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PERTURBATION OF SCATTERING POLES FOR HYPERBOLIC
SURFACES AND CENTRAL VALUES OFL-SERIES

YIANNIS N. PETRIDIS

1. Introduction. Let � \H be a noncompact hyperbolic surface of finite area. In
the analysis of the Laplace-Beltrami operator on it, apart from theL2 spectrum, a
crucial role is played by the scattering poles. They appear in the analog of Weyl’s
law, in the Selberg zeta function, and in the determinant of the Laplace operator; see
[18]. More important is the fact that imbedded eigenvalues become scattering poles
under perturbation (see [25]). In this work we study variation formulas arising from
perturbations of scattering poles.

A scattering pole is a pole of the analytic continuation of the determinant of the
scattering matrix�(s) to the left half-plane�s < 1/2. These poles show among
the poles of the analytic continuation of the resolvent on the same half-plane. But,
generally, they are not exactly the same. There can be only finitely many exceptions
for 0 ≤ s < 1/2, where the resolvent has a pole ats0, corresponding to a cuspidal
eigenvalues0(1−s0) ∈ [0,1/4), and where det�(s) has a zero ats0. We assume that
this does not happen, or, alternatively, we look at scattering poles that do not lie on
the interval[0,1/2).

Let E(z,s) = (E1(z,s), . . . ,En(z,s))
T be the vector of Eisenstein series indexed

by the cusps. Letm be the multiplicity of the pole of det�(s) at s0. We sets(ε) to
be the weighted mean of scattering poles; that is, ifs1(0)= s2(0)= ·· · = sm(0)= s0
and if the scattering poles split ass1(ε), s2(ε), . . . , sm(ε), when the perturbation is
switched on, then

s(ε)= 1

m

m∑
i=1

si(ε).

The first theorem concerns the first variation ofs(ε) at ε = 0:

ṡ = d

dε
s(0).

Throughout this workdµ denotes the invariant hyperbolic measuredx dy/y2.

Theorem 1.1. Assume all the Eisenstein series have a pole of order at most1 at
s0. For a compactly supported perturbation of the metric, the first variation of the
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weighted mean of the scattering pole ats0 of multiplicitym is

ṡ = 1

m(2s0−1)

∫
�\H

E(z,1−s0)T Ress=s0�(s)�̇E(z,1−s0)dµ.(1.1)

Remark 1.2. Let the space of residues of Eisenstein series ats0 have dimension
m≤ n. According to Lemma 3.1 the order of the pole of det�(s) at s0 ism. We can
find an invertible matrixM such that

A(z,s0)=M lim
s→s0

(s−s0)E(z,s)
has the firstm elementsAi(z,s0) linearly independent andAi(z,s0) = 0 for i >
m. ExtendM to a holomorphic matrixM(s) close tos0 in any way desired. Let
Ẽ(z,s) = M(s)E(z,s) = (e1(z,s), . . . ,en(z,s))

T be a new basis of the Eisenstein
series. SetA(z,s) = (s− s0)Ẽ(z,s). We have(�+1/4)Ai(z,s0) = λ2

0Ai(z,s0) with
λ0 = s0−1/2. SetV = V (s0)= (vji)=M(s0)

−1. It is easy to see that all entries of
�(s) have a pole of order at most 1 ats0 by looking at the zero Fourier coefficient of
Ei(z,s) at thej -cusp. We can write (1.1) as

ṡ = 1

m(2s0−1)

∫
�\H

E(z,1−s0)T Ress=s0�(s)M(1−s0)−1�̇Ẽ(z,1−s0)dµ,
(1.2)

if one continues the new basis analytically to the point 1−s0. In the important example
of congruence subgroups,M(s) is explicitly given as the change of basis matrix from
the Eisenstein series indexed by the cusps to the Eisenstein series with characters.

Corollary 1. For a compactly supported perturbation of the metric, the first
variation of a scattering pole ats0 with multiplicity1 for a surface with one cusp is

ṡ = 1

2s0−1
Ress=s0�(s)

∫
�\H

(
�̇E(z,1−s0)

)
E(z,1−s0)dµ.

Corollary 2. For a compactly supported conformal perturbation of the metric
gε = eεf g0, wheref ∈ C∞c (�\H), the first variation of the scattering pole ats0 with
multiplicity 1 for a surface with one cusp is

ṡ = s0(1−s0)
2s0−1

Ress=s0�(s)

∫
�\H

f (z)E(z,1−s0)2dµ.(1.3)

Since we assume that the scattering poles0 has multiplicitym, we are also interested
in breaking the degeneracy under perturbation. We have the following theorem.

Theorem 1.3. Assume that all the Eisenstein series have a pole of order at most
1 at s0, which is a scattering pole of multiplicitym. Consider the matrix

(
aij

)= ∫
�\H

�̇Ai(z,s0)

n∑
k=1

Ek(z,1−s0)vkj dµ, i,j = 1,2, . . . ,m.
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If its eigenvalues are distinct and nonzero, then the degeneracy of the scattering
pole ats0 is removed by the compactly supported perturbation and the branches of
scattering poles are distinct ats0.

Remark 1.4. The restriction that all the Eisenstein series have a pole of order
at most 1 ats0 may seem too strict. However, in all examples where the scattering
matrix has been computed, that is, certain congruence subgroups of SL(2,Z), it is
easily verified, assuming that the zeros of theL-series involved are simple.

The simplest hyperbolic surface with a cusp is SL(2,Z)\H. The scattering matrix
for SL(2,Z)\H is

φ(s)= π2s−1�(1−s)ζ(2−2s)

�(s)ζ(2s)
.(1.4)

The functionφ(s) plays a special role for other congruence subgroups, because it
appears as a factor of det�(s).

Condition A. The nontrivial zerosρ of the Riemann zeta function are simple,
and they lie on�s = 1/2.

The second part of the condition is the Riemann hypothesis (RH). It implies that
the poles ofφ(s) are ats0 = ρ/2 = 1/4+ iγ /2, whereγ ∈ R. The simplicity of
the zeros is also a natural condition to assume. Numerical evidence by Odlyzko [20]
suggests that this is indeed true. Montgomery [17] proved that the pair correlation
conjecture implies that almost all zeros are simple, and RH implies that at least 2/3 of
the zeros are simple. Unconditionally Conrey [3] proved that at least 2/5 of the zeros
are simple, while under RH and the generalized Lindelöf hypothesis at least 19/27
of the zeros are simple (see [4]). The following weak form of the Mertens hypothesis
implies that all the zeros of the zeta function on the critical line are simple (see [31,
Th. 14.29, p. 376]). Letµ(n) be the Möbius function, and letM(x) =∑

n≤x µ(n).
Then ∫ X

1

(
M(x)

x

)2

dx =O(logX).

We apply the perturbation results of Theorems 1.1 and 1.3 to the character varieties
of �0(q), whereq is a prime number. The perturbations are generated by holomorphic
cusp forms of weight 2 for�0(q). Let g(z) be such a form that has real coefficients,
is a Hecke eigenform, and has eigenvalueεq for the Fricke involutionWq (εq =±1).
We have the following theorem.

Theorem 1.5. For �0(q), q prime, the first variation of the weighted mean of
scattering poles at anys0 is zero.

(a) If the central valueL(g,1) of theL-series ofg vanishes (which happens auto-
matically if εq = 1), then first-order degenerate perturbation theory does not remove
the degeneracy at anys0.
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(b) If L(g,1) �= 0, then the degeneracy is resolved,L(g,1) is a factor of the first
variation of the branches of scattering poles at anys0, and the branches are not
constant, that is, the scattering poles move.

In fact,L(g,1) andL(g,2−2s0) are factors of all the variation formulas, and the
second value is on the line of convergence ofL(g,s).

Examples of groups that have a newformg(z) with L(g,1) = 0 are�0(q) with
q = 37,43,53,61,79,83,89. The groups withq = 37 and 89 have two newforms and
only one has the central value vanishing. The other groups have only one newform.
In all cases the order of vanishing is exactly 1 andεq = 1. Examples of groups with
all newformsg(z) havingL(g,1) �= 0 are�0(q), with q = 11,17,19,67,73. In fact
they all have only one newform. The special value at 1 of theL-seriesL(g,s) has
been studied extensively in relation to the rank of the group of rational points of the
elliptic curveC/.g, where.g is the period lattice ofg(z). The order of vanishing
of L(g,s) at s = 1 is, according to the Birch-Swinnerton-Dyer conjecture, equal to
the rank of the elliptic curve. There has been extensive numerical evidence for the
conjecture (see [5]), from where we collected the data above.

