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Variation of Scattering Poles for
Conformal Metrics

Yiannis N. Petridis

ABSTRACT. We estimate the size of the first variation of a scattering pole for
SL(2,7)\ H for certain conformal perturbations of the hyperbolic metric.

1. Introduction

The determinant of the Laplace operator det’A is a global spectral invariant.
It has been used in the study of sets of isospectral metrics on a Riemann surface,
see [14], via the Polyakov formula. This formula gives the variation of det’'A along
a conformal family of metrics [15]. For further applications of determinants of
conformal operators and Polyakov’s formula to isospectrality in 4 dimensions, see
[1], [2], [3], [4]- The natural generalization of det'A on surfaces with cusps, see [11]
includes the eigenvalues and the scattering poles. These are the poles of det'®(s)
on s < 1/2, where ®(s) is the scattering matrix. Throughout this work we write
the eigenfunction equation as Af + s(1 — s)f = 0. For det’'A we have at least
formally

(1.1) —logdet'Azg'(O):—Zlog|1—n|+cl
n#1

for a constant ¢; and where the summation is over the resonance set, which includes
the eigenvalues, the scattering poles and 1/2 with appropriate multiplicities. In
order to study the variation of det’A it is useful to study the variation of the
individual terms in (1.1) and, more precisely, the size of the quotient $/sq, where
so is a scattering pole. In this work we study the variation of scattering poles
arising from conformal perturbations of the hyperbolic metric. Another motivation
to study the size of the variation of scattering poles is the problem of the location
of scattering poles. The generalization of Weyl’s law of counting eigenvalues for
surfaces with cusps is

Area(T"\ H)
~ 47
where N(T) counts the eigenvalues less than or equal to 72 and N,(T) counts
the number of scattering poles in a ball of radius 7. One is also interested in

(1.2) N(T) + %NP(T) T2,
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studying the number of scattering poles in other regions, in particular vertical
strips ¢ < Rs < 1/2. If the surface is hyperbolic, there exists a o such that all
the scattering poles are in the vertical strip 0 < Rs < 1/2, see [20]. There are
counterexamples if it is not hyperbolic, see [7]. Our original motivation was to
investigate whether in metrics conformal to the hyperbolic metric on SL(2,Z)\ H
the scattering poles remain in a vertical strip or not.

The scattering matrix for SL(2,Z)\ H is

72 7I0(1 — 5)¢(2 — 2s)
I'(s)¢(2s)

Throughout this work we assume the Riemann hypothesis (RH) on the nontrivial
zeros p of ((s). It implies that the poles of ¢(s) are at s = p/2 = 1/4 + iy/2,
where v € R. We also assume that the zeros are simple. Numerical evidence by
Odlyzko [12] suggests that this is indeed true. Montgomery [10] proved that the
pair correlation conjecture implies that almost all zeros are simple and RH implies
that at least 2/3 of the zeros are simple. Unconditionally Conrey [5] has proved that
at least 2/5 of the zeros are simple, while under RH and the generalized Lindel6f
hypothesis at least 19/27 of the zeros are simple [6]. The following weak form of
the Mertens hypothesis implies that all the zeros of the zeta function are simple,
[22, Th. 14.29, p. 376]. Let u(n) be the Mobius function and M (z) =3, .. u(n).
Then

(1.4) /lx (Mf dz = O(log X).

(1.3) ¢(s) =

x

We will also assume (1.4).
We state Corrolary 2 in [16] as

THEOREM 1.1. For a compactly supported conformal perturbation of the metric
ge = €Y go, where f € C° (T \ H) the first variation of the scattering pole at so with
multiplicity one for a surface with one cusp is

(1.5) st =) pe o as) [ f)B(1 - s0) dp.

280 -1 F\H
The first variation of a scattering pole of multiplicity one is defined through
the Taylor series
s(e)=so+e€5+---
We first look at metrics which are asymptotically hyperbolic.

