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PERTURBATION OF SCATTERING POLES FOR HYPERBOLIC
SURFACES AND CENTRAL VALUES OFL-SERIES

YIANNIS N. PETRIDIS

1. Introduction. LetI'\H be a noncompact hyperbolic surface of finite area. In
the analysis of the Laplace-Beltrami operator on it, apart from/thepectrum, a
crucial role is played by the scattering poles. They appear in the analog of Weyl's
law, in the Selberg zeta function, and in the determinant of the Laplace operator; see
[18]. More important is the fact that imbedded eigenvalues become scattering poles
under perturbation (see [25]). In this work we study variation formulas arising from
perturbations of scattering poles.

A scattering pole is a pole of the analytic continuation of the determinant of the
scattering matrix® (s) to the left half-planefis < 1/2. These poles show among
the poles of the analytic continuation of the resolvent on the same half-plane. But,
generally, they are not exactly the same. There can be only finitely many exceptions
for 0 < s < 1/2, where the resolvent has a polesgt corresponding to a cuspidal
eigenvaluep(1l—so) € [0, 1/4), and where deb(s) has a zero afy. We assume that
this does not happen, or, alternatively, we look at scattering poles that do not lie on
the interval[0, 1/2).

Let E(z,s) = (E1(z,5),..., E.(z,5))T be the vector of Eisenstein series indexed
by the cusps. Leir be the multiplicity of the pole of deb(s) atsg. We sets(¢) to
be the weighted mean of scattering poles; that i, (@) = s2(0) = - - - = 5, (0) = 50
and if the scattering poles split ag(¢), s2(¢), ..., si (€), when the perturbation is
switched on, then

m

1
s(e) = ZZS,-(E).

i=1
The first theorem concerns the first variations¢f) ate = 0:

d
s = —s5(0).
§= 2500

Throughout this work/;. denotes the invariant hyperbolic measdsely/y2.

THeEOREM 1.1 Assume all the Eisenstein series have a pole of order at inaist
so. For a compactly supported perturbation of the metric, the first variation of the
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weighted mean of the scattering polesaiof multiplicity m is
1

1.1 =
(1) ’ m2s0—1) Jr\u

E(z,1—50)" Res—y, ®(s) AE(z, 1—s0) d .

Remark 1.2. Let the space of residues of Eisenstein serieg &tave dimension
m < n. According to Lemma 3.1 the order of the pole of &€t) atsg is m. We can
find an invertible matrix( such that

A(z,s50) =M lim (s —sg)E(z, s)
s— 50

has the firstm elementsA; (z, so) linearly independent and;(z,sg) = 0 for i >

m. Extend M to a holomorphic matrixM (s) close tosg in any way desired. Let
E(z,s) = M(5)E(z,5) = (e1(z, $),...,en(z,5))T be a new basis of the Eisenstein
series. SeA(z,s) = (s —s0)E(z, s). We have(A +1/4) A, (z, so) = A%Ai (z, s0) With
ro=s50—1/2. SetV =V (so) = (vji) = M (so)~L. Itis easy to see that all entries of
®(s) have a pole of order at most 1satby looking at the zero Fourier coefficient of
E;(z,s) at the j-cusp. We can write (1.1) as

(1.2)
1

f=— E(z,1—s0)! ReS—s, ®(s)M(1—s0) *AE(z,1—s0)du,
m(2so—1) Jr\n %0

if one continues the new basis analytically to the poiatgd. In the important example
of congruence subgroup® (s) is explicitly given as the change of basis matrix from
the Eisenstein series indexed by the cusps to the Eisenstein series with characters.

CoroLLarY 1. For a compactly supported perturbation of the metric, the first
variation of a scattering pole ai with multiplicity 1 for a surface with one cusp is

s =

Res—y, ® AE(z,1-50))E(z. 1-s0)dp.
5 Res—u 00) [ o (AEG1-50)EG 1-s0)du

CoroLLARY 2. For a compactly supported conformal perturbation of the metric
ge = e/ go, wheref € C°(T"\ H), the first variation of the scattering pole af with
multiplicity 1 for a surface with one cusp is

« s0(1—s0)

1.3
(1.3) 2s0—1

Res—o @) [ f@EG.1-s02dn.
r\H
Since we assume that the scattering peleas multiplicitym, we are also interested
in breaking the degeneracy under perturbation. We have the following theorem.

THeorREM 1.3 Assume that all the Eisenstein series have a pole of order at most
1 at sg, which is a scattering pole of multiplicity. Consider the matrix

n
(a;)=f AAi(z.50 ) Ex(z. 1=so)uidp, i,j=12....m.
MH k=1
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If its eigenvalues are distinct and nonzero, then the degeneracy of the scattering
pole atsg is removed by the compactly supported perturbation and the branches of
scattering poles are distinct ap.

Remark 1.4. The restriction that all the Eisenstein series have a pole of order
at most 1 atsp may seem too strict. However, in all examples where the scattering
matrix has been computed, that is, certain congruence subgroupSafZALit is
easily verified, assuming that the zeros of thseries involved are simple.

The simplest hyperbolic surface with a cusp iS(&LZ) \ H. The scattering matrix
for SL(2,Z)\H is

&P —s5)c(2—2s)
['(s)¢(2s) '

The functiong (s) plays a special role for other congruence subgroups, because it
appears as a factor of dets).

(1.4) ¢(s) =

ConpiTioN A. The nontrivial zerog of the Riemann zeta function are simple,
and they lie oriis = 1/2.

The second part of the condition is the Riemann hypothesis (RH). It implies that
the poles ofg(s) are atso = p/2 = 1/4+iy/2, wherey € R. The simplicity of
the zeros is also a natural condition to assume. Numerical evidence by Odlyzko [20]
suggests that this is indeed true. Montgomery [17] proved that the pair correlation
conjecture implies that almost all zeros are simple, and RH implies that at J&ast 2
the zeros are simple. Unconditionally Conrey [3] proved that at ledsbPthe zeros
are simple, while under RH and the generalized Lindel6df hypothesis at leA&7 19
of the zeros are simple (see [4]). The following weak form of the Mertens hypothesis
implies that all the zeros of the zeta function on the critical line are simple (see [31,
Th. 14.29, p. 376]). Lef(n) be the Mdbius function, and léi/(x) = >, _ u(n).

Then N 5
/ (M(x)> dx = 0(logX).
1 X

We apply the perturbation results of Theorems 1.1 and 1.3 to the character varieties
of I'o(g), whereg is a prime number. The perturbations are generated by holomorphic
cusp forms of weight 2 foFo(q). Let g(z) be such a form that has real coefficients,
is a Hecke eigenform, and has eigenvadyidor the Fricke involutionW,, (¢, = £1).

We have the following theorem.

THEOREM 1.5 For T'g(g), g prime, the first variation of the weighted mean of
scattering poles at anyp is zero.

(a) If the central valuel.(g, 1) of the L-series ofg vanishes (which happens auto-
matically ife, = 1), then first-order degenerate perturbation theory does not remove
the degeneracy at any.
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(b) If L(g,1) # 0, then the degeneracy is resolvdd,g, 1) is a factor of the first
variation of the branches of scattering poles at ay and the branches are not
constant, that is, the scattering poles move.

In fact, L(g,1) andL(g,2—2sg) are factors of all the variation formulas, and the
second value is on the line of convergencd.¢$, s).

