � bi.

5
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• If a = 0, this is the harmonic oscillator equation. The integral curves
are circles centered at zero. If we start close to zero, the solutions stays
close to zero but does not converge to it. So the solutions are stable but
not asymptotically stable. Observe that this is the case not covered by
Theorem 3 when the eigenvalues have real part zero. It turns out that
for two-dimensional systems when both the eigenvalues are complex
and have zero real part, we always have a picture like this, except when
the eigenvectors are not perpendicular, as it is the case here, the integral
curves are ellipses rather than circles.

• If a > 0, the integral curves are spirals starting at zero and going to
infinity. All solutions are unstable.

• If a < 0, the integral curves are spirals converging to zero. All solutions
are asymptotically stable.
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1 stability of nonlinear systems

Last time we studied stability of linear system. We will now consider general
nonlinear autonomous systems

y0 = f(y)

where y is a vector-valued function of t, and f : Rn ! Rn is a vector-valued
function of n variables, that is, for every y 2 Rn, f returns a vector f(y).
Recall that we call such a system autonomous because the right-hand side
does not depend on t.

Recall also that an equilibrium of such a system is a vector y⇤ such that
f(y⇤) = 0. In that case, the constant function y(t) = y⇤ is a solution. We are
interested in stability of such solutions. This is important because in many
cases we can show that solutions of autonomous systems either escape to
infinity or converge to an equilibrium as t ! •. Keep in mind that other
things can happen too: we can have periodic solutions whose integral curves
are closed. This happens for the harmonic oscillator equation. For nonlinear
systems, we can also have integral curves which are asymptotic to a closed
solution. What you should take from this discussion is that equilibria and
periodic solutions play an important role in understanding nonlinear systems.
In this last lecture of the course, we will focus on the equilibria. You can
read more about periodic solutions in sections 9.7 and 9.8 of Boyce–DiPrima
and section 4.8 of Braun.

We can study stability of an equilibrium of a nonlinear system by ap-
proximating the nonlinear system by a linear one, in a neighborhood of the
equilibrium. In general, in mathematics we often try to understand nonlinear
phenomena by approximating them by linear phenomena. You have probably
encountered this idea in your calculus class. Given a general function f and
a given point x0 we can approximate f by its Taylor expansion

f (x) ' f (x0) + f 0(x0)(x � x0) +
f 00(x0)

2!
(x � x0)

2 +
f (3)

3!
(x � x0)

3 + . . .

The beginning of the expansion

f (x0) + f 0(x0)(x � x0) (1.1)
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is a linear function. In fact, the graph of this function is precisely the tangent
line to the graph of f at the point (x0, f (x0)). When x is very close to x0,
the remaining terms are proportionate to (x � x0)k where k � 2, so they
are much smaller than the first two terms. (For example, if |x � x0| = 0.1,
then the (x � x0)2 = 0.01, so an order of magnitude smaller.) Therefore, as
long as x is close to x0, we can approximate f by the linear function (1.1).
However, as x goes far away from x0, our approximation will no longer be
good. Instead, we will have to linearize the function at another point, close
to x.

Going back to nonlinear systems, suppose that y⇤ = 0 is an equilibrium
of the system

y0 = f(y), (1.2)

that is, we have f(0) = 0. In that case, using the Taylor expansion for
functions of many variables, we can write f in the form

f(y) = f(0) + Ay + g(y) = Ay + g(y).

Here A is a constant n ⇥ n matrix (consisting of partial derivatives of f at 0),
and g is another function with the property that for y close to 0 we have

|g(y)|  c|y|2 for some constant c > 0.

You should think of it like this: the term Ay is the linear approximation of
f around 0 and g is the sum of all nonlinear parts in the Taylor expansion,
consisting of terms which depend on second and higher powers of the
coordinates of y. The upshot of this discussion is this: if 0 is an equilibrium,
we can write our nonlinear system in the form

y0 = Ay + g(y),

where the second term g(y) is small as long as y is close to zero. The
linearization of the system at zero is then the linear system

y0 = Ay.

It turns out that stability of the linear system can tell us something about the
stability of the nonlinear system.

Theorem 1. Consider a nonlinear autonomous system of the form

y0 = Ay + g(y)

where A is a constant matrix and g is a function satisfying

|g(y)|  c|y|2

for some constant c > 0 and y close to zero.

