
Topology and Groups

Week 3, Thursday

1 Preparation

• 3.01 (quotient topology),

• 4.01 (CW complexes).

2 Discussion

1. (PCQ) Let X be the space in the figure below and let A be the red
subset. What is the topological space X/A?

2. Let X be a set equipped with the discrete topology and let ∼ be an
equivalence relation on X. Which of the following statements is true?

• X/ ∼ inherits the discrete topology.

• X/ ∼ inherits the indiscrete topology.

• the topology on X/ ∼ is neither discrete nor indiscrete.

• we need to know more about ∼ before we can say more about the
topology on X/ ∼.

3. (PCQ) Consider the figure 8 with the two loops labelled a, b. Attach
a 2-cell e to this using an attaching map ϕ : ∂e → 8 which is a loop
representing the homotopy class ba−1ba. What space do you get?
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3 Classwork

1. If you glue the sides of the pentagon as indicated below (in pairs, leav-
ing one untouched) what space do you get? Can you draw a polygon
with side identifications that will give you a genus 2 surface (pictured
below)?

2. Find a cell structure:

• on the 2-torus which has two 0-cells, four 1-cells and two 2-cells.

• on the 2-sphere which has one 0-cell, two 1-cells and three 2-cells.

• on the Möbius strip with two 0-cells, three 1-cells and one 2-cell.

• on the solid torus (i.e. the doughnut together with all its jam)
with one 0-cell, two 1-cells, two 2-cells and one 3-cell.

3. The Euler characteristic of a CW complex is defined to be the alternat-
ing sum a0− a1 + a2− · · · where ak is the number of k-cells (assuming
this sum converges). An amazing fact (proved using homology theory)
is that it depends only on the homeomorphism type (in fact only on
the homotopy type) of the CW complex. If we have a CW structure
on the 2-torus with m 0-cells and n 1-cells, how many 2-cells must it
have? Which values of m and n can you realise?
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4 Mini-lecture: Projective spaces

The space of real lines in R3 passing through the origin is called the real
projective plane RP2. To specify such a line, it suffices to specify a nonzero
point p in R3 (then you just draw the corresponding line from the origin to
p). Moreover, if p = (x, y, z) then λp = (λx, λy, λz) gives the same straight
line. We define homogeneous coordinates on RP2 to be triples of numbers
[x : y : z] specified up to scale (not all equal to zero). For example, [1 : 0 : 0]
is the x-axis and [1 : 1 : 0] is the line x = y in the z = 0 plane. (Another
way of saying this is to define RP2 as the quotient space of R3 \ {(0, 0, 0)}
by the equivalence relation (x, y, z) ∼ (λx, λy, λz) for some λ ∈ R \ {0}.

Away from z = 0, we can rescale [x : y : z] by 1/z and get [x : y : z] = [x/z :
y/z : 1]. This means that the space of lines not contained in the (z = 0)-plane
is parametrised by two numbers x/z, y/z (and any two numbers specify a
unique such line).

When z = 0, we have coordinates [x : y : 0]. Away from y = 0 we can rescale
by 1/y and we get [x : y : 0] = [x/y : 1 : 0]. So the space of lines contained
in the (z = 0)-plane but not contained in the (y = 0)-plane is parametrised
by a single number x/y (and any number specifies a unique such line).

When y = z = 0, we have a unique line: [1 : 0 : 0], the x-axis.

I claim that this defines for us a cell structure on RP2.

1. Why?

2. How many cells of each dimension does it have?

3. What are the attaching maps?

4. How would this generalise to RPn, the space of lines in Rn+1?

5. What if we were to work with complex numbers and complex lines?
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