Examples of groups that have a newfopty) with L(g,1) = 0 areT'p(g) with
q = 37,43,53,61, 79,83, 89. The groups witly = 37 and 89 have two newforms and
only one has the central value vanishing. The other groups have only one newform.
In all cases the order of vanishing is exactly 1 ape= 1. Examples of groups with
all newformsg(z) havingL(g, 1) # 0 arel'o(g), with ¢ = 11,17,19,67,73. In fact
they all have only one newform. The special value at 1 of ih&eriesL(g, s) has
been studied extensively in relation to the rank of the group of rational points of the
elliptic curveC/A,, whereA, is the period lattice og(z). The order of vanishing
of L(g,s) ats =1 is, according to the Birch-Swinnerton-Dyer conjecture, equal to
the rank of the elliptic curve. There has been extensive numerical evidence for the
conjecture (see [5]), from where we collected the data above.

Theorem 1.5 relates the nonvanishinglaf, s) ats = 1 to the movement of the
scattering poles away from the position described by the zeros of the Riemann zeta
function.

Remark 1.6. The central value of th&-series of a cusp form of weight 2 or 4 also
appears in the first variation of resonances/at ih [22].

Remark 1.7. In Section 4.2 we explain how Theorems 1.1 and 1.3 can be applied
to the groupso(N), N composite, andl'(N) to produce similar results as in Theorem
1.5. The values of thé-series involved are central values of twist&, x, s), where
the conductor ofy dividesN.

Remark 1.8. One can also study perturbations of the metric in Teichmiiller space.
In this case the tangent direction is specified by a holomorphic cuspdafweight
4. One gets similar results to Theorem 1.5. The central vAlige?2) shows up as a
factor of the variation formulas. We intend to study this phenomenon elsewhere.

One would like to know which direction (most of) the scattering poles move. One
hopes that most will move off the lings = 1/4 under perturbations in character
varieties. Let us assume the character variety has two tangent directions generated
by two distinct newformsf (z) andg(z) of I'o(g), which have nonvanishing central
values for theirL-series:L(f,1)L(g,1) # 0. An extra technical assumption is the
following condition.

ConpITION B. There exists a primg such that the corresponding Fourier coeffi-
cientsb(p) anda(p) satisfy

(1.5) a(p)? # b(p)*.



PERTURBATION OF SCATTERING POLES 105

This condition is mild. Two cusp forms with equal coefficients (except possibly
finitely many of them) are identical. In the case when one offtla&dg is a quadratic
twist of the other, condition (1.5) fails, but the levels of the forms do not agree. Let
the curves of characters generated pyndg be xr. and x, ., respectively; see
(4.1). We prove that, under Conditions A and B and for at least one of the férms
g, a positive proposition of the scattering poles move off the line prescribed by the
Riemann hypothesis. More precisely, we prove the following theorem.

Tueorem 1.9, For at least one of the two curvege, x,.. and forT' sufficiently
large, we can find & = §(T) > 0 such that there exists a positive proportion of
the scattering poles withsg| < T that are to the left ofis = 1/4 and a positive
proportion that are to the right of it for characters in tlieneighborhood of the trivial
character and on the curve.

Remark 1.10. Selberg [29] has constructed a famjty«) of characters of'p(4)
with the following property: for a given vertical line, one can fimduch that there
are scattering poles for the characygt) to the left of the vertical line, and, in fact,
approximatelyc - T of them have imaginary parts satisfying|y| < T, for T large.
In the case of Theorem 1.9 the number of scattering poles|yijta T is asymptotic
to ¢-T'logT. Extensions of this result can be found in [2].

Remark 1.11. The assumption of RH is technical but clarifies the picture on the
side of the scattering theory. If RH fails in the strong sense that there is a positive
proportion of zeros of (s) off s = 1/2, then the corresponding scattering poles are
off Ms = 1/4 before the deformation and remain off f&7T) sufficiently small. If
zero proportion of the zeros ¢fs) are off s = 1/2, the proof in Section 5 needs to
be modified. We can work as in [8], where the main theorem on discrete mean values
of ¢(s) and its derivatives is proved without assuming RH.

Remark 1.12. For hyperbolic surfaces and for a charactethat is singular with
respect toc; > 0 cusps, one has

Jal(s—1/2

K1
detq>(s)=( ) )> aGObGOY 2 L(s, ).

whereL (s, x) is a Dirichlet series with constant term 1. It follows that &¢t) does

not vanish foris sufficiently large, which implies through the functional equation
that the scattering poles are contained in a vertical stripNs < 1/2. The constant

o depends on the group and character. Miller [18] raised the question of whether
the same is true for a general surface with cusps. Froese and Zworski [7] gave a
counterexample, which is a rotational symmetric surface. The motivation of this work
was to see whether conformal perturbations of hyperbolic surfaces keep the scattering
poles in a vertical strip or not. We study the sizesdbr conformal perturbations of
SL(2,Z2)\H in [23].
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Remark 1.13. Selberg [29] has shown that if we denote the scattering poleg, by
then

3 1 9i) = “L7logT + 0(T)
2 V%) T 4 ’

0<Js0<T

1
3 (Z—mso> < 5=Tl0glogT +c(a. b, )T +O(log ),
T

0<3Js50<T,Mso<1/4

and
Z (0 —Nso) < ' (a,b,0)T + O(logT)

0<3s50<T,Nsg<o

for o < 1/4. This shows that the distance of the scattering poles to the unitary axis
Ns = 1/2 is on the average not greater thaid 1All the estimates are uniform in the
characters for" fixed, as long as the number= a(y) is bounded away from zero.

It is not known whether other surfaces with cusps satisfy these estimates.

Acknowledgments.The author would like to thank W. Miiller, who suggested the
problem and (independently) proved Corollary 2. The author also thanks P. Sarnak,
R. Murty, and H. Darmon for various suggestions.

2. Preliminary material. We recall some standard facts about the resolvent and
its analytic continuation, which is due to Faddeev [6] (see also [15, Ch. XIV]), and
define the operators and norms of the Lax-Phillips scattering theory as applied to
automorphic functions. LeR(s) = (—A —s(1—s)) "1 be the resolvent of the Laplace
operator. Its kernel is constructed as follows. The fundamental point-pair invariant
is u(z, 7)) = |z—2/|2/(4yy’) for 2,2 € H. We seto(u,s) = [1t(L— )] 1¢ +
u)~*dt/(4m) foro > 0,u > 0,s = o +it, andk(z,z’;s) = p(u(z,7'),s). The kernel
k(z,7';s) is the Green function for the problefv: +s(1—s)h = f atleast for > 1
(see [15, p. 275]). For a discrete cofinite subgrdupf SL(2, R), we set

1
(2.1) r(z,7;s) = EZ(p(u(z,yz’),s)

yell

for o > 1. This is the resolvent kernel. We decompose the fundamental damaifin
[ into

n
F=FuUl| JF;,
j=1
where theF;’s are isometric to the standard cusp. Let the cuspsibey, ..., z,.