THEOREM 1.2. For a conformal perturbation of the metric g. = ef, where f
is an even Maafl cusp eigenform and for any scattering pole so we have

(1.6) § = Gloo) s LU 1/DL(S.3/2 = 250,

where L(f, s) is the L-series of f, G(so) is a nonzero product of Gamma factors,
powers of m and values of ((s) in the domain of absolute convergence. If L(f,1/2) #
0 then all the scattering poles move at the same time and

_ $
(1.7) |so| ™€ < ‘g‘ = 0(|30|1+€)-
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REMARK 1.3. We take f to be even, because it is clear from (1.5) that if f is
odd the integral in (1.5) is 0. The exact formula for G(sg) is given in the proof.
The proof shows that only the upper bound depends on (1.4). The first part of the
theorem gives a spectral interpretation of the central value of a Maaf3 cusp form.
Vanderkam [23] has recently proved that 1/3 — e of the values L(f,1/2) are nonzero
for f even Maaf} cusp form.

For a compactly supported conformal perturbation of SL(2,7Z) \ H we have the
following theorem.

THEOREM 1.4. Let f € C*(SL(2,Z)\ H). Under the same assumptions as in
Theorem 1.2 for any scattering poles so and for the conformal perturbation of the
metric g. = el gy we have

5 = ol|so).

From (1.6) it is clear that $ is influenced by the size of 1/{'(p). Gonek (in
preparation) has recently conjectured that

(1.8)

L < ole
¢'(p) P

for all € > 0. This gives the following corollary.

COROLLARY 1. Under the same assumptions as Theorem 1.2 and (1.8) we get
the improved upper bound

$
(1.9) ‘—‘ < |s0l°.
50

This corollary together with Theorem 1.2 says that up to arbitrarily small
powers of the scattering pole, the variation § has the same size as the scattering
pole sg, when L(f,1/2) # 0.

2. Proof of Theorems 1.2 and 1.4

By symmetry of the zeros we can assume that v > 0. For the f in Theorem
1.4 we consider the expansion of f(z) € C°(T"\ H) in automorphic eigenfunctions.
Let ¢g, ¢1,... be an orthonormal basis of eigenfunctions with eigenvalues 1/4 + t?.

We can assume that they are real-valued and that ¢o = 1/4/Area(T" \ H). Then

o0 o0

Q1 16 =Y (65 + 5 [ (E). B 12+ i0)B(e1/2 4 it) d
=0 —oo

in the L? sense. For Theorem 1.2 f is equal to an ¢; for some even Maaf§ cusp
form.

2.1. Rankin-Selberg convolutions of Maaf} cusp forms with E(z,1—so).
To apply (1.5) we first analyze the integrals

(2.2) $;(2)E(2,1 —80)*dp, j=1,2,....
'\H

If ¢;(2) is odd, i.e., ¢;(—Z) = —¢;(2), the integral (2.2) is zero, since the Eisenstein
series E(z, s) is even, i.e., E(—Z,s) = E(z,s). So we can assume that ¢;(z) is also
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even and has the expansion

(2.3) ¢i(2) = 1/22)\ K, (2mny) cos(2mnz),

where \;(1) = 1. We also used the fact that for SL(2,Z) all the L*-eigenfunctions
are cusp forms with the exception of the constant eigenfunction ¢o. We assume
that ¢;(z) is also a Hecke eigenform. This means that the coefficients \;(n) satisfy
the multiplicative relations

Aj(mn) = Aj(m)A;(n),  (m,n) =1,

(%) = X (0 A (p) — Aj(pF2), p prime.
The L-series of ¢;(2)/p;(1) is

(2.4 L6590 = 3 T " +57)
We set,
(2.5 L) = [ 65(2)B( 1 50) (2, 5) du

I\H

so that the integral in (2.2) is I;(1 — s9). The integral I;(s) is essentially the
Rankin-Selberg convolution of ¢;(z) with E(z,1 — sg). Since we take the Rankin-
Selberg convolution with an Eisenstein series, which is a Hecke eigenform, we expect
that the Rankin-Selberg convolution factors as product of L-series. This is seen as
follows. The Fourier expansion of the Eisenstein series is
(2.6)

yl/2 &

E(z,s) =y° + ¢(s)y Zn Pa1_a4( n)K,_1/2(2mny) cos(2mnz),
n=1

where £(s) = 7r*s/2I‘(s/2)C(s), ¢(s) = &£(2s — 1)/£(2s) and o, (n) = 324, d". For
Rs > 0 we unfold the integral in (2.5) to get

oo 1
- / / 6;(2)B(z,1 — so)y’ d”;fy

and use (2.6) and (2.3) to get

Ij (8) = 2 _ 280 T; )\] 1/2 so 02s9— 1 / K1/2 S0 (27rny)K,t] (271’”:[/)
(e} 1/2 300.2 s0— 1 dy
- 2 - 230 g (27n)* / K jo—so (W) Kits (0)y° ?
The last integral can be evaluated as in [8, p. 716, 6.576.4]. Therefore,
. —s _ it ~1/92 it
I(s) = pi()m I s+1/2—so +it; r(3 /2 + so + it
8&(2 — 2s0)T(s) 2 2