• If all eigenvalues of A have negative real part, then the equilibrium y⇤ = 0 is
asymptotically stable.

• If at least one eigenvalue of A has positive real part, then the equilibrium
y⇤ = 0 is unstable.

What do we do in the general case, when we an equilibrium y⇤ which
is nonzero? We simply shift everything by a change of variables so that the
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equilibrium is at zero. Suppose that y⇤ is an equilibrium of (1.2). Introduce
z(t) = y(t)� y⇤. If y is a solution of (1.2), then z satisfies

z0 = y0 = f(y) = f(y⇤ + z).

Now the new system has an equilibrium at z = 0, so we can linearize in the
same way as before:

z0 = Az + g(z)

and apply our theorem to study stability of the equilibrium y⇤. The linear
system

z0 = Az

obtained in this way is called the linearization at y⇤. Observe that for every
equilibrium we get the corresponding linearization, i.e. the corresponding
matrix A which will be different for different equilibria, so we have to study
stability of each equilibrium separately.

Example 2. Consider the nonlinear autonomous system
(

x0 = 1 � xy,
y0 = x � y3.

(1.3)

The equilibria are points (x, y) such that the right-hand side is zero. We
find that there are two equilibria: x = 1, y = 1 and x = �1, y = �1. Let us
compute the linearization of the system at the first equilibrium. We introduce
new functions u = x � 1 and v = y � 1, so that the equilibrium x = 1, y = 1
corresponds to u = 0, v = 0. Now we can write the system in terms of u and
v: (

u0 = x0 = 1 � xy = 1 � (u + 1)(v + 1) = �u � v � uv,
v0 = y0 = x � y3 = u � (v + 1)3 = u � 3v � 3v2 � v3.

To find the linearization, we write this system as the sum of a linear system
and a term consisting of higher powers of u and v. (Keep in mind that an
expression like uv has order two, because if u and v are smaller than some
small e, then uv is smaller than e2.)


u
v

�0
=


�1 �1
1 �3

� 
u
v

�
+


�uv

�3v2 � v3

�
.

We have written our system as


u
v

�0
= A


u
v

�
+ g(u, v),

where

A =


�1 �1
1 �3

�
and g(u, v) =


�uv

�3v2 � v3

�
.

Moreover, g satisfies g(u, v)  c(u2 + v2). Therefore, we can apply Theorem 1
to study stability of the equilibrium u = 0, v = 0. The matrix A has a
eigenvalue �2, so the theorem tells us that this equilibrium is asymptotically
stable. We conclude that the equilibrium x = 1, y = 1 of the original system
(1.3) is asymptotically stable.

Similarly, to study stability of the second equilibrium x = �1, y = �1 we
introduce functions u = x + 1 and v = y + 1. In terms of these functions,
(1.3) can be written as


u
v

�0
=


1 1
1 �3

� 
u
v

�
+


�uv

3v2 � v3

�
.
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So the linearization at x = �1, y = �1 is given by the matrix

A =


1 1
1 �3

�

which has eigenvalues �1�
p

5 and �1+
p

5. Since the second eigenvalue is
positive, Theorem 1 tells us that the equilibrium x = �1, y = �1 is unstable.

2 predator-prey equations

We will apply these ideas to study the predator-prey equations. These are
nonlinear differential equations which model the dynamics of populations
of two species, one of which (predator) hunts the other (prey). Let x(t) and
y(t) be respectively the population of the prey and predator species at time t.
Suppose first that there are no predators whatsoever, i.e. y(t) = 0. In that
case, if there is abundance of food in the environment, the prey species can
grow without any constraints according to the exponential growth equation

x0 = ax

for a constant a > 0. On the other hand, if there is no prey, i.e. x(t) = 0, then
the predator species will decay exponentially since there is no food available:

y0 = �cy

for a constant c > 0. The general case is a mixture of these two. If both
populations are nonzero, then there is some interaction between them. The
number of interactions at any given time is proportional to both populations,
so it will be proportional to xy. Such interactions benefit predators, i.e.
increase the rate of growth of y, and harm prey, i.e. decrease the rate of
growth of x. So a simple model is given by the following system of nonlinear
differential equations: (

x0 = ax � bxy,
y0 = cy � dxy,

where a, b, c, d are given positive constants. These are the predator-prey equa-
tions, also called the Lotka–Volterra equations after the mathematicians who
introduced them.