There exists &; with gjoo = z;. One can choosg; € SL(2,R) so thatz — g,z
mapsC = {z; —1/2 <Mz < 1/2, 3z > a} one-to-one ontd;. Each functionf on F
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hasn + 1 componentsfo(z) = f(z) for z € Fo and f;(z) = f(g;z) for z € C. One
has the decomposition

L2("\H) = L*(Fo) e @D L*(F)),

j=1

but it turns out that one has to use weighted spaces to define the analytic continuation
of the resolvent. Faddeev [6] introduced the Banach sp&gesvhich consist of
complex-valued functiong (z) whose componentf(z) andf;(z), j =1,...,n, are
continuous onFp andC, respectively, with f;(z)| < cy* for z € C. The u-norm is

|fj(Z)|

Il = maX|fo(z)| +Zmax i

One can attach a meaning to the analytic continuation of the resolvent kernel on a
Riemann surface that is a 2-sheeted covering ofztpéane. We set = s(1— ),

and then thez-plane cut along the raf0, co) corresponds to the right half-plane

s > 1/2 cut along ¥2 < s < 1. Fors, 1—s nonsingular, we have the limiting
absorption principle

1 n
(2.2) r(z,758)—r(z,7;1—s) = 2S—_lj§Ej(z,s)Ej(z/, 1-5),

a proof of which is given in [15, p. 344]. After obtaining the analytic continuation

of the resolvent kernel, one definds) in the following manner. Fixxu < 1/2;
thenR(s) : B, — B1—, is defined forits > p as the integral operator with kernel
r(z,7';s). A slightly different approach that works for all surfaces with cusps and
where the resolvent is considered as an operator-valued function with values in the
bounded operators between weighietspaces was worked out by Maller [19]. It
should be remarked that in (2.2) the Eisenstein series are indexed by the cusps and

are defined as s
o -1
Ej(z,5) = Z (J(gj 01)) ,
o€l \T

wherel; is the stabilizer of the cusp;. This way the zero Fourier coefficient of
E;(z,s) atthe cusp; is §;;y* +¢,j (s)y¥5. The scattering matrix i® (s) = (¢ij(5)).

We setL = A+(1/4), A= (9 }), andE the energy form for the wave equation
Uy = Lu, that i IS,

E((f1, 27) = —(f. Lf) 2+ (f2. f2) 2.

Let H; be the completion of the space of pairg8f functions with compact support
in the norm

G((f1, 7)) = E((f1, 27) +ell fal3
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for ¢ sufficiently large. LetP be the E-orthogonal projection td4, which is the
complement of the spade; @ D_, in Hg, whereD.. are the spaces of outgoing and
incoming data (see [16, p. 121]). The operafomay only change the zero Fourier
coefficients of data at each cusp. The oper®tas the infinitesimal generator of the
semigroupP U (¢) P, whereU (¢) is the standard wave operator. We denoterlpy(z)
the resolvent of an operatdt, that is,Rr(z) = (F —z)~ 1. We have

(2.3) Rp(X) = PRA(M)P

for M sufficiently large (see [16, p. 29]). A calculation with matrices gives

Ra(o ARL(A%)  RL(A?)
Y TA\LRLG2) ARL(G2)

(2.4)
( —AR(A+1/2) —R(A+1/2) )

\I=22R(A+1/2) —AR(A+1/2)

sinceR; (A%) = —R(s) andi = s —1/2.
Call £; the vector(, 4 ). ThenAf; = Ao f;. The eigenvector of the cutoff wave
operatorB is Pf;, sinceBPf; = PAf; = Mo Pf;.

3. Proof of Theorems 1.1 and 1.3.The idea of the proof of Theorem 1.1 is to
use perturbation theory for the cutoff wave operaByrwhich is an operator with
discrete spectrum (see [25, p. 6]). However, siBcés not selfadjoint, we choose
to use variational formulas that use traces (see [14, p. 90]), instead of energy inner
products, as was done in [25, p. 24]. A similar method was used in [21] and [22] to
study the variation of the resonances a4 And Fermi’'s golden rule.

An outgoing eigenfunction oft with eigenvalueig is a pair f = (f1, f»)! that
satisfies the following:

(1) (A—xrp)* f =0 for some integek;

(2) f is outgoing; that is, the zero Fourier coefficiegnl‘e(.”, f2(0) of f1, fo satisfy

£9 = 3325, (£19/y1/2) in the cusps; and
(3) A/ f minus its zero Fourier coefficient in the cusps lieg#g for j =0, 1, ...,
k—1.

Lemma 3.1 All the Eisenstein series have a pole of order at noat s if and
only if so—1/2 is a semisimple eigenvalue of the cutoff wave oper&tor

Proof. Assume that is a semisimple eigenvalue &. According to [25, Th.
3.1] the semisimplicity of the eigenvalug— 1/2 for B is equivalent to the semisim-
plicity of the outgoing eigenspace of at Ao = so — 1/2. We show that any pole
of order greater than 1 for any Eisenstein series produces an outgoing eigenfunc-
tion g = (g1,g2)7 of A with (A — 10)%¢ = 0 but (A — 1g)g # 0, which contra-
dicts the semisimplicity of the eigenspace forIf the pole of the Eisenstein series
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E(z,s) atsg has orderk > 2, setA(z,s) = (s —s0)*E(z,s). By differentiation of
AA(z,s)+s(1—5)A(z,s) =0 ins, we getLB(z, so) —A(Z)B(z,so) = 200A(z, 50),
where B(z, s0) = dA(z,s0)/ds. Setgr = B(z,s0) and g2 = A(z, so) + AoB(z, s0).
Then(A —xo0)g = (A(z, 50), 2oA(z, 50))T # 0. However,(A — A0)2g = 0. It is easy
to check condition (2) fop.

We now prove the converse. Assume the Eisenstein series have poles of order at
most 1 and the space of residues has dimensias in Remark 1.2. We have at least
m eigenvectors foA, the f;, i < m: Af; = Ao f;. If we prove that the order of the
pole of detdb(s) atsg is at mostn, since by [25, Th. 4.1] the order of the pole is the
multiplicity of the outgoing eigenspace df, then the dimension of the eigenspace is
exactlym. Therefore the eigenvalue is semisimple.

We see that\(z, sg) = M(so) Res=s, P(s)E(z,1— s0). Since A;(z,s9) = O for
i >m andE;(z, 1—so) are linearly independent, the matri%(so) Res—,, ©(s) has
zero entries onthe rowa +1, m+2,...,n. SetN(s) = M(s)P(s). Its entries on
the rowsm+1,m+2,...,n should be regular, while the other entries have a pole of
order at most 1. By multiplying the firgt rows bys — sg, we see that

(s —s0)" detN (s) = (s —sg)" detM (s) detd (s)
remains bounded close 9. However, ded (s) # 0, so(s —sg)™ detd (s) remains
bounded close tep. O

The first variation of the weighted mean for a scattering pole, which is also the first
variation of the weighted mean for the eigenvalyeof B, is given by

(3.1) §= iTr(fsQ),
m

where Q is the projection to the eigenspace Bfgenerated by thé f;’s (see [14,
2.33, p. 90)). IfT" is a contour enclosing onlyg = so — 1/2 among the eigenvalues
of B, then, using (2.3) and (2.4) one gets

1 1
0=—— RB(A)dxz——,P/RA(A)dAP
2mi r 2mi r

(3.2)

2mi

1 —AR(A+1/2) —R(A+1/2)
= ——P/ drP
r\I—x2R(A+1/2) —AR(+1/2)
With the standard inner product dR”, we haveZ;%:lEj(Z,S)Ej(Z/,l—S) =
E(Z,1-5)T -E(z,5) = E(Z,1—s)M(s) 1E(z, s).