@ T (s+1/2;so—itj>F(s—l/?;so—it]’)R(s),
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where we set

2 i(n nl/Z*SOUgs _1(n
(2.8) R(S)ZZ)\]( ) o ( )

ns

As in [9] we have

- L(¢j,3 - 1/2+80)L(¢)j,3 + 1/2 - 80)
- ((2s) '

To deduce equation (2.9) we notice that, since the coefficients \;(n)n'/2=%0 gy, _1(n)
are multiplicative, R(s) = [[, Rp(s), where

(2.9) R(s)

Ry(s) = 3 X (0")pH /2= gy (ph)p "o
k=0

Since a5—1(p*) = (1 — pl*e0 VD) /(1 — pPeo- ),

1 [ o ~ [ ~ ~
Rp(s) — e Z/\j(pk)P k(s—1/2+s0) _p230 1 Z)\j(Pk)P k(s+1/2—s0)
p k=0 k=0
_ (1 _p2sofl)71 B (1 _p2sofl)71p2sofl
= 1_ )\J (p)p_s+1/2—so +p—23+1—230 1-— )‘J (p)p—s—1/2+so +p—23—1+230
1— p—2s

(]_ _ )‘J (p)p*5+1/2*50 +p72s+172so)(1 _ )‘J (p)pfsfl/2+so +p72571+250) )

Since ((s) = [[(1 — p~%)7!, we get (2.9) using (2.4). Alternatively, we apply

Lemma 1 in [21] that gives the Euler product of the Rankin-Selberg convolution of

two Dirichlet series and notice that Y o, (n)n=% = ((s)((s — a), [22, 1.3.1, p. §].
Using (2.7) and (2.9) we get

o3 (OIC(L/4 + ity DPT(1/2 — in /2 + ity /D12 — /2 — it /2)
8['(3/4 —1iv/2)*C(3/2 — iv)*
'L(¢j’ 1- i'V)L((ﬁj: 1/2)'

We notice that 1 — i~y is on the edge of the critical strip of L(¢;,s) and using the
argument of de la Vallée Poussin and Hadamard proving that ¢(1 + it) # 0, see
[19], we see that this value is nonzero.

We would like to estimate Res,—1/44i/20(8)L; (1 — s0)-

We have

Ij (1 — 80)

n 20 ((3/2 — iy)T(3/4 — iv/2)
2¢'(1/2 +iy)0(1/4 + iv/2)
We estimate the Gamma factors using the asymptotic formula
(2.11) IT(z +iy)| ~ V2me W2 y[= 12 Jy| 5 00, @,y € R,
see [8, p. 945, 8.328.1].
For fixed t; and as v — oo we get, using (2.11),
[T(1/2 —iy/2+it;/2)| ~ V2me ™77/
TB/4—iv/2)| ~ V2me ™ 11/4|y/2M/
TA/4+iv/2)| ~ Veme ™ Wiy 27t/

(2.10) Resy—1 /44iy/20(8) =
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We also have
1
2.12 ——— < [€(3/2 —iv)| <((3/2),
(2.12) 4(3/2)_|C(/ M <¢3/2)
where the left inequality follows from
1 A
(B2-iy)  Znira

Under (1.4) we have

1
2.13 1 7
which follows from

1
; o) =%

see [22, 14.29.4, p. 377]. In fact the series converges to approximately 0.029, see
[13]. On the other hand Cauchy’s integral formula gives for any ¢ real

_ 1 [*" (/24 it +re?) 4 1 [ , 0
)2 +it) = g/ e reitag = 0 ;/0 IC(1/2 + it + rei?)| dB) .