Theorem 1.5 relates the nonvanishing ofL(g,s) at s = 1 to the movement of the
scattering poles away from the position described by the zeros of the Riemann zeta
function.

Remark 1.6. The central value of theL-series of a cusp form of weight 2 or 4 also
appears in the first variation of resonances at 1/4 in [22].

Remark 1.7. In Section 4.2 we explain how Theorems 1.1 and 1.3 can be applied
to the groups�0(N),N composite, and�(N) to produce similar results as in Theorem
1.5. The values of theL-series involved are central values of twistsL(g,χ,s), where
the conductor ofχ dividesN .

Remark 1.8.One can also study perturbations of the metric in Teichmüller space.
In this case the tangent direction is specified by a holomorphic cusp formg of weight
4. One gets similar results to Theorem 1.5. The central valueL(g,2) shows up as a
factor of the variation formulas. We intend to study this phenomenon elsewhere.

One would like to know which direction (most of) the scattering poles move. One
hopes that most will move off the line�s = 1/4 under perturbations in character
varieties. Let us assume the character variety has two tangent directions generated
by two distinct newformsf (z) andg(z) of �0(q), which have nonvanishing central
values for theirL-series:L(f,1)L(g,1) �= 0. An extra technical assumption is the
following condition.

Condition B. There exists a primep such that the corresponding Fourier coeffi-
cientsb(p) anda(p) satisfy

a(p)2 �= b(p)2.(1.5)



PERTURBATION OF SCATTERING POLES 105

This condition is mild. Two cusp forms with equal coefficients (except possibly
finitely many of them) are identical. In the case when one of thef andg is a quadratic
twist of the other, condition (1.5) fails, but the levels of the forms do not agree. Let
the curves of characters generated byf andg be χf,ε andχg,ε , respectively; see
(4.1). We prove that, under Conditions A and B and for at least one of the formsf ,
g, a positive proposition of the scattering poles move off the line prescribed by the
Riemann hypothesis. More precisely, we prove the following theorem.

Theorem 1.9. For at least one of the two curvesχf,ε , χg,ε and forT sufficiently
large, we can find aδ = δ(T ) > 0 such that there exists a positive proportion of
the scattering poles with|�s0| ≤ T that are to the left of�s = 1/4 and a positive
proportion that are to the right of it for characters in theδ-neighborhood of the trivial
character and on the curve.

Remark 1.10.Selberg [29] has constructed a familyχ(α) of characters of�0(4)
with the following property: for a given vertical line, one can findα such that there
are scattering poles for the characterχ(α) to the left of the vertical line, and, in fact,
approximatelyc ·T of them have imaginary partsγ satisfying|γ | < T , for T large.
In the case of Theorem 1.9 the number of scattering poles with|γ |< T is asymptotic
to c ·T logT . Extensions of this result can be found in [2].

Remark 1.11.The assumption of RH is technical but clarifies the picture on the
side of the scattering theory. If RH fails in the strong sense that there is a positive
proportion of zeros ofζ(s) off �s = 1/2, then the corresponding scattering poles are
off �s = 1/4 before the deformation and remain off forδ(T ) sufficiently small. If
zero proportion of the zeros ofζ(s) are off�s = 1/2, the proof in Section 5 needs to
be modified. We can work as in [8], where the main theorem on discrete mean values
of ζ(s) and its derivatives is proved without assuming RH.

Remark 1.12.For hyperbolic surfaces and for a characterχ that is singular with
respect toκ1 > 0 cusps, one has

det�(s)=
(√

π�
(
s−1/2

)
�(s)

)κ1

a(χ)b(χ)1−2sL(s,χ),

whereL(s,χ) is a Dirichlet series with constant term 1. It follows that det�(s) does
not vanish for�s sufficiently large, which implies through the functional equation
that the scattering poles are contained in a vertical stripσ < �s < 1/2. The constant
σ depends on the group and character. Müller [18] raised the question of whether
the same is true for a general surface with cusps. Froese and Zworski [7] gave a
counterexample, which is a rotational symmetric surface. The motivation of this work
was to see whether conformal perturbations of hyperbolic surfaces keep the scattering
poles in a vertical strip or not. We study the size ofṡ for conformal perturbations of
SL(2,Z)\H in [23].
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Remark 1.13.Selberg [29] has shown that if we denote the scattering poles bys0,
then

∑
0≤�s0≤T

(
1

2
−�s0

)
= κ1

4π
T logT +O(T ),

∑
0≤�s0≤T ,�s0<1/4

(
1

4
−�s0

)
<

κ1

2π
T log logT +c(a,b,σ )T +O(logT ),

and ∑
0≤�s0≤T ,�s0<σ

(σ −�s0) < c′(a,b,σ )T +O(logT )

for σ < 1/4. This shows that the distance of the scattering poles to the unitary axis
�s = 1/2 is on the average not greater than 1/4. All the estimates are uniform in the
characters for� fixed, as long as the numbera = a(χ) is bounded away from zero.
It is not known whether other surfaces with cusps satisfy these estimates.

Acknowledgments.The author would like to thank W. Müller, who suggested the
problem and (independently) proved Corollary 2. The author also thanks P. Sarnak,
R. Murty, and H. Darmon for various suggestions.

2. Preliminary material. We recall some standard facts about the resolvent and
its analytic continuation, which is due to Faddeev [6] (see also [15, Ch. XIV]), and
define the operators and norms of the Lax-Phillips scattering theory as applied to
automorphic functions. LetR(s)= (−�−s(1−s))−1 be the resolvent of the Laplace
operator. Its kernel is constructed as follows. The fundamental point-pair invariant
is u(z,z′) = |z−z′|2/(4yy′) for z,z′ ∈ H. We setϕ(u,s) = ∫ 1

0 [t (1− t)]s−1(t +
u)−s dt/(4π) for σ > 0,u > 0, s = σ+ it , andk(z,z′;s)= ϕ(u(z,z′),s). The kernel
k(z,z′;s) is the Green function for the problem�h+s(1−s)h= f at least forσ > 1
(see [15, p. 275]). For a discrete cofinite subgroup� of SL(2,R), we set

r(z,z′;s)= 1

2

∑
γ∈�

ϕ
(
u(z,γ z′),s

)
(2.1)

for σ > 1. This is the resolvent kernel. We decompose the fundamental domainF of
� into

F = F0∪
n⋃

j=1

Fj ,

where theFj ’s are isometric to the standard cusp. Let the cusps bez1,z2, . . . ,zn.
There exists agj with gj∞ = zj . One can choosegj ∈ SL(2,R) so thatz→ gj z

mapsC = {z;−1/2≤�z ≤ 1/2, �z ≥ a} one-to-one ontoFj . Each functionf onF
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hasn+1 componentsf0(z) = f (z) for z ∈ F0 andfj (z) = f (gj z) for z ∈ C. One
has the decomposition

L2(� \H)= L2(F0)⊕
n⊕

j=1

L2(Fj ),

but it turns out that one has to use weighted spaces to define the analytic continuation
of the resolvent. Faddeev [6] introduced the Banach spacesBµ, which consist of
complex-valued functionsf (z) whose componentsf0(z) andfj (z), j = 1, . . . ,n, are
continuous onF0 andC, respectively, with|fj (z)| ≤ cyµ for z ∈ C. Theµ-norm is

‖f ‖µ =max
z∈F0

∣∣f0(z)
∣∣+ n∑

j=1

max
z∈C

∣∣fj (z)∣∣
yµ

.

One can attach a meaning to the analytic continuation of the resolvent kernel on a
Riemann surface that is a 2-sheeted covering of thez-plane. We setz = s(1− s),
and then thez-plane cut along the ray[0,∞) corresponds to the right half-plane
�s > 1/2 cut along 1/2 ≤ s ≤ 1. For s, 1− s nonsingular, we have the limiting
absorption principle

r(z,z′;s)−r(z,z′;1−s)= 1

2s−1

n∑
j=1

Ej(z,s)Ej (z
′,1−s),(2.2)

a proof of which is given in [15, p. 344]. After obtaining the analytic continuation
of the resolvent kernel, one definesR(s) in the following manner. Fixµ ≤ 1/2;
thenR(s) : Bµ→ B1−µ is defined for�s > µ as the integral operator with kernel
r(z,z′;s). A slightly different approach that works for all surfaces with cusps and
where the resolvent is considered as an operator-valued function with values in the
bounded operators between weightedL2-spaces was worked out by Müller [19]. It
should be remarked that in (2.2) the Eisenstein series are indexed by the cusps and
are defined as

Ej(z,s)=
∑

σ∈�j \�

(
�(
g−1
j σz

))s
,

where�j is the stabilizer of the cuspzj . This way the zero Fourier coefficient of
Ej(z,s) at the cuspzi is δij ys+φij (s)y1−s . The scattering matrix is�(s)= (φij (s)).