By (2.2), sincer(z,z’,1—s) is regular atsg, the contour integral in (3.2) is an
operator with integral kernel

E(Z/,1-50)T VA(z,50)/2 E(z',1—s0)T VA(z,50)/(250—1)
(s0—1/2)E(z/, 1—s0)T VA(z, 50)/2 E(Z,1—s0)T VA(z,50)/2 '
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If ¢ = (g1,g2)7 is any pair of data supported in some compact set of the surface
and with zero Fourier coefficient @ andg, vanishing above the cut at= a, then
Pg = g. Let K be the integral operator with kernel

1
K(z,7) = (5) E(z,1—s0)" VA(z, 50).
Then

00— P (Kgl-i-l/(So— 1/2>ng) '

(so—1/2)Kg1+Kg>2
Notice thatK g1 and K g» are linear combinations of th&; (z, so)’s, j < m, andQg

is a linear combination of thef;’s, j < m, as it should be. SincB = (2 8), we have
. 0

3.3 Bfi=|.

(3:3) / (LAi(z, So))

and

Q< 0 )_ 1, K (LAi(z,50))
LAiz50)) " 50-1/2" \(so—1/2)K (LA (z,50)))

. . 1\ |
K (LAi(z,50)) =fF\H LA;(Z s0)K(z,2)dp(z) = <§> a' -A(z.50),

We have

wherea is the row vector

(3.4) a :fLAi(z’,so)E(z’,1—so)TVdu(z’).
Then

0 1 a’ -A(z, 50)
3.5 . =—— P )
(33 Q<LAi(z,so)> 250—1 ((so—l/Z)a"-A(z,so))
Finally,

10108 0) 55 8
LAi(z,50)) ~ 2so—1 \a-LA(z, s0)

for j < m. The operatorBQ mapsH into the space spanned WAi?z,so))' The
functions L A; (z,50), i <m, may not be linearly independent, but, still,(BrQ) =
1/(2s0—1) )i~ a;. This follows from elementary linear algebra: assume that only
the firstk out of them vectors(LA’_?Z,so)) are linearly independent and extend them
to any basis of the whole space. If

k
LAj(z.s0) =) bjLAi(z.50), j=k+1.....m,
=1
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then

k

. 0 ;
(20— DBC (LA,-(z,so)> - X;“J (LA (@ so)) Z Z (LA @ so)>

j= =k+1 =1
The contribution to TeBQ) is (aj + 31 1 a%bji) /(20— 1) and
k

TI’(BQ) mz a; . Z a; b,,

j=k+1
However'Zi'(:laj'bji = a.',’-. for j =k+1,...,m. This is so because (3.5) gives
0 k 0

250—1 : =(250—1 b; .
(20— D0 (LAJ(Zv50)> (20 ); i@ <LAz(z,SO))

k m m

A b 5 A 9
=3 b, Y atp (2, 50) ~Y ajp p(@s0) )
po S roAp(z.s0)) = A0A (2, s0)

Using (3.4), one gets

1

. 1 " .
@8  pqd=sY /F L EIE LA A s0)du )

sincel = A. SinceA;(z,s0) =0 fori =m+1,...,n, we can take the same formula
as valid for alli =1,...,n. Therefore,

(250~ l)Tr(BQ)—Z / Ej (@ 1= 50)vji AAi (2, s0) d ()

i,j=1
=/ E(z,1—50)T M(s0) TAA(Z, s0) d ().
r\H

Now we switch back to the original basis of Eisenstein series indexed by the cusps,
and we use the functional equation ¢z, s) to get (1.1).

Proof of Corollary 1. It is obvious from Theorem 1.1. O

Proof of Corollary 2. If g, = ¢ gg, thenA, = e~/ Ag and A = — f Ag, where
Ao is the Laplacian of the unperturbed metric. Since the Eisenstein g8rie$— so)
corresponds to the eigenvalsgl — so), formula (1.3) follows. O
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Proof of Theorem 1.3.Since the eigenvaluky of B is semisimple, [14, Th. 2.3,
p. 93] implies that the eigenvalue branches.giare continuously differentiable at
¢ = 0. They are of the form

(3.7) rot+erP o), i=12...,m,

where 1! are the eigenvalues Y = QBQ. If we can solve the eigenvalue
problem for BY on the image ofQ, that is, B®w = Aw, then we remove the
degeneracy and, if the eigenvalu?q@ are distinct, then the perturbation produces
distinct power series afp. Let

m
w = in Pf,'
i=1

be any vector in the image @. Then

. " 0
oot
=080 =2 5050

1 = a -A(z, 50) 1 &
= — .xiP . = X al'Pf"
230—1; (Aoa’ -A(z,50) 250—1¢ 1 ;_ 7

Since thePf;’s are linearly independent, the equatiBi) w = Aw gives

1 < . .
250_1ina}:)‘xjs i=12,....m.
i=1

This is the eigenvalue equation for the mat(niag), i,j=1,...,m, with eigenvalue
A(2s0—1). O

4. Character varieties

4.1. General theory of character perturbation&or I" \ H, the first homology
group is isomorphic td" /[T, I']. Its dual group consists of the unitary characters
x of I"and Acusp= {x | x(p) =1, p € T, p parabolig. The cohomology classes
in the first de Rham cohomology which can be represented by forms of compact
support have a square integrable harmonic representative (which can be taken to
be cuspidal, that is, ifv = wody + w1dx, then [ wo = [ w1 = 0, whereC is a
path corresponding to a parabolic). K e I'\ H, and letr : T — I'/[[,T'] be
the natural projection from¢(I"' \ H) — H1(I' \ H, R). For any cuspidal harmonic
square integrable forrm, we set

(41) Xw(y) = EXP(Zﬂi/ w) ,
7(y)
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which is a cuspidal character in the connected component of the trivial character
The deformation we consider depends on a real pararmeied the corresponding
spectral problem conceris’-functions satisfying

h(y2) = Xew(¥)h(2).

Let us denote the correspondind space byl.2(I"\ H, x..,). We conjugate this space
to the fixed spacé?(I"\ H) as follows. Set

Z

(Uch)(z) = exp(Zm'/
Z

ew) h(z)
0
so thatU, : L'\ H) — L2(I"'\ H, xcw). We set

L(e) =U AU,
which now acts orL2(T"\ Q—I]). We defines(pdx +qdy) = —y?(px +4qy), (pdx +
qdy, fdx+gdy) = y*(pf+4q2), and|pdx +qdyl% = y*(Ip|*+1q|?). Then itis
easy to see that

L(€)u = Au+4mie(du, w) —4m?e®|\w|%u —2rie(Sw)u.

If w is harmonic, the last term vanishes. L&) now be a holomorphic cusp form
of weight 2, and letw be the real-valued harmonic forf(f(z)dz). So f(z) =
w1 —iwg. As usual we define for a functiofi(z) of weightk andT € GL(2, R),

(f | T)(2) = (detT)*/?(cz+d) ™" f(T2).

Let f | U(z) = Z,Doanezm'”Z be its expansion at the cusp, whereU = g; in
the notation of Section 2. Let(z) be any of the Eisenstein seriegz, 1 — sg) with
Fourier expansion at thg cusp of the form

(4.2) ul|U(z) = Ay + Byl_SO + chyl/zKl/Z—so (271|n|y)e2”i”x_
n#0

Then _
Au(z) =4mi{du, w).

The equation (1.2) shows that the variation of the weighted mean of the scattering
pole is a linear combination of

/ Ei(z,1-s0)Au(z)dp
r\H
and this isR(1—sgp), where

R(s):/ Ei(z,5)Au(z)du.
r\H
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Since v = f(z)dz+ f(z)dz, we have

(du,w) ( zf(2)+uzf(7))

We also set
FIU@=FTUR =) bye 2rverins
n#0
so thatb,, = a,, for n > 0 andb,, = —a_,, for n < 0. Then foris > 0 we have

R(s) =471i/ ((du, w) | U)(2)Ei(U(2),s)dxdy/y?
-Iry\H
:47'[1'/ ({du, w) | U)(2)y* dxdy/y?
Too\H

=47Ti/F 0 [l U FIU@+@ | U)zf 1 UR)]y dxdy.