We easily compute that hese equations have two equilibria: x = 0, y = 0
and x = c/d, y = a/b. The first equilibrium is uninteresting: it describes
the situation in which both populations are zero and so happens. The
linearization at x = 0, y = 0 is given by the linear system


x
y

�0
=


a 0
0 c

� 
x
y

�

which has positive eigenvalues a > 0, c > 0. We conclude that this equilib-
rium is unstable.

The second equilibrium is more interesting. Let us compute the lin-
earization. Introduce u = x � c/d and v = y � a/b so that the equilibrium
corresponds to u = 0, v = 0. With some amount of calculation, we get that
the differential equation for u and v is


u
v

�0
=


0 �µ1

µ2 0

� 
u
v

�
+ g(u, v)
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where
µ1 = bc/d and µ2 = ad/b

where g(u, v) consists of nonlinear terms. Since µ1 and µ2 are both positive,
the linearizatrion matrix has purely imaginary eigenvalues ipµ1µ2 and
�ipµ1µ2. Since the real part of all eigenvalues is zero, we are in the situation
which is not covered by Theorem 1. However, it is instructive to see what
happens for the linear system


u
v

�0
=


0 �µ1

µ2 0

� 
u
v

�

This is essentially the harmonic oscillator equation, so we know from the
last lecture that all solutions are periodic and the integral curves are closed
curves around the equilibrium 0, which is stable but not asymptotically
stable. It turns out that this linear system is a good approximation of our
nonlinear system and the same thing happens for the nonlinear system. The
equilibrium x = c/d, y = a/b is stable but not asymptotically stable, and
all integral curves with x > 0 and y > 0 are closed curves going around
the equilibrium. They are no longer ellipses, as in the linear case, but more
complicated curves. They have an interpretation as cycles of growth and
decay: at first, there are few predators so prey can grow freely. Once there is
more prey, predators have more food so their population grows. Once the
predator population is large, the prey population starts decreasing. Thus,
there is less food for predators so their population decreases as well, and this
brings us back to the beginning of the cycle. You can show that no matter
what the initial population was, as long as we had some predators and some
prey, it will always follow such a cycle.

You can show that for any solution the average value of x and y over the
period of one cycle is, in fact, given by the value at equilibrium

xaverage = c/d and yaverage = a/b.

Suppose now that there are external factors which cause both popula-
tions to decrease at constant rate. For example, we could study two fish
populations and try to understand the effect of fishing. If we decrease both
populations at constant rate e > 0, then the new equations are

(
x0 = ax � bxy � ex = (a � e)x � bxy,
y0 = cy � dxy � ey = �(c + e)y � dxy.

We obtain the same equations, except with a replaced by a � e and c replaced
by c + e. So the average population for any solution is now

xaverage = (c + e)/d and yaverage = (a � e)/b.

We see that the effect is that on average the prey population will increase
while the predactor population will decrease. This can have important
consequences. For example, imagine that you have two insect populations,
x and y, such that x is harmful to crops you grow, and y is a predator
which eats x, so is good for the crops. You could try to get rid of x using
insecticide, but if the insecticide kills both x and y at the same rate, this will
be counterproductive as the effect will be that on average the population of
x increases while the population of y decreases.

We can also make our model more realistic by introducing competition.
In practice, resources are not unlimited, so even in the absence of predators,
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y = 0, the prey population will not grow exponentially. A better model
would be the logistic equation

x0 = ax � ex2.

Now, when we introduce the predator population, we can incorporate com-
petition between prey to get the system

n
x0 = ax � bxy � ex2, y0 = cy � dxy.

It turns out that this changes the behavior of the system. Now it will depend
on how strong the competition between the prey is. We now have a new
equilibrium x = a/e, y = 0. You can show that if e is small, then this
equilibrium is unstable, and the situation is very similar to the original
predator-prey equations, that is each solution is a closed cycle going around
a stable equilibrium. However, if e is large, then there are no cycles. In
that case, the equilibrium x = a/e, y = 0 is asymptotically stable and every
solution converges to it as t ! •. This means that eventually the predator
population dies out and the growth of the prey population is governed by
the logistic equation x0 = ax � ex2 which, as we know from the beginning of
the course, grows as t ! • to an equilibrium x = a/e.
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