We setL = �+ (1/4), A = (
0 1
L 0

)
, andE the energy form for the wave equation

utt = Lu, that is,

E
(
(f1,f2)

T
)=−(f1,Lf1)L2+(f2,f2)L2.

LetHG be the completion of the space of pairs ofC∞ functions with compact support
in the norm

G
(
(f1,f2)

T
)= E

(
(f1,f2)

T
)+c‖f1‖22
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for c sufficiently large. LetP be theE-orthogonal projection toH , which is the
complement of the spaceD+⊕D−, inHG, whereD± are the spaces of outgoing and
incoming data (see [16, p. 121]). The operatorP may only change the zero Fourier
coefficients of data at each cusp. The operatorB is the infinitesimal generator of the
semigroupPU(t)P , whereU(t) is the standard wave operator. We denote byRF (z)

the resolvent of an operatorF , that is,RF (z)= (F −z)−1. We have

RB(λ)= PRA(λ)P(2.3)

for �λ sufficiently large (see [16, p. 29]). A calculation with matrices gives

RA(λ)=
(
λRL(λ

2) RL(λ
2)

LRL(λ
2) λRL(λ

2)

)

=
( −λR(λ+1/2) −R(λ+1/2)

I−λ2R(λ+1/2) −λR(λ+1/2)

)
,

(2.4)

sinceRL(λ
2)=−R(s) andλ= s−1/2.

Callfi the vector
(

Ai(z,s0)
λ0Ai(z,s0)

)
. ThenAfi = λ0fi . The eigenvector of the cutoff wave

operatorB is Pfi , sinceBPfi = PAfi = λ0Pfi .

3. Proof of Theorems 1.1 and 1.3.The idea of the proof of Theorem 1.1 is to
use perturbation theory for the cutoff wave operatorB, which is an operator with
discrete spectrum (see [25, p. 6]). However, sinceB is not selfadjoint, we choose
to use variational formulas that use traces (see [14, p. 90]), instead of energy inner
products, as was done in [25, p. 24]. A similar method was used in [21] and [22] to
study the variation of the resonances at 1/4 and Fermi’s golden rule.

An outgoing eigenfunction ofA with eigenvalueλ0 is a pairf = (f1,f2)
T that

satisfies the following:
(1) (A−λ0)

kf = 0 for some integerk;
(2) f is outgoing; that is, the zero Fourier coefficientsf

(0)
1 , f (0)

2 of f1, f2 satisfy

f
(0)
2 =−y3/2∂y(f

(0)
1 /y1/2) in the cusps; and

(3) Ajf minus its zero Fourier coefficient in the cusps lies inHG for j = 0,1, . . . ,
k−1.

Lemma 3.1. All the Eisenstein series have a pole of order at most1 at s0 if and
only if s0−1/2 is a semisimple eigenvalue of the cutoff wave operatorB.

Proof. Assume thatλ0 is a semisimple eigenvalue ofB. According to [25, Th.
3.1] the semisimplicity of the eigenvalues0−1/2 forB is equivalent to the semisim-
plicity of the outgoing eigenspace ofA at λ0 = s0− 1/2. We show that any pole
of order greater than 1 for any Eisenstein series produces an outgoing eigenfunc-
tion g = (g1,g2)

T of A with (A− λ0)
2g = 0 but (A− λ0)g �= 0, which contra-

dicts the semisimplicity of the eigenspace forA. If the pole of the Eisenstein series



PERTURBATION OF SCATTERING POLES 109

E(z,s) at s0 has orderk ≥ 2, setA(z,s) = (s − s0)
kE(z,s). By differentiation of

�A(z,s)+ s(1− s)A(z,s) = 0 in s, we getLB(z,s0)− λ2
0B(z,s0) = 2λ0A(z,s0),

whereB(z,s0) = dA(z,s0)/ds. Setg1 = B(z,s0) and g2 = A(z,s0)+ λ0B(z,s0).
Then(A−λ0)g = (A(z,s0),λ0A(z,s0))

T �= 0. However,(A−λ0)
2g = 0. It is easy

to check condition (2) forg.
We now prove the converse. Assume the Eisenstein series have poles of order at

most 1 and the space of residues has dimensionm as in Remark 1.2. We have at least
m eigenvectors forA, thefi , i ≤ m: Afi = λ0fi . If we prove that the order of the
pole of det�(s) at s0 is at mostm, since by [25, Th. 4.1] the order of the pole is the
multiplicity of the outgoing eigenspace ofA, then the dimension of the eigenspace is
exactlym. Therefore the eigenvalue is semisimple.

We see thatA(z,s0) = M(s0)Ress=s0�(s)E(z,1− s0). SinceAi(z,s0) = 0 for
i > m andEj(z,1−s0) are linearly independent, the matrixM(s0)Ress=s0�(s) has
zero entries on the rowsm+1,m+2, . . . ,n. SetN(s) = M(s)�(s). Its entries on
the rowsm+1,m+2, . . . ,n should be regular, while the other entries have a pole of
order at most 1. By multiplying the firstm rows bys−s0, we see that

(s−s0)mdetN(s)= (s−s0)mdetM(s)det�(s)

remains bounded close tos0. However, detM(s) �= 0, so(s− s0)mdet�(s) remains
bounded close tos0.

The first variation of the weighted mean for a scattering pole, which is also the first
variation of the weighted mean for the eigenvalueλ0 of B, is given by

ṡ = 1

m
Tr(ḂQ),(3.1)

whereQ is the projection to the eigenspace ofB generated by thePfi ’s (see [14,
2.33, p. 90]). If� is a contour enclosing onlyλ0 = s0−1/2 among the eigenvalues
of B, then, using (2.3) and (2.4) one gets

Q=− 1

2πi

∫
�

RB(λ)dλ=− 1

2πi
P

∫
�

RA(λ)dλP

=− 1

2πi
P

∫
�

( −λR(λ+1/2) −R(λ+1/2)

I−λ2R(λ+1/2) −λR(λ+1/2)

)
dλP.

(3.2)

With the standard inner product onRn, we have
∑n

j=1Ej(z,s)Ej (z
′,1− s) =

E(z′,1−s)T ·E(z,s)= E(z′,1−s)M(s)−1Ẽ(z,s).
By (2.2), sincer(z,z′,1− s) is regular ats0, the contour integral in (3.2) is an

operator with integral kernel

−
(

E(z′,1−s0)T VA(z,s0)/2 E(z′,1−s0)T VA(z,s0)/(2s0−1)

(s0−1/2)E(z′,1−s0)T VA(z,s0)/2 E(z′,1−s0)T VA(z,s0)/2

)
.
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If g = (g1,g2)
T is any pair of data supported in some compact set of the surface

and with zero Fourier coefficient ofg1 andg2 vanishing above the cut aty = a, then
Pg = g. LetK be the integral operator with kernel

K(z,z′)=
(

1

2

)
E(z′,1−s0)T VA(z,s0).

Then

Qg = P

(
Kg1+1/(s0−1/2)Kg2

(s0−1/2)Kg1+Kg2

)
.

Notice thatKg1 andKg2 are linear combinations of theAj(z,s0)’s, j ≤m, andQg

is a linear combination of thePfj ’s, j ≤m, as it should be. SincėB = ( 0 0
L̇ 0

)
, we have

Ḃfi =
(

0
L̇Ai(z,s0)

)
(3.3)

and

Q

(
0

L̇Ai(z,s0)

)
= 1

s0−1/2
P

(
K

(
L̇Ai(z,s0)

)
(s0−1/2)K

(
L̇Ai(z,s0)

)
)
.

We have

K
(
L̇Ai(z,s0)

)= ∫
�\H

L̇Ai(z
′, s0)K(z,z′)dµ(z′)=

(
1

2

)
ai ·A(z,s0),

whereai is the row vector

ai =
∫

L̇Ai(z
′, s0)E(z′,1−s0)T V dµ(z′).(3.4)

Then

Q

(
0

L̇Ai(z,s0)

)
= 1

2s0−1
P

(
ai ·A(z,s0)

(s0−1/2)ai ·A(z,s0)

)
.(3.5)

Finally,

ḂQ

(
0

L̇Ai(z,s0)

)
= 1

2s0−1

(
0

ai · L̇A(z,s0)
)

for j ≤ m. The operatorḂQ mapsH into the space spanned by
( 0
L̇Ai(z,s0)

)
. The

functionsL̇Ai(z,s0), i ≤ m, may not be linearly independent, but, still, Tr(ḂQ) =
1/(2s0−1)

∑m
i=1a

i
i . This follows from elementary linear algebra: assume that only

the firstk out of them vectors
( 0
L̇Ai(z,s0)

)
are linearly independent and extend them

to any basis of the whole space. If

L̇Aj (z,s0)=
k∑

t=1

bjt L̇At (z,s0), j = k+1, . . . ,m,
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then

(2s0−1)ḂQ

(
0

L̇Ai(z,s0)

)
=

k∑
j=1

aij

(
0

L̇Aj (z,s0)

)
+

m∑
j=k+1

aij

k∑
t=1

bjt

(
0

L̇At (z,s0)

)
.