An integration by parts gives

oo prl
R(S)=27T/ / Wl U)@sy N fIU@D—-FIUQR]dxdy

cnb_y © s—1/2
4.3) = Z(annl)““/z./ YT R yz-a()dy

_ S (s +1—50)I"(s +50) i —Cnly +C—pay
T gsps—1 [(s+1) nst+1/2 ’

using [11, 6.621.3, p. 733].
In the case that_, = ¢, and theq,, are purely imaginary, the Dirichlet series in
(4.3) becomes ¥, _ycpann— 62,

Remark 4.1. The casec, = c_, is the only case we are interested in because
it is relevant to congruence subgroups (see (4.4) below). Ifathare real, then
the Dirichlet series in (4.3) vanishes. This can also be explained in the following
manner. The Eisenstein seri€g(z, s) is even inx, and so ist andu,, while u, is
odd. If thea,’s are realw; = N f is even, whilewg = —3J f is odd. So{du, w) =
y2(uy w1 +uywo) is odd andR(s) vanishes.

4.2. Congruence subgroups and central valueg-aeries. We now assume that
g(@) = —if(z) is a Hecke eigenform for some congruence subgroup of Iavel
with Hecke eigenvalues;(p) andaz(p) for T, and all coefficients:(n) real. Then
A—a(P)p™+p7®) = A—a1(p)p™ )L —a2(p)p~®) for pt N. If p| N, the
Euler factor is(1—a(p) p—*). We also assume that far> 0,

k 1/2—s9
(4.4) Can = Zm(c)xz(k)( ) :

ck=n
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wherey1 and x2 are primitive characters modudg andg-. It is easy to see that the
coefficientsc,, are multiplicative. In face; (z, 1—sg) is also a Hecke eigenform and
we easily find the Euler factors for ifs-series. It is

L) = [T (1= xa(pp™Y240) (1= jo(p)p~*+Y/2750) T,

p

For example, one can explicitly compufe, .. cpkp—’“. Now we get the Euler factors
of Y cpa(n)n™* using [30, Lemma 1]. We get

o0

cha(n)n_s = 1—[ Xp(9)Y, (s)7 L,
p

n=1
where
Xp(s) =1-x1(Px2(p)p~ >, piN
usingay(p)az(p) = p andX ,(s) =1for p | N. Also

7371/2+s0)( 7s71/2+s0)

1-a2(p)xi(p)p
—s—so—i—l/Z)(

Yp(s) =(1—aa(p)xa(p)p

—s —50+1/2) )

(1—a1(p)x2(p)p 1—az2(p)x2(p)p

We denote the twistefl-series ofg(z) by a charactey asL(g, x,s). Then
(4.5)

> Gl _ [Ta—xam 2 p > Lg. xa.5+1/2—s0)L(s. X2. 5 +s0—1/2).
n=1 ptN

We notice that in (4.3) we are interested in the Rankin-Selberg convolution Bt2
and that in the first variation formula (1.1) we have 1—sg. So we set = 3/2—sg
in (4.5). We get

o
(4.6) % = L(x1x20n,2— 250)_l -L(g. x1.2—2s50) - L(g. X2. 1),
n=1

wherewy is the trivial character module/. We notice that the factof (g, x2, 1)
shows up irrespective of which scattering psjewe consider, provided it is a pole
of ex(z,s).

For the congruence subgroup$N) and I'°(N), which consist of matrices in
SL(2, Z) which are lower triangular madl, the discussion above applies. We notice
thatI'%(N) is conjugate tdo(N), so they have the same spectral theory. According to
Huxley [13], the space of nonholomorphic Eisenstein series is spanned by Eisenstein
series with characters

p _ x1(0)x2(d)y*
EfGs)= ) Siam
(c,d)=1
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where x1 and x» are primitive characters modulg andg», respectively, wherg;
andg» are appropriate divisors @¥ and x1(—1) = x2(—1).
(1) ForT'(N) we takeE3Z(m1z/m2,s), wheremigi | N andmagz | N.
(2) ForTO(N) we takeE (z/m, s), x primitive modulog, andg | m, mq | N.
The Fourier expansion (ﬁjgf(z,s) atoo is

F(s —1/2)L(X1, 25 — 1) 1s
T'(s) Y

4 K\ —L/2 1/2
+Z " (’)(Xf) Zm(c)xzao( ) (1)

q2
(2 ny) (27mx) )
x Kg—1/2 cos .
q2 q2

The scattering poles appearsat where 2¢ is a zero ofL(x1x2,s). These zeros
are conjecturally simple and different from the zeros of the ofheeries. It follows
that the coefficients oé;(z,1 — sg) are exactly of the form (4.4), up to a factor
2(/g2) 01 (x2) /(T (1= s0) L(x1x2, 2— 250)).

Notice that the coefficients, in [13] differ from (4.4) by a factor 1,/n, because
Huxley includes in the Bessel functidfi;_1/2(u) a factor/u. This does not affect
(4.6).

4.3. The groud o(gq): Proof of Theorem 1.5.We concentrate now on the Hecke
congruence subgroup%(q), wheregq is a prime number. These groups have only
two cusps: ato of width 1 and at O of widthy. The space of Eisenstein series
is spanned by the usual Eisenstein seligs, s) for SL(2,7) and E(gz, s) They
are oldforms. LetW, be the Fricke involution given by the matré{lJ ) Then
E(z,s) | W, = E(qz,s). The Fourier expansion df(z,s) atoo is given by

L(X1X2,ZS)< 0(q1—DL(x2. 25)y olg2— D7

(4.7)

o0

> _n* Y2010 Ks_1/2(27ny) cos2mnix),
n=1

2yl/2

.S 1-s
E(z,5) =y +¢(s)y +$(2s)

whereé(s) = /2T (s /2)¢ (s), ¢ (s) = £(2s — 1) /£(2s), ando, (n) = Zd\n d’. We
setA, to be the coefficients in this expansion. l7ZeandS be the standard generators
of SL(2,Z) inducing the maps'(z) = —1/z and S(z) = z+1 on H. Let B =

(‘{)‘7 ﬁo,l). ThenT B conjugates the stabilizer of zero ity(¢) to I's, the standard
parabolic subgroup of SR,7), and it induces the same map 85 on H. The

expansion ofE (z,s) at zero is the expansion & | (T B)(z) = E(gz,s) at infinity.
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We have
(4.8)
E(qz.5) = (qy)  +¢() @' + Y _ Au(gy)/?K,_1/2(2rnqy) cos2mngx).
n=1

For the Fourier expansion d(gz,s) at zero, we naotice thak(gz,s) = E | B(z),
which implies thatE | B) | (TB)(z) = E | T (z) = E(z, s). So the Fourier expansion

of E(gz,s) at zero is the Fourier expansion Bfz, s) at infinity. Now we can find the
matrix M(s). Let E(z,s) = (Exo(z,5), Eo(z,5))T be the vector of Eisenstein series
indexed by the cusps. S€E(z, s), E(gz,s))T = M(s)E(z,s). To find M (s) we look

at the zero Fourier coefficients in this matrix equation and recall that the scattering
matrix is symmetric to get

Y Oy = m11(5) (3 + Poooo () ¥ ) +m12(s)po0e () y1 77,
4y +q () = m11y T doso(s) +maa(s) (v +doo(s) ¥y ),
7Y+ ) = mar (v 4 doooo($)y1 ) +m2a(s)poos () ¥,

Y GO = ma1(s)ooo ()3 +m22(s) (v +poo(s)y' ).
This system gives/ (s) = (q1 4') and

1 C]—l qs_ql—s
O(s) = N
) qa_l‘f’()(qs_qls )1 )

asin[12, p. 536]. Consequently dets) = ¢ (5)%(g%> % —1) /(g% —1). The scattering
poles are atg = p/2, wherep is a nontrivial zero ot (s), and they have multiplicity
2, assuming Condition A. The zeros ¥ — 1 do not give scattering poles, since
¢(s) has a factor iz (2s) =[], (1 - p=%).