The contribution to Tr(ḂQ) is (aii +
∑m

j=k+1a
i
j bji)/(2s0−1) and

Tr(ḂQ)= 1

2s0−1

k∑
i=1


aii +

m∑
j=k+1

aij bji


 .

However,
∑k

i=1a
i
j bji = a

j
j for j = k+1, . . . ,m. This is so because (3.5) gives

(2s0−1)Q

(
0

L̇Aj (z,s0)

)
= (2s0−1)

k∑
t=1

bjtQ

(
0

L̇At (z,s0)

)

=
k∑

t=1

bjt

m∑
p=1

atpP

(
Ap(z,s0)

λ0Ap(z,s0)

)
=

m∑
p=1

a
j
pP

(
Ap(z,s0)

λ0Ap(z,s0)

)
.

Using (3.4), one gets

1

2s0−1
aii =

1

2s0−1

n∑
j=1

∫
�\H

Ej(z
′,1−s0)vji�̇Ai(z

′, s0)dµ(z′),(3.6)

sinceL̇= �̇. SinceAi(z,s0)= 0 for i =m+1, . . . ,n, we can take the same formula
as valid for alli = 1, . . . ,n. Therefore,

(2s0−1)Tr(ḂQ)=
n∑

i,j=1

∫
�\H

Ej(z
′,1−s0)vji�̇Ai(z

′, s0)dµ(z′)

=
∫
�\H

E(z′,1−s0)TM(s0)
−1�̇A(z′, s0)dµ(z′).

Now we switch back to the original basis of Eisenstein series indexed by the cusps,
and we use the functional equation forE(z,s) to get (1.1).

Proof of Corollary 1. It is obvious from Theorem 1.1.

Proof of Corollary 2. If gε = eεf g0, then�ε = e−εf �0 and�̇ = −f�0, where
�0 is the Laplacian of the unperturbed metric. Since the Eisenstein seriesE(z,1−s0)
corresponds to the eigenvalues0(1−s0), formula (1.3) follows.
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Proof of Theorem 1.3.Since the eigenvalueλ0 of B is semisimple, [14, Th. 2.3,
p. 93] implies that the eigenvalue branches atλ0 are continuously differentiable at
ε = 0. They are of the form

λ0+ελ(1)i +o(ε), i = 1,2, . . . ,m,(3.7)

whereλ(1)i are the eigenvalues ofB(1) = QḂQ. If we can solve the eigenvalue
problem forB(1) on the image ofQ, that is,B(1)w = λw, then we remove the
degeneracy and, if the eigenvaluesλ(1)i are distinct, then the perturbation produces
distinct power series atλ0. Let

w =
m∑
i=1

xiPfi

be any vector in the image ofQ. Then

B(1)w =QḂw =
m∑
i=1

xiQ

(
0

L̇Ai(z,s0)

)

= 1

2s0−1

m∑
i=1

xiP

(
ai ·A(z,s0)
λ0ai ·A(z,s0)

)
= 1

2s0−1

m∑
i=1

xi

m∑
j=1

aijPfj .

Since thePfj ’s are linearly independent, the equationB(1)w = λw gives

1

2s0−1

m∑
i=1

xia
i
j = λxj , j = 1,2, . . . ,m.

This is the eigenvalue equation for the matrix(aij ), i,j = 1, . . . ,m, with eigenvalue
λ(2s0−1).

4. Character varieties

4.1. General theory of character perturbations.For � \H, the first homology
group is isomorphic to�/[�,�]. Its dual group consists of the unitary characters
χ of � andAcusp= {χ | χ(p) = 1, p ∈ �, p parabolic}. The cohomology classes
in the first de Rham cohomology which can be represented by forms of compact
support have a square integrable harmonic representative (which can be taken to
be cuspidal, that is, ifw = w0dy+w1dx, then

∫
C
w0 =

∫
C
w1 = 0, whereC is a

path corresponding to a parabolic). Fixz0 ∈ � \H, and letπ : � → �/[�,�] be
the natural projection fromπ1(� \H)→ H1(� \H,R). For any cuspidal harmonic
square integrable formw, we set

χw(γ )= exp

(
2πi

∫
π(γ )

w

)
,(4.1)
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which is a cuspidal character in the connected component of the trivial character
in Acusp.

The deformation we consider depends on a real parameterε, and the corresponding
spectral problem concernsL2-functions satisfying

h(γ z)= χεw(γ )h(z).

Let us denote the correspondingL2 space byL2(�\H,χεw). We conjugate this space
to the fixed spaceL2(� \H) as follows. Set

(Uεh)(z)= exp

(
2πi

∫ z

z0

εw

)
h(z)

so thatUε : L2(� \H)→ L2(� \H,χεw). We set

L(ε)= U−1
ε �Uε,

which now acts onL2(� \H). We defineδ(pdx+q dy) = −y2(px +qy), 〈pdx+
q dy,f dx+gdy〉 = y2(pf̄ +qḡ), and|pdx+q dy|2H = y2(|p|2+|q|2). Then it is
easy to see that

L(ε)u=�u+4πiε〈du,w〉−4π2ε2|w|2Hu−2πiε(δw)u.

If w is harmonic, the last term vanishes. Letf (z) now be a holomorphic cusp form
of weight 2, and letw be the real-valued harmonic form�(f (z)dz). So f (z) =
w1− iw0. As usual we define for a functionf (z) of weightk andT ∈GL(2,R),

(f | T )(z)= (detT )k/2(cz+d)−kf (T z).
Let f | U(z) = ∑

n>0ane
2πinz be its expansion at the cuspzi , whereU = gi in

the notation of Section 2. Letu(z) be any of the Eisenstein seriesek(z,1− s0) with
Fourier expansion at thezi cusp of the form

u | U(z)= Ays0+By1−s0+
∑
n�=0

cny
1/2K1/2−s0(2π |n|y)e2πinx.(4.2)

Then
�̇u(z)= 4πi〈du,w〉.

The equation (1.2) shows that the variation of the weighted mean of the scattering
pole is a linear combination of∫

�\H
Ei(z,1−s0)�̇u(z)dµ

and this isR(1−s0), where

R(s)=
∫
�\H

Ei(z,s)�̇u(z)dµ.
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Since 2w = f (z)dz+f (z)dz, we have

〈du,w〉 = y2(
uzf (z)+uz̄f (z)

)
.

We also set
f | U(z)−f | U(z)=

∑
n�=0

bne
−2π |n|ye2πinx

so thatbn = an for n > 0 andbn =−a−n for n < 0. Then for�s 0 we have

R(s)= 4πi
∫
U−1�U\H

(〈du,w〉 | U)
(z)Ei(U(z),s)dx dy/y2

= 4πi
∫
�∞\H

(〈du,w〉 | U)
(z)ys dx dy/y2

= 4πi
∫
�∞\H

[
(u | U)zf | U(z)+(u | U)z̄f | U(z)

]
ys dx dy.

An integration by parts gives

R(s)= 2π
∫ ∞

0

∫ 1

0
(u | U)(z)sys−1[

f | U(z)−f | U(z)
]
dx dy

= 2πs
∑
n�=0

cnb−n
(2π |n|)s+1/2

∫ ∞
0

e−yys−1/2K1/2−s0(y)dy

= s

4sπs−1

�(s+1−s0)�(s+s0)
�(s+1)

∞∑
n=1

−cnān+c−nan
ns+1/2

,

(4.3)

using [11, 6.621.3, p. 733].
In the case thatc−n = cn and thean are purely imaginary, the Dirichlet series in

(4.3) becomes 2
∑

n>0cnann
−(s+1/2).

Remark 4.1. The casecn = c−n is the only case we are interested in because
it is relevant to congruence subgroups (see (4.4) below). If thean are real, then
the Dirichlet series in (4.3) vanishes. This can also be explained in the following
manner. The Eisenstein seriesEi(z,s) is even inx, and so isu anduy , while ux is
odd. If thean’s are real,w1 = �f is even, whilew0 = −�f is odd. So〈du,w〉 =
y2(uxw1+uyw0) is odd andR(s) vanishes.

4.2. Congruence subgroups and central values ofL-series. We now assume that
g(z) = −if (z) is a Hecke eigenform for some congruence subgroup of levelN

with Hecke eigenvaluesα1(p) andα2(p) for Tp and all coefficientsa(n) real. Then
(1− a(p)p−s +p1−2s) = (1− α1(p)p

−s)(1− α2(p)p
−s) for p � N . If p | N , the

Euler factor is(1−a(p)p−s). We also assume that forn > 0,

c±n =
∑
ck=n

χ1(c)χ̄2(k)

(
k

c

)1/2−s0
,(4.4)



PERTURBATION OF SCATTERING POLES 115

whereχ1 andχ2 are primitive characters moduloq1 andq2. It is easy to see that the
coefficientscn are multiplicative. In factek(z,1− s0) is also a Hecke eigenform and
we easily find the Euler factors for itsL-series. It is

L(s)=
∏
p

(
1−χ1(p)p

−s−1/2+s0)−1(
1− χ̄2(p)p

−s+1/2−s0)−1
.

For example, one can explicitly compute
∑

k≥0cpkp
−ks . Now we get the Euler factors

of
∑

cna(n)n
−s using [30, Lemma 1]. We get

∞∑
n=1

cna(n)n
−s =

∏
p

Xp(s)Yp(s)
−1,

where
Xp(s)= 1−χ1(p)χ̄2(p)p

−2s+1, p � N

usingα1(p)α2(p)= p andXp(s)= 1 for p |N . Also

Yp(s)=
(
1−α1(p)χ1(p)p

−s−1/2+s0)(
1−α2(p)χ1(p)p

−s−1/2+s0)
·(1−α1(p)χ̄2(p)p

−s−s0+1/2)(
1−α2(p)χ̄2(p)p

−s−s0+1/2)
.

We denote the twistedL-series ofg(z) by a characterχ asL(g,χ,s). Then

∞∑
n=1

cna(n)

ns
=

∏
p�N

(
1−χ1(p)χ̄2(p)p

−2s+1)L(
g,χ1, s+1/2−s0

)
L

(
g, χ̄2, s+s0−1/2

)
.

(4.5)

We notice that in (4.3) we are interested in the Rankin-Selberg convolution ats+1/2
and that in the first variation formula (1.1) we haves = 1−s0. So we sets = 3/2−s0
in (4.5). We get

∞∑
n=1

cna(n)

n3/2−s0 = L
(
χ1χ̄2ωN,2−2s0

)−1 ·L(
g,χ1,2−2s0

) ·L(
g, χ̄2,1

)
,(4.6)

whereωN is the trivial character moduloN . We notice that the factorL(g, χ̄2,1)
shows up irrespective of which scattering poles0 we consider, provided it is a pole
of ek(z,s).

For the congruence subgroups�(N) and �0(N), which consist of matrices in
SL(2,Z) which are lower triangular modN , the discussion above applies. We notice
that�0(N) is conjugate to�0(N), so they have the same spectral theory. According to
Huxley [13], the space of nonholomorphic Eisenstein series is spanned by Eisenstein
series with characters

Eχ2
χ1
(z,s)=

∑
(c,d)=1

χ1(c)χ2(d)y
s

|cz+d|2s ,
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whereχ1 andχ2 are primitive characters moduloq1 andq2, respectively, whereq1

andq2 are appropriate divisors ofN andχ1(−1)= χ2(−1).
(1) For�(N) we takeEχ2

χ1 (m1z/m2, s), wherem1q1 |N andm2q2 |N .
(2) For�0(N) we takeEχ

χ (z/m,s), χ primitive moduloq, andq |m, mq |N .
The Fourier expansion ofEχ2

χ1 (z,s) at∞ is

1

L
(
χ1χ2,2s

)(
2δ0(q1−1)L(χ2,2s)y

s+2δ0(q2−1)
√
π
�

(
s−1/2

)
L

(
χ1,2s−1

)
�(s)

y1−s

+
∑
n>0

4πsτ(χ2)

�(s)qs2

∑
ck=n

χ1(c)χ̄2(k)

(
k

c

)s−1/2(
y

q2

)1/2

×Ks−1/2

(
2πny

q2

)
cos

(
2πnx

q2

))
.

The scattering poles appear ats0, where 2s0 is a zero ofL(χ1χ2, s). These zeros
are conjecturally simple and different from the zeros of the otherL-series. It follows
that the coefficients ofek(z,1− s0) are exactly of the form (4.4), up to a factor
2(π/q2)

1−s0τ(χ2)/(�(1−s0)L(χ1χ2,2−2s0)).
Notice that the coefficientscn in [13] differ from (4.4) by a factor 1/

√
n, because

Huxley includes in the Bessel functionKs−1/2(u) a factor
√
u. This does not affect

(4.6).

4.3. The group�0(q): Proof of Theorem 1.5.We concentrate now on the Hecke
congruence subgroups�0(q), whereq is a prime number. These groups have only
two cusps: at∞ of width 1 and at 0 of widthq. The space of Eisenstein series
is spanned by the usual Eisenstein seriesE(z,s) for SL(2,Z) andE(qz,s). They
are oldforms. LetWq be the Fricke involution given by the matrix

( 0 −1
q 0

)
. Then

E(z,s) |Wq = E(qz,s). The Fourier expansion ofE(z,s) at∞ is given by

E(z,s)= ys+φ(s)y1−s+ 2y1/2

ξ(2s)

∞∑
n=1

ns−1/2σ1−2s(n)Ks−1/2(2πny)cos(2πnx),

(4.7)

whereξ(s) = π−s/2�(s/2)ζ(s), φ(s) = ξ(2s−1)/ξ(2s), andσν(n) =∑
d|n dν . We

setAn to be the coefficients in this expansion. LetT andS be the standard generators
of SL(2,Z) inducing the mapsT (z) = −1/z and S(z) = z+ 1 on H. Let B =(√q 0

0
√
q−1

)
. ThenT B conjugates the stabilizer of zero in�0(q) to �∞, the standard

parabolic subgroup of SL(2,Z), and it induces the same map asWq on H. The
expansion ofE(z,s) at zero is the expansion ofE | (T B)(z) = E(qz,s) at infinity.
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We have

E(qz,s)= (qy)s+φ(s)(qy)1−s+
∞∑
n=1

An(qy)
1/2Ks−1/2(2πnqy)cos(2πnqx).

(4.8)

For the Fourier expansion ofE(qz,s) at zero, we notice thatE(qz,s) = E | B(z),
which implies that(E | B) | (T B)(z)= E | T (z)= E(z,s). So the Fourier expansion
of E(qz,s) at zero is the Fourier expansion ofE(z,s) at infinity. Now we can find the
matrixM(s). Let E(z,s) = (E∞(z,s),E0(z,s))

T be the vector of Eisenstein series
indexed by the cusps. Set(E(z,s),E(qz,s))T =M(s)E(z,s). To findM(s) we look
at the zero Fourier coefficients in this matrix equation and recall that the scattering
matrix is symmetric to get

ys+φ(s)y1−s =m11(s)
(
ys+φ∞∞(s)y1−s)+m12(s)φ0∞(s)y1−s ,

qsys+q1−sφ(s)y1−s =m11y
1−sφ0∞(s)+m12(s)

(
ys+φ00(s)y

1−s),
qsys+q1−sφ(s)y1−s =m21

(
ys+φ∞∞(s)y1−s)+m22(s)φ0∞(s)y1−s ,

ys+φ(s)y1−s =m21(s)φ0∞(s)y1−s+m22(s)
(
ys+φ00(s)y

1−s).

This system givesM(s)= ( 1 qs

qs 1

)
and

�(s)= 1

q2s−1
φ(s)

(
q−1 qs−q1−s

qs−q1−s q−1

)

as in [12, p. 536]. Consequently det�(s)= φ(s)2(q2−2s−1)/(q2s−1). The scattering
poles are ats0= ρ/2, whereρ is a nontrivial zero ofζ(s), and they have multiplicity
2, assuming Condition A. The zeros ofq2s − 1 do not give scattering poles, since
φ(s) has a factor 1/ζ(2s)=∏

p(1−p−2s).
Now assume thatg(z) is a holomorphic cusp form of weight 2 for�0(q), which

is also an eigenform of the whole Hecke algebra, with eigenvalueεq for Wq . It
follows from [1] that εq = ±1, a(q) = −εq , and a(nq) = a(n)a(q). Let g(z) =∑

n>0a(n)e
2πinz be the Fourier expansion ofg(z) at infinity. For its Fourier expansion

at zero, we have

g | (T B)(z)= 1

qz2
g

(−1

qz

)
= g |Wq(z)= εqg(z).