Now assume thag(z) is a holomorphic cusp form of weight 2 fdto(g), which
is also an eigenform of the whole Hecke algebra, with eigenvajutor W, . It
follows from [1] thate, = £1, a(q) = —¢4, anda(ng) = a(n)a(q). Let g(z) =
Zn>ocz(n)e2’”"Z be the Fourier expansion g{z) at infinity. For its Fourier expansion
at zero, we have

1 -1
gl (TB)(2)=—¢ (—) =g | Wy (2) =¢€,8(2).
qz qz

So the coefficients at zero aega(n).
We are interested in the Rankin-Selberg convolutions @f 1—so) andE(qz, 1—
sp) With g(z) expanded at both cusps, infinity and zero. The convolutiofi(gk, 1—
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s0) With g(z) at zero ise, times the convolution of (z, 1—so) with g(z) at infinity.
The convolution ofE(z,1— so) with g(z) at zero ise, times the convolution of
E(qz,1—s0) with g(z) at infinity. For the Rankin-Selberg convolutighof E(z, 1—
s0) with g(z) at infinity, we havey:s = x2 =1, ¢, = nl/z’soazm_l(n), andA, =
2¢, /&(2—2s0p). Using (4.6) we get af = 3/2— s,

27T—so+l
R =
[(1-50)¢(2— 250)2(1— g2~ 20)

L(g,2—2s50)L(g,1).

Consequently, by (4.3),

2i (1—50)T'(2— 250)
4l=sor—s0["(2 — s0)

(4.9) R(l—s0)=/ Eoo(z,1—50)AE(z,1—s0)dp =
MH

From (4.8) the Fourier coefficiens, of E(qz, 1—so) areB,, =0, if g {m andB,; =
A,qY/2. The Rankin-Selberg convolution @f(gz, 1—so) with g(z) at infinity is

00 00
Z Bya(m) o Aga(n) B

(410) mrn—S = _gqql/z S E nns — _qul/z SR.
m=1 n=1

Using (1.2) we get that the first variation of the weighted mean of the scattering poles
atsg is

(4.11) §=A+e) (g2 —1+¢,(q—q*1))L(g,2—250) L (g, 1),
where

4507250 (1— 59)T'(2—2s0)

A= .
2q%0~1(1~ qz*ZSO)ZF(So)F(Z— 505 (2—250)¢"(250)m (250 — 1)

We notice that ife, = 1, then the functional equation f@n(z), which has a sign
—eg, forcesL(g, 1) = 0. In both cases, = &1, we haves = 0. This proves the first
statement in Theorem 1.5.

To apply Theorem 1.3 we notice that1(z, so), A2(z, 50)) = ReS—s, ¢ (s)(E(z, 1—
50), E(gz,1—s0)). Also

-1 1 1 _qso
V = M(s0) =1ogzo\go 1 )

Using (4.9) and (4.10) we get

U D) ey gl RAZ0) (T g
= —, S)———— .
Cl% a% S0 1_q2s0 (_qso _qso—l)eq (1+q2so—l)6q
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If L(g,1) = 0, thenR = 0 and we cannot solve the eigenvalue problem for the
zero matrix(al.’). If ¢, = —1, the matrix in (4.12) has eigenvalue equatich=
(A4+g%0~1)2_ (g0 +4%~1)2 |f A = 0is an eigenvalue, therio = +1 org*o—1 = +1.
However, since & is a zero of; (s), this is impossible|g*| = ¢g1/4, g%~ 1| = ¢—¥/4).

Also the eigenvalues are distinct and have sum zero. Sit{@e- 2s9) = 3/2, the
valuesL(g,2— 2sp) are at the edge of the critical strip; using the argument of de la
Vallée Poussin and Hadamard proving thét+it) = 0 (see [26]), we see that this
value is nonzero. This completes the proof of Theorem 1.5.

5. Proof of Theorem 1.9. The idea is to prove that, for a positive proportion of the
scattering poles, thielfl) 'sin (3.7) for one of the two directions are not imaginary. For
that we should prove that the quotient of the ones correspondifigitmg is not real
for a positive proportion of the scattering poles. From (4.9) and (4.12) it is clear that,
when we take the quotient, we are left witlig, 1) L(g, 3/2—iy)/(L(f, ) L(f,3/2—
iy)) and all the other factors involving the zeta, gamma functions, @rdncel
because they are the same irrespective of the tangent direction. TheMgfugsand
L(g,1) are real for newforms with real coefficients. This reduces the issue to proving
that, for a positive proportion of’s, the quotientL(f,3/2+iy)/L(g,3/2+iy) is
not real. This is equivalent to the nonvanishinglafg, 3/2+iy)L(f,3/2—iy) —
L(g,3/2—iy)L(f,3/2+iy). We prove weighted mean value results for these values.
Let the Hecke eigenvalues fgi(z) be 81(p) andB2(p), and let the Hecke eigenvalues
for g(z) bea1(p) anda2(p). We introduce weights

B(s.P)=[] A=oa(p)p™)(1=a2(p)p~*) (1= Br(p)p~*) (1— B2(p)p )
p<P

for P a suitable prime. Let us denote byhe operation of Rankin-Selberg convolution
on two Dirichlet series, and 16V (T) be the number of zergs = 1/2+iy of {(s)
withO<y <T.

ProrposiTION 1. Under the RH,

> B(3/2+iy. P)L(g.3/2+iy)L(f.3/2—iy)
(5.1) O<y<T

~ B(-, P)L(g.)*L(f,)(QN(T)

and, by symmetry,

> B(3/2+iy. P)L(f.3/2+iy)L(3.3/2—iy)
(5.2) O<y<T

~ B(-, P)L(f,)*L(g,)(QN(T).
ProrosITION 2. Let

A(y)=B(3/2+iy.P)(L(g.3/2+iy)L(f.3/2—iy)—L(f.3/2+iy)L(g.3/2—iy)).
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Under RH,
(5.3) > AP K N,
O<y<T

Remark 5.1. The discrete mean value results in Propositions 1 and 2 correspond
to mean value theorems fors)* and¢ (s)8, respectively, on the line of convergence
Ns = 1. Itis well known that on this line one has mean value theorems for all powers
of ¢(s) (see [31, p. 148, 7.7.1)).

ProrosiTION 3. Under RH and (1.5) there exists R such that the two limits in
(5.1) and (5.2) are different, that is,

(5.4) > AW)~C-N(T), C#0,
O<y<T

In fact, we need the weightB(s, P) here. Without them the mean values in (5.1)
and (5.2) are equal. The rest of the proof of Theorem 1.9 is easy. By the Cauchy-
Schwarz inequality, (5.3), and (5.4), we have

o1z | Zowy<r A S |CI2N(T)?
- ZO<)/§T|A(V)|2 N(T)

O<y<T,A(y)#0

This proves that a positive proportion of tAé€y)’s are nonzero; in particular, for the
samey’s, the quotientL(g, 3/2+iy)/L(f,3/2+iy) is not real.