So the coefficients at zero areεqa(n).
We are interested in the Rankin-Selberg convolutions ofE(z,1−s0) andE(qz,1−

s0) with g(z) expanded at both cusps, infinity and zero. The convolution ofE(qz,1−
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s0) with g(z) at zero isεq times the convolution ofE(z,1−s0) with g(z) at infinity.
The convolution ofE(z,1− s0) with g(z) at zero isεq times the convolution of
E(qz,1−s0) with g(z) at infinity. For the Rankin-Selberg convolutionR of E(z,1−
s0) with g(z) at infinity, we haveχ1 = χ2 = 1, cn = n1/2−s0σ2s0−1(n), andAn =
2cn/ξ(2−2s0). Using (4.6) we get ats = 3/2−s0,

R = 2π−s0+1

�(1−s0)ζ(2−2s0)2
(
1−q2−2s0

)L(g,2−2s0)L(g,1).

Consequently, by (4.3),

R(1−s0)=
∫
�\H

E∞(z,1−s0)�̇E(z,1−s0)dµ= 2i(1−s0)�(2−2s0)

41−s0π−s0�(2−s0) R.(4.9)

From (4.8) the Fourier coefficientsBm ofE(qz,1−s0) areBm = 0, if q � m andBnq =
Anq

1/2. The Rankin-Selberg convolution ofE(qz,1−s0) with g(z) at infinity is

∞∑
m=1

Bma(m)

ms
=−εqq1/2−s

∞∑
n=1

Ana(n)

ns
=−εqq1/2−sR.(4.10)

Using (1.2) we get that the first variation of the weighted mean of the scattering poles
at s0 is

ṡ = A(1+εq)
(
q2−2s0−1+εq

(
q−q2s0−1))

L(g,2−2s0)L(g,1),(4.11)

where

A= 4−s0π2s0i(1−s0)�(2−2s0)

2q2s0−1
(
1−q2−2s0

)2
�(s0)�(2−s0)ζ(2−2s0)ζ ′(2s0)m(2s0−1)

.

We notice that ifεq = 1, then the functional equation forg(z), which has a sign
−εq , forcesL(g,1)= 0. In both casesεq =±1, we havės = 0. This proves the first
statement in Theorem 1.5.

To apply Theorem 1.3 we notice that(A1(z,s0),A2(z,s0))= Ress=s0 φ(s)(E(z,1−
s0),E(qz,1−s0)). Also

V =M(s0)
−1= 1

1−q2s0

(
1 −qs0
−qs0 1

)
.

Using (4.9) and (4.10) we get

(
a1
1 a1

2

a2
1 a2

2

)
= Ress=s0 φ(s)

R(1−s0)
1−q2s0

(
1+q2s0−1 −qs0−qs0−1(−qs0−qs0−1

)
εq

(
1+q2s0−1

)
εq

)
.

(4.12)
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If L(g,1) = 0, thenR = 0 and we cannot solve the eigenvalue problem for the
zero matrix(aji ). If εq = −1, the matrix in (4.12) has eigenvalue equationλ2 =
(1+q2s0−1)2−(qs0+qs0−1)2. If λ= 0 is an eigenvalue, thenqs0 =±1 orqs0−1=±1.
However, since 2s0 is a zero ofζ(s), this is impossible (|qs0| = q1/4, |qs0−1| = q−3/4).
Also the eigenvalues are distinct and have sum zero. Since�(2− 2s0) = 3/2, the
valuesL(g,2−2s0) are at the edge of the critical strip; using the argument of de la
Vallée Poussin and Hadamard proving thatζ(1+ it) �= 0 (see [26]), we see that this
value is nonzero. This completes the proof of Theorem 1.5.

5. Proof of Theorem 1.9. The idea is to prove that, for a positive proportion of the
scattering poles, theλ(1)i ’s in (3.7) for one of the two directions are not imaginary. For
that we should prove that the quotient of the ones corresponding tof andg is not real
for a positive proportion of the scattering poles. From (4.9) and (4.12) it is clear that,
when we take the quotient, we are left withL(g,1)L(g,3/2−iγ )/(L(f,1)L(f,3/2−
iγ )) and all the other factors involving the zeta, gamma functions, andq cancel
because they are the same irrespective of the tangent direction. The valuesL(f,1) and
L(g,1) are real for newforms with real coefficients. This reduces the issue to proving
that, for a positive proportion ofγ ’s, the quotientL(f,3/2+ iγ )/L(g,3/2+ iγ ) is
not real. This is equivalent to the nonvanishing ofL(g,3/2+ iγ )L(f,3/2− iγ )−
L(g,3/2−iγ )L(f,3/2+iγ ). We prove weighted mean value results for these values.
Let the Hecke eigenvalues forf (z) beβ1(p) andβ2(p), and let the Hecke eigenvalues
for g(z) beα1(p) andα2(p). We introduce weights

B(s,P )=
∏
p≤P

(
1−α1(p)p

−s)(
1−α2(p)p

−s)(
1−β1(p)p

−s)(
1−β2(p)p

−s)

forP a suitable prime. Let us denote by∗ the operation of Rankin-Selberg convolution
on two Dirichlet series, and letN(T ) be the number of zerosρ = 1/2+ iγ of ζ(s)
with 0< γ ≤ T .

Proposition 1. Under the RH,∑
0<γ≤T

B
(
3/2+ iγ,P )

L
(
g,3/2+ iγ )

L
(
f,3/2− iγ )

∼ B(·,P )L(g, ·)∗L(f, ·)(3)N(T )

(5.1)

and, by symmetry,∑
0<γ≤T

B
(
3/2+ iγ,P )

L
(
f,3/2+ iγ)

L
(
g,3/2− iγ )

∼ B(·,P )L(f, ·)∗L(g, ·)(3)N(T ).

(5.2)

Proposition 2. Let

A(γ )=B(
3/2+iγ,P )(

L
(
g,3/2+iγ )

L
(
f,3/2−iγ)−L(

f,3/2+iγ)
L

(
g,3/2−iγ))

.
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Under RH, ∑
0<γ≤T

|A(γ )|2$N(T ).(5.3)

Remark 5.1. The discrete mean value results in Propositions 1 and 2 correspond
to mean value theorems forζ(s)4 andζ(s)8, respectively, on the line of convergence
�s = 1. It is well known that on this line one has mean value theorems for all powers
of ζ(s) (see [31, p. 148, 7.7.1]).

Proposition 3. Under RH and (1.5) there exists aP such that the two limits in
(5.1) and (5.2) are different, that is,∑

0<γ≤T
A(γ )∼ C ·N(T ), C �= 0.(5.4)

In fact, we need the weightsB(s,P ) here. Without them the mean values in (5.1)
and (5.2) are equal. The rest of the proof of Theorem 1.9 is easy. By the Cauchy-
Schwarz inequality, (5.3), and (5.4), we have

∑
0<γ≤T ,A(γ ) �=0

1≥
∣∣∑

0<γ≤T A(γ )
∣∣2∑

0<γ≤T |A(γ )|2
 |C|

2N(T )2

N(T )
= |C|2N(T ).

This proves that a positive proportion of theA(γ )’s are nonzero; in particular, for the
sameγ ’s, the quotientL(g,3/2+ iγ )/L(f,3/2+ iγ ) is not real.

Proof of Proposition 1. The idea is to imitate the method used by Gonek [9] to
prove discrete mean value formulas for the zeta function. More precisely, [9, Th. 1]
states ∑

0<γ≤T
xρ =− T

2π
.(x)+O(

x log(2xT ) log log(3x)
)

+O
(

logxmin

(
T ,

x

〈x〉
))
+O

(
log(2T )min

(
T ,

1

logx

))
,

(5.5)

wherex, T > 1, and〈x〉 denotes the distance fromx to the nearest prime power other
thanx itself. This is a uniform version of a theorem by Landau (see [9]). We use the
approximate functional equation forL(f,s) andL(g,s), as stated in [10, Kor. 2, p.
333]. If s = 3/2+ it , we have

L(g,s)=
∑

n≤|t |q/2π
ann

−s+χ(s)
∑

n≤|t |q/2π
ann

s−2+O(|t |−1/2+ε)(5.6)

with χ(s)= (2π/q)2s−2�(2−s)/�(s). The weightsB(s,P ) are given by a Dirichlet
polynomial of fixed length depending onP , say,B(s,P )=∑

n≤R cnn−s . Let

B(s,P )L(g,s)=
∞∑
n=1

dn

ns
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and

B(s,P )
∑

m≤|t |q/2π

am

ms
=

∑
n≤|t |qR/2π

d ′n
ns
.

Clearly, ifn≤ |t |q/2π , we haved ′n = dn. Moreover,dn andd ′n grow no more quickly
thanan, that is,an, dn, d ′n$ n1/2+ε by the Ramanujan conjecture. The approximate
functional equation forL(f,s) gives

L(f,s)=
∑

n≤|t |qR/2π
bnn

−s+χ(s)
∑

n≤|t |q/(2πR)
bnn

s−2+O(|t |−1/2+ε).(5.7)

The main term in

∑
0<γ≤T

B
(
3/2+ iγ,P )

L
(
g,3/2+ iγ )

L
(
f,3/2− iγ )

(5.8)

comes from

∑
0<γ≤T

∑
n≤γ qR/2π

d ′nn−3/2−iγ ·
∑

n≤γ qR/2π
bnn

−3/2+iγ

=
∑

0<γ≤T


 ∑
n≤γ qR/2π

d ′nbn
n3
+

γ qR/2π∑
n�=m

d ′mbn
(nm)3/2

( n

m

)iγ 
= Z1+Z2.

We have

Z1=
∑

0<γ≤T


 ∞∑
n=1

dnbn

n3
−

∑
n>γqR/2π

dnbn

n3
+

∑
n≤γ qR/2π

(d ′n−dn)bn
n3




=N(T )B(·,P )L(g, ·)∗L(f, ·)(3)+C1+C2,

where

C1$
∑

0<γ≤T

∑
n>γ

n−2+ε $
∑

0<γ≤T
γ−1+ε = o

(
N(T )

)

and

C2$
∑

0<γ≤T

∑
n>γq/2π

(
d ′n−dn

)
bn

n3
$

∑
0<γ≤T

∑
n>γ

n−2+ε = o
(
N(T )

)
.
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Using (5.5) we get

Z2=
∑

n≤T qR/2π

∑
m<n

∑
2πn/(qR)≤γ≤T

[
d ′mbn
n2m

( n

m

)ρ+ d ′nbm
n2m

( n

m

)ρ]

=− T

2π

∑
n≤T qR/2π

∑
m<n

d ′mbn+d ′nbm
n2m

.
( n

m

)

+O

 ∑
n≤T qR/2π

∑
m<n

d ′mbn+d ′nbm
nm

.
( n

m

)


+O

 ∑
n≤T qR/2π

∑
m<n

d ′mbn+d ′nbm
nm2

log

(
2nT

m

)
log log

(
3n

m

)


+O

 ∑
n≤T qR/2π

∑
m<n

d ′mbn+d ′nbm
n2m

log
( n

m

)
min

(
T ,

n/m

〈n/m〉
)



+O

log(2T )

∑
n≤T qR/2π

∑
m<n

d ′mbn+d ′nbm
n2m

min

(
T ,

1

log(n/m)

)


=Z21+Z22+Z23+Z24+Z25.

To estimateZ21 andZ22, we setn= km. We get

Z21$ T

2π

∑
k≤T qR/2π

∑
m<T qR/(2πk)

.(k)

k3/2−εm2−ε =O(T ),

since.(k)$ kε and the sums are partial sums of two convergent series. Moreover,

Z22$
∑

k≤T qR/2π

∑
m<T qR/(2πk)

.(k)

k1/2−εm1−ε $
∑
k$T

.(k)

k1/2−ε

(
T

k

)ε

$ T 1/2+ε.

Similarly, one easily getsZ23$ T 1/2+ε logT log logT . ForZ24 we setn = lm+ r,
where−m/2< r ≤m/2. This implies that

〈
l+ r

m

〉
=



|r|
m
, if l is a prime power andr �= 0,

≥ 1

2
, otherwise.
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Together withn/m≤ n≤ cT , c = qR/(2π), this gives

Z24$ logT
∑
n≤cT

∑
m<n

1

m3/2−εn1/2−ε〈n/m〉

$ logT
∑
m≤cT

∑
l≤%cT /m&+1

∑
−m/2<r≤m/2

1

m3/2−ε(lm+r)1/2−ε 〈
l+r/m〉

$ logT
∑
m≤cT

∑
l≤%cT /m&+1

(
.(l)

m logm

m3/2−ε(lm)1/2−ε
+ m

m3/2−ε(lm)1/2−ε

)

$ logT
∑
m≤cT

logm

m1−2ε

∑
l$cT /m

lε

l1/2−ε

$ T 1/2+ε logT
∑
m≤cT

logm

m3/2−ε $ T 1/2+ε logT .

ForZ25 we setm= n−r, 1≤ r ≤ n−1, so that log(n/m) > r/n. This gives

Z25$ logT
∑
n≤cT

∑
r≤n−1

n/r

n3/2−ε(n−r)1/2−ε $ logT
∑
n≤cT

1

n1/2−ε
∑

r≤n−1

1

r

$ logT
∑
n≤cT

logn

n1/2−ε $ T 1/2+ε logT .

The analysis above depends only on the order of growth ofd ′n andbn, so we can get
the bounds

∑
γ≤T

∣∣∣∣∣
∑

n≤γ qR/2π
d ′nn−3/2−iγ

∣∣∣∣∣
2

$N(T ),(5.9)

∑
γ≤T

∣∣∣∣∣
∑

n≤γ q/(2πR)
bnn

−3/2+iγ
∣∣∣∣∣
2

$N(T ).(5.10)

Moreover, we can repeat the argument with trivial modifications to estimate

∑
γ≤T

∣∣∣∣∣
∑

n≤γ q/2π
ann

−1/2+iγ
∣∣∣∣∣
2

$ T 1+εN(T ),(5.11)

∑
γ≤T

∣∣∣∣∣
∑

n≤γ q/(2πR)
bnn

−1/2−iγ
∣∣∣∣∣
2

$ T 1+εN(T ).(5.12)
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We also need to analyze the order of growth of the derivative of|χ(3/2+ iγ )|2. We
have

d

dγ

∣∣∣χ(
3/2+ iγ )∣∣∣2= i(2π/q)2

∣∣∣χ(
3/2+ iγ )∣∣∣2

·
(
ψ

(
1/2− iγ )+ψ(

1/2+ iγ )−ψ(
3/2+ iγ )−ψ(

3/2− iγ ))
,

whereψ(z)= �′(z)/�(z). We can differentiate the asymptotics of log�(z) (see [11,
8.344, p. 949]), to get

ψ(z)= logz− 1

2z
+O(z−2).

We also use the asymptotic formula∣∣∣�(x+ iy)∣∣∣∼√2πe−π |y|/2|y|x−1/2, |y| −→∞, x,y ∈R(5.13)

(see [11, p. 945, 8.328.1]), to get

d

dγ

∣∣∣χ(
3/2± iγ )∣∣∣2$ γ−3.(5.14)

We use summation by parts, (5.14), (5.11), and (5.12) to estimate

∑
γ≤T

∣∣∣χ(
3/2+ iγ )∣∣∣2

∣∣∣∣∣
∑
n≤R

cnn
−3/2−iγ

∣∣∣∣∣
2 ∣∣∣∣∣

∑
n≤γ q/2π

ann
−1/2+iγ

∣∣∣∣∣
2

$ T ε = o
(
N(T )

)
,

∑
γ≤T

∣∣∣χ(
3/2− iγ )∣∣∣2

∣∣∣∣∣
∑

n≤γ q/(2πR)
bnn

−1/2−iγ
∣∣∣∣∣
2

$ T ε = o
(
N(T )

)
.

Finally we use the Cauchy-Schwarz inequality, (5.9), (5.10), and the two equations
above to estimate all other product terms in (5.8) aso(N(T )).

Lemma 5.2. For 0≤ a < 3/2, there exists a constantc > 0 such that

∑
n≤x

|an|
na
$ x3/2−a

logc x
(5.15)

and

∑
n≤x

|an| logn

na
$ x3/2−a log1−c x.(5.16)

Similar estimates hold forbn.
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Proof. SetA(x)=∑
n≤x |a′n|, wherean = a′n

√
n. Rankin’s estimate [27] implies

thatA(x)$ x(logx)−c for somec > 0. We have

∑
n≤x

|an|
na
=

∑
n≤x

|a′n|
na−1/2

= A(x)

xa−1/2
+(a−1/2)

∫ x

1
A(t)t−a−1/2dt

using partial summation. Notice that
∫ x

2 t1/2−a log−c t dt $ x3/2−a log−c x. The sec-
ond estimate is proved similarly.