=|CI2N(T).

Proof of Proposition 1. The idea is to imitate the method used by Gonek [9] to
prove discrete mean value formulas for the zeta function. More precisely, [9, Th. 1]
states

> oxr=- %A(x) +0(xlog(2xT)loglog(3x))

(5.5) O<y<T
- 'x i 1
+ [0) (logx min <T7 E)) + 0] <|Og(2T) min <T, @)) B

wherex, T > 1, and(x) denotes the distance framto the nearest prime power other
thanx itself. This is a uniform version of a theorem by Landau (see [9]). We use the
approximate functional equation fdr( f,s) and L(g, s), as stated in [10, Kor. 2, p.
333]. If s = 3/2+it, we have

(5.6) L(g.9)= DY amt+x(s) Y am*2+0(jt|7H?)
n<|t|q/2% n<|t|q/2%

with x (s) = (21/¢)*2I'(2—s)/ ' (s). The weightsB(s, P) are given by a Dirichlet
polynomial of fixed length depending ah, say,B(s, P) =}, _gcan™". Let

> d
B(s, P)L(g,$)=) -5
n=1
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and

S

B(s.P) Y %: oo

m<|tlq/2w n<|tlgR/2x

Clearly, ifn < |t|q/2n, we haved) = d,. Moreoverd, andd,, grow no more quickly
thana,, that is,a,, d,, d;, < n'/>T¢ by the Ramanujan conjecture. The approximate
functional equation fol.( f, s) gives

(5.7)  L(f.s)= Z bun ™ + x(s) Z ban® =24 0 (1] ~Y/2+).

n<|tlgR/2m n<ltlq/ (27 R)
The main term in
(5.8) > B(3/2+iy.P)L(g.3/2+iy)L(f.3/2—iy)
O<y<T
comes from
Z Z dr/ln—3/2—iy_ Z byn~3/2+iY
O<y<T n<yqR/2n n=<yqR/2m
d'by, TEF b iy
=Y | = S Y e () ) =arz
n (nm)3/2 \m
O<y<T \n<yqR/2n n#Em
We have

> dub dnb (d, —dy)b
Zi= ) |2 X at Y T

O<y<T \n=1 n>yqR/21 n<yqR/2r

=N(T)B(-, P)L(g,)*L(f,)(3)+C1+C2,

where

C1< Y Y n 2 Yy =0(N(D))

O<y<T n>y O<y<T

and

G2k Y Z < Y S utFe=o(N D).

O<y<T n>yq/2n O<y<T n>y
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Using (5.5) we get

T E o ) G

n<TqR/2m m<n 2an/(qR)<y<T

:_% Z Zdb+db (%)

n<TqR/2wr m<n

10 Z Z mb +d) by, (%)

n<TqR/2mr m<n

Lo Z Za’ bn —I—d’ Og<2nT>Ioglog< )

n<TqR/2m m<n

d),b, +d by n , n/m
+0 Z Z og(;) mm(T, (n/—m)>

n<TqR/2m m<n

d, by+d.by . 1
+0|log2ry » > o + m(T,W)

n<TqR/2mr m<n

=Zo1+ 222+ 223+ Zoa+ Zzs.

To estimateZ,1 and Z22, we setn = km. We get

T Ak)
In<K o > > 32— = 0
k<TqR/2r m<TqR/(2rk)
sinceA (k) < k€ and the sums are partial sums of two convergent series. Moreover,

A(k) AK) (TN 14
Z22< Z Z i < Z kL2 <;> LT7

k<TqR/2r m<TqR/(2rk) kLT

Similarly, one easily get&,3 <« 7Y% logT loglogT. For Zo4 we setn = Im +r,
where—m/2 < r <m/2. This implies that
|7 e . .
, — if 7 is a prime power and # 0,
(1+=)=1m
m > =, otherwise.

Nl -
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Together withn/m <n <cT, c = gR/(27), this gives

1
Zoa < logT Z Z m3/2=€nl/2=€(n /m)

n<cT m<n

<logr Y Y% (

m=<cT I<|cT/m|+1 —m/2<r<m/2 m3/2=¢ (lm +r)

l+r/m>

mlogm m
< logT Z Z (A(l)ms/ze (Im)1/2—¢ + m3/2f(lm)1/2€)
m<cT I<|cT/m]+1

lé

logm
<logT )~ ). e
m=<cT I&<cT/m

logm
<« TY**logT )~ ma?z—e < TY?*€|0gT.
m=<cT

For Zoswe setm =n—r, 1 <r <n-—1, so that logn/m) > r/n. This gives

n/r 1 1
Zz5 < logT Z Z n3/2=€ (n — r)l/2— <logT Z nl/2—e Z -

r
n<cTr<n-1 n<cT r<n—1

logn
<logT > nl/g_e « T¥2+|ogT.

n<cT

The analysis above depends only on the order of growttj @ndb,, so we can get
the bounds

2

(5.9) SIS an¥ET | <N,
y=<T In<yqR/2m
2
(5.10) S b ¥ <N,
y=T In<yq/(27R)

Moreover, we can repeat the argument with trivial modifications to estimate

(5.11) SIS gy

y<T In<yq/2n

(5.12) Yo Y b ME

y=<T In<yq/(27R)

2
<L THN(D),

2
<L TYEN(T).
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We also need to analyze the order of growth of the derivativier 8/2+iy)|2. We
have

d 2 2
la@arin)| =iexjar|u@ziv)|
(v @2=iv)+v(2+iv) v (3/2+iv) - ¥(3/2-iy)).

wherey (z) =T"(z)/ I'(z). We can differentiate the asymptotics of Io¢;) (see [11,
8.344, p. 949)), to get

1 -2
¥ (z) =logz— —+0(z79).
2z

We also use the asymptotic formula

(613)  [FGr+i)|~Vare ™22 |yl — oo, x,yeR
(see [11, p. 945, 8.328.1]), to get

(5.14) %‘X(3/2:I:iy)‘2 <y e

We use summation by parts, (5.14), (5.11), and (5.12) to estimate

2 2
2 . .
Z ‘X(3/2+iy)‘ Z Cnn_S/Z—W Z ann—l/Z-HJ/ <« T = O(N(T)),
y=T n<R n<yq/2n
2 2
> ‘x(3/2—iy)‘ Y b VEY T =0(N(D)).
y<T n<yq/(2rR)

Finally we use the Cauchy-Schwarz inequality, (5.9), (5.10), and the two equations
above to estimate all other product terms in (5.8)@€(7)). O

LemMMA 5.2 For 0 <a < 3/2, there exists a constant> 0 such that

|an| x3/27a
5.15 —_— L —
( ) ”Z; nd < log® x
and
|10
(5.16) > :'“'—g” « x3/2apglc x.

na
n<x

Similar estimates hold fab,,.
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Proof. SetA(x) =}, _, la,|, wherea, = a,/n. Rankin's estimate [27] implies
thatA(x) <« x(logx)~¢ for somec > 0. We have

a a A(x) _
Z |nz| :an_nltz = 1/2+( 1/2)[ At Y2q;

n<x n<x

using partial summation. Notice th#f +¥/2-%log~“t dt <« x¥?~“log™x. The sec-
ond estimate is proved similarly. O

Proof of Proposition 2. Since B(3/2+ iy, P) is a finite Dirichlet polynomial, it
is bounded independently @f. To estimatezysT |A(y)|?, it suffices to estimate

2 2
(5.17) 3 ‘L(g,S/Z—i—iy)‘ ‘L(f,S/Z—i—iy)‘ < N(T).
y<T

As in the proof of Proposition 1, we use the approximate functional equation on
Ns = 3/2 for L(g,s) andL(f,s) (see (5.6), (5.7)),

Lfis)= D ban+x(s) Y. ban’ 2+ 0(l1]7Y2H)

n<|tlq/2n n=|tlq/2mw
= Wi+ x(s)Wz+ O (l] /%),
L(g,s) = Y1+ x()Y2+ O (|| 7V/3).
We have
YL Wi W1 ambnayby [ pv\iv
(5.18) 0<VZ§T Y1YiWiW1 = OWZST m’n’uqu/zn R (%)

The main term comes again from the contribution of the diagonal terms, and the
number of solutions te:n = uv = r is less than or equal ()2, whered(r) is the
divisor function. The main term can be estimated as

vq/2m amby “u )2 1+2¢
(5.19) Yoy S <> Z < N(T),
y <T mn=pv y<T r=1

since the inner series converges. Weset=r andmn = s. We can treat the case
s < rands > r separately. The range of the following sums is subject to the restriction
m,n, u,v <Tq/(2r). Fors < r the other terms in (5.18) contribute

(5.20) Zy= Z Z Z am,,ss//n;::if/zrm ( )

r<(Tq/2m)2 S<I mls, u|r <y=T
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whereK = min(T, 2r/qg) max(m,s/m, u,r/n)). We apply (5.5) taZ»:

e Y ¥ bt (5 (ry g (1)

S
r&T2 S<r mls, ulr O<y<T y<K

a /a by K—=T r
_ZZ Z msm//.ru = A(—)

2 s
r&T2 S<r mls, ulr

+0 Z Z Z m s/ma“ SmZs[mZp Tk g g( )Ioglog(ir)

r&T2 S<r mls, u|r

+0 Z Z Z dm X/ma“ ”“Iog( )min(T r/s)

b
r&T2 S<r mls, u|r {r/s)

ambs/ma, b . 1
+0 Z Z Z %Iog(ZT)mm(T )

b
r T2 S<F mls,ulr log(r/s)

=7212+ 223+ Z24+ Z3s.

For Z»1 2 we setr = sk and notice thatl/(r) < r€, d(s) < s¢, andK < T to get

A(k)sl/ZJre(Sk)l/ZJre
Zop LT Y > o <T,

kT2 s«T?/k

since both series converge. Using (5.15), we get

Z aub, < T

2c o’
w,w<Tq/2w pv |Og T

We have

b b
Za3 < logT loglogT %

m,n, i, v

<« logT loglogT a (N(T))
-, ,
g7ioglog log™ T

since the serie3_ a,,m~2 converges.

For Zy4 we setr = is+1t, —s/2 < t < s5/2, and we distinguish two cases as in
Proposition 1. Case 1 occurs wheis a prime power and# 0, and case 2 happens
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otherwise. The contribution from case 2 is

ambya, b,
<logT > ZV—”<<TIog1 T,

m,n, i, v

as for the estimate df»3. In case 1 we distinguish two subcases depending on whether
T is larger than(r/s)/{r/s) or not. If T is larger,T > nv/|t|, which impliesT > [.
The contributionZy4 1 of these terms is

wbn
Zor < 3 30D 00141 mmy)

o T mn;w|t|

a, by, log!
<<an: mn 2 Z(lmn+z)1/2 €|t

0#|t|<mn/2 I<T

log!
< Z )3/2 ¢ log(mn) ZW

I<T

1/2+e aman log(mn) 1/2+43€ | 2—2¢
<T Z (mn)S/Zfe LT IOg T,
m,n<Tq /2w

using (5.16) and lognn) < lognlogm for logn, logm > 2.

If T is smaller than(r/s)/(r/s), we haveT < uv/|t| and this implies! >
T|t|/(2mn). Let the contribution of these terms B4 . We first analyze the sum-
mation overu, v. We see that

1

b
Zaé—,);«Z Zm

nv=>Tlt| 0#|t|<mn/2 1>T|t|/(2mn)

(mn)3/2—¢ 2mn

0#|t|<mn/2

1
& T—1/2+E (mn)l_e Z |t|—1/2+6 « (Tmn)_1/2+6.
O0#|t|<mn/2

The summation over:, n now gives

Aambn —1/2+€
Zoa2 K TlogT Z (mn)32— T
m,n<Tq/2r

& TY?+€10gT (T¢/1og" T)? = o(N(T)).
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This takes care of»4. Using again the Ramanujan conjecturedgr b,,, we get

bnamaubv
7 logT
25 K log Z w2v2mnlog(uv/(mn))

m,n,u,v<Tq/2m,s<r

d(r)d(s)

T¢logT - ———
<oy Z r3/251/2|og(r/s)

s<r<(Tq/2m)?
LT¢logT & T€logT (logT?)?,

1
sar=(Tay2ny? srlog(r/s)

where in the last line we used [31, Lemma 7.2, p. 139], with the obvious modifications
foro =1.

The rest of the proof follows as in the proof of Proposition 1. In fact one can easily
see that we can not only get upper boundszgfd |A(y)|?, but we can also identify
the main term in the asymptotics of it. O

Proof of Proposition 3. It is clear that the product of two Dirichlet series with
multiplicative coefficients also has multiplicative coefficients and this is also true for
their Rankin-Selberg convolution. This allows us to work the Euler factors separately
for each prime. Since

B, P)L(g.5) = [ | [(2-oa(p)p™) (1-az(p)p™)]

p>P

x [T @=Bup)p™) (1= B2(p)p™),

p=P

(5.21)

the convolutionB(s, P)L(g,s) * L(f,s) has the same Euler factors fpr> P as
L(g,s)*L(f,s). The sameis true for the Euler factors with- P for B(s, P)L(f,s)*
L(g,s). So when we subtract (5.2) from (5.1) to get (5.4) we get a factor

[T @-caxmeaprpperp ™) ] @—ei@Bimp=) "

p>P 1<i,j<2

using [30, Lemma 1]. The value of this at= 3 is nonzero, since 3 is in the domain
of convergence. To show that the asymptotics in (5.4) i@vé 0 for someP, let
us assume that for alt prime the difference in the other Euler factors with< P

in (5.1) and (5.2) is zero at= 3. We analyze these Euler factors. Fix< P. For
B(s, P)L(g,s)*L(f,s)we get

o]

(1=b(p)p~ +p*2) =Y _b(p*)p™™ =1=b(p)?p~* + pb(p?)p~*
k=0
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while for B(s, P)L(f,s)*L(g,s) we get

o0
(I—a(p)p™+p %)% > a(p"p™ =1-a(p)®p™ + pa(p?) p~.
k=0

The Hecke relations give(p2) = b(p)2 — p anda(p?) = a(p)?— p. If for all P
we have

I1 (1+b(p)2(p_5—p_3)—p_4) =]] (1+a(p)2(p_5—p‘3)—p‘4),

p=P p=<P

we get equality for the individual terms, by considering successive pritrasd by
dividing the corresponding relations. This giveé)? = a(p)? for all p, contradicting
the assumption (1.5). The cage= g is even simpler. O
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