Proof of Proposition 2. SinceB(3/2+ iγ,P ) is a finite Dirichlet polynomial, it
is bounded independently ofT . To estimate

∑
γ≤T |A(γ )|2, it suffices to estimate

∑
γ≤T

∣∣∣L(
g,3/2+ iγ )∣∣∣2∣∣∣L(

f,3/2+ iγ )∣∣∣2$N(T ).(5.17)

As in the proof of Proposition 1, we use the approximate functional equation on
�s = 3/2 for L(g,s) andL(f,s) (see (5.6), (5.7)),

L(f,s)=
∑

n≤|t |q/2π
bnn

−s+χ(s)
∑

n≤|t |q/2π
bnn

s−2+O(|t |−1/2+ε)

=W1+χ(s)W2+O
(|t |−1/2+ε),

L(g,s)= Y1+χ(s)Y2+O
(|t |−1/2+ε).

We have

∑
0<γ≤T

Y1Y1W1W1=
∑

0<γ≤T

∑
m,n,µ,ν≤γ q/2π

ambnaµbν

(mnµν)3/2

(µν
mn

)iγ
.(5.18)

The main term comes again from the contribution of the diagonal terms, and the
number of solutions tomn= µν = r is less than or equal tod(r)2, whered(r) is the
divisor function. The main term can be estimated as

∑
γ≤T

γ q/2π∑
mn=µν

ambnaµbν

(mn)3
$

∑
γ≤T

∞∑
r=1

d(r)2r1+2ε

r3
$N(T ),(5.19)

since the inner series converges. We setµν = r andmn = s. We can treat the case
s < r ands > r separately. The range of the following sums is subject to the restriction
m,n,µ,ν ≤ T q/(2π). For s < r the other terms in (5.18) contribute

Z2=
∑

r≤(T q/2π)2

∑
s<r

∑
m|s,µ|r

ambs/maµbr/µ

r3/2s3/2

∑
K≤γ≤T

( r
s

)iγ
,(5.20)
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whereK =min(T ,(2π/q)max(m,s/m,µ,r/µ)). We apply (5.5) toZ2:

Z2=
∑
r$T 2

∑
s<r

∑
m|s,µ|r

ambs/maµbr/µ

r2s


 ∑

0<γ≤T

( r
s

)ρ−∑
γ<K

( r
s

)ρ


=
∑
r$T 2

∑
s<r

∑
m|s,µ|r

ambs/maµbr/µ

r2s

K−T
2π

.
( r
s

)

+O

 ∑
r$T 2

∑
s<r

∑
m|s,µ|r

ambs/maµbr/µ

rs2
log

(
2T r

s

)
log log

(
3r

s

)


+O

 ∑
r$T 2

∑
s<r

∑
m|s,µ|r

ambs/maµbr/µ

r2s
log

( r
s

)
min

(
T ,

r/s

〈r/s〉
)



+O

 ∑
r$T 2

∑
s<r

∑
m|s,µ|r

ambs/maµbr/µ

r2s
log(2T )min

(
T ,

1

log(r/s)

)


=Z21,2+Z23+Z24+Z25.

ForZ21,2 we setr = sk and notice thatd(r)$ rε , d(s)$ sε , andK ≤ T to get

Z21,2$ T
∑
k$T 2

∑
s$T 2/k

.(k)s1/2+ε(sk)1/2+ε

s3k2
$ T ,

since both series converge. Using (5.15), we get

∑
µ,ν≤T q/2π

aµbν

µν
$ T

log2c T
.

We have

Z23$ logT log logT
∑

m,n,µ,ν

anbmaµbν

µνm2n2

$ logT log logT
T

log2c T
= o

(
N(T )

)
,

since the series
∑

amm
−2 converges.

For Z24 we setr = ls+ t , −s/2 < t ≤ s/2, and we distinguish two cases as in
Proposition 1. Case 1 occurs whenl is a prime power andt �= 0, and case 2 happens
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otherwise. The contribution from case 2 is

$ logT
∑

m,n,µ,ν

ambnaµbν

µνm2n2
$ T log1−2c T ,

as for the estimate ofZ23. In case 1 we distinguish two subcases depending on whether
T is larger than(r/s)/〈r/s〉 or not. If T is larger,T > µν/|t |, which impliesT > l.
The contributionZ24,1 of these terms is

Z24,1$
∑

m,n,µ,ν

∑
T>l

ambnaµbν

mnµν|t | log
(
l+ t/(mn))

$
∑
m,n

ambn

mn

∑
0�=|t |<mn/2

∑
l≤T

logl

(lmn+ t)1/2−ε |t |

$
∑
m,n

ambn

(mn)3/2−ε
log(mn)

∑
l≤T

logl

(l−1/2)1/2−ε

$ T 1/2+ε ∑
m,n≤T q/2π

aman log(mn)

(mn)3/2−ε
$ T 1/2+3ε log2−2c T ,

using (5.16) and log(mn)≤ logn logm for logn, logm≥ 2.
If T is smaller than(r/s)/〈r/s〉, we haveT ≤ µν/|t | and this impliesl >

T |t |/(2mn). Let the contribution of these terms beZ24,2. We first analyze the sum-
mation overµ, ν. We see that

∑
µν≥T |t |

aµbν

µ2ν2
$

∑
0�=|t |≤mn/2

∑
l>T |t |/(2mn)

1

(lmn+ t)3/2−ε

$ 1

(mn)3/2−ε
∑

0�=|t |≤mn/2

(
T |t |
2mn

)−1/2+ε

$ T −1/2+ε 1

(mn)1−ε
∑

0�=|t |≤mn/2
|t |−1/2+ε $ (T mn)−1/2+ε.

The summation overm, n now gives

Z24,2$ T logT
∑

m,n≤T q/2π

ambn

(mn)3/2−ε
T −1/2+ε

$ T 1/2+ε logT
(
T ε/ logc T

)2= o
(
N(T )

)
.
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This takes care ofZ24. Using again the Ramanujan conjecture foran, bµ, we get

Z25$ logT
∑

m,n,µ,ν≤T q/2π,s<r

bnamaµbν

µ2ν2mn log(µν/(mn))

$ T ε logT
∑

s<r≤(T q/2π)2

d(r)d(s)

r3/2s1/2 log(r/s)

$ T ε logT
∑

s<r≤(T q/2π)2

1

sr log(r/s)
$ T ε logT

(
logT 2)2

,

where in the last line we used [31, Lemma 7.2, p. 139], with the obvious modifications
for σ = 1.

The rest of the proof follows as in the proof of Proposition 1. In fact one can easily
see that we can not only get upper bounds for

∑
γ≤T |A(γ )|2, but we can also identify

the main term in the asymptotics of it.

Proof of Proposition 3. It is clear that the product of two Dirichlet series with
multiplicative coefficients also has multiplicative coefficients and this is also true for
their Rankin-Selberg convolution. This allows us to work the Euler factors separately
for each prime. Since

B(s,P )L(g,s)=
∏
p>P

[(
1−α1(p)p

−s)(
1−α2(p)p

−s)]−1

×
∏
p≤P

(
1−β1(p)p

−s)(
1−β2(p)p

−s),(5.21)

the convolutionB(s,P )L(g,s) ∗L(f,s) has the same Euler factors forp > P as
L(g,s)∗L(f,s). The same is true for the Euler factors withp > P forB(s,P )L(f,s)∗
L(g,s). So when we subtract (5.2) from (5.1) to get (5.4) we get a factor∏

p>P

(
1−α1(p)α2(p)β1(p)β2(p)p

−2s) ∏
1≤i,j≤2

(
1−αi(p)βj (p)p−s

)−1

using [30, Lemma 1]. The value of this ats = 3 is nonzero, since 3 is in the domain
of convergence. To show that the asymptotics in (5.4) haveC �= 0 for someP , let
us assume that for allP prime the difference in the other Euler factors withp ≤ P

in (5.1) and (5.2) is zero ats = 3. We analyze these Euler factors. Fixp ≤ P . For
B(s,P )L(g,s)∗L(f,s) we get

(
1−b(p)p−s+p1−2s)∗ ∞∑

k=0

b
(
pk

)
p−ks = 1−b(p)2p−s+pb(

p2)
p−2s



PERTURBATION OF SCATTERING POLES 129

while for B(s,P )L(f,s)∗L(g,s) we get

(
1−a(p)p−s+p1−2s)∗ ∞∑

k=0

a(pk)p−ks = 1−a(p)2p−s+pa(p2)p−2s .

The Hecke relations giveb(p2) = b(p)2−p anda(p2) = a(p)2−p. If for all P
we have∏

p≤P

(
1+b(p)2(

p−5−p−3)−p−4
)
=

∏
p≤P

(
1+a(p)2(

p−5−p−3)−p−4
)
,

we get equality for the individual terms, by considering successive primesP and by
dividing the corresponding relations. This givesb(p)2= a(p)2 for all p, contradicting
the assumption (1.5). The casep = q is even simpler.
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