0

The Riemann hypothesis implies the Lindel6f hypothesis, according to which
(2.14) (o +it) = O(t%), o>1/2,

C(o +it) = O(t/277F¢), o <1/2.
We choose 7 = 1/ logt. The above estimates imply that ¢(1/2+it+rei?) = O.(|t|°),
so that

¢'(1/2 +it) = O(t° logt)

from which follows, in particular, the existence of a constant K. so that
K. 1
(2.15) ~ S EaETe

As vy — o

s (DIIT(1/4 + it; /2)*| L(¢;, 1/2)I*

I¢"(1/2 + i) ’
which is o(y'*€), since L(¢;,1 —ivy) < 7¢ and (2.13) holds. This proves the upper
bound in Theorem 1.2. The lower bound follows from L(¢;,1 —i7v) > v~¢. The
proof of the corollary is also obvious if we assume (1.8).

(216) ReSs:1/4+i7/2¢(S)Ij (1 — 80) <

2.2. Incomplete Eisenstein series. Let h(y) € C*°(R") be a function which
decreases rapidly at 0 and co. This means that h(y) = On(y") for 0 < y < 1 and
h(y) = O(y~N) for y > 1. Its Mellin transform is

o0
_.d
(2.17) )= [ hwyeL
0 Y
and the Mellin inversion formula gives
1 o+ico
(2.18) M) = 5 /a L H(yds
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for any 0 € R. The function H(s) is entire and H (o + it) is in the Schwartz space
in the t variable for any 0 € R. We consider the incomplete Eisenstein series

1 24100
(2.19) B = Y hS(2) = — /2 H(s)E(z, 5) ds.

21 _ico

The function Fj,(z) is smooth and rapidly decreasing in the cusp. Then
(2.20)

dxd dxd
/ Fu(2)(BE(z,1 — 50))2 22X _ = / / / H(s)y* (E(2,1 — 50))” 5 ds.
T\H T JRs=2 Y

Since sq is a scattering pole, the functional equation ¢(s)¢(1 — s) = 1 gives that
#(1 — s0) = 0. By (2.6)

1
—i 0—142
J R R P Ty 22 2o (1 (2

The term y3/ 2-17 gives

/ / H s 1/2— z'ydyds_/ h —1/2 Wdy
27T/L Rs=2

This term is On(y~") for all N > 0 by the Riemann-Lebesgue Lemma. In the
other terms the y-integration can be performed explicitly. We call the sum of these
terms I(y) and we have

(2.21)

B0 = gy ) fj Tz O [yt s )P s,
Ti(€(2 — 250))* Jps=2 (2m)° £ moT 1/”” 0

As before, we evaluate the integral in y using [8, p. 716, 6.576.4] to get

CCIR e il (AR BRI RIC)

The series was first evaluated by Ramanujan, see [22, 1.3.3, p. 8]. We get

2 (014250(n)2 (s —1/24+iy)C(s +1/2 —iy)((s)?
(2.22) ;( nsjl/Z-f-ify)) _Us—1/ W)CE%) /2= i7)((s)°

The contour of integration can be moved to the line ®s = 1/2. The poles in this
region occur at 3/2—ivy and s = 1. The pole of {(s+1/2—iv) at s = 1/2+44y cancels
with the zero of {(s) and, similarly, the pole of T'(s/2—1/4+iv/2) at s = 1/2 —i7.
Since ((s — 1/2 + i7y) has a zero of order 1 at 1, the pole of the integrand at 1 is
indeed a first order pole. Notice that

lim (s — 1)¢()C(s — 1/2+ i) = ¢'(1/2 + 7).

The residue at s = 1 times the residue of the scattering matrix at s = 1/4 4 iy give

together
3 o0
— h(y)y 2 d
i /0 (y)y = dy,



8 YIANNIS N. PETRIDIS

since H(1) = [ h(y)y 2dy. This is O(1). We remark that H(1) = 0 iff F}, L 1.
The res1due at 3/2 — z'y times the residue of the scattering matrix at s = 1/4 + i~y
give together

VBV E(3/2 — in) /AT (1 — i)T(3/4 = i9/2)C(2 — 209)¢(3/2 = i)
8(3/2 — iv)T(1/4 + iv/2)C(3 — 2ivy)C'(1/2 + i) ’
which is easily seen to be On(y~?), using (2.11), the Riemann-Lebesgue Lemma
applied to H(3/2 —i7y) and the bounds (2.13) and (2.12). We denote the integrand
in (2.21) by G(s). For the integral on s = 1/2 we again use (2.11) and (2.14) to
get

/ G(S) < e*ﬂ"'}‘/2726‘
Rs=1/2
Multiplying with 1/£(2 — 2s0)? and Ress—s,#(s), we estimate by o(y!2).

2.3. Approximating f € C>*(SL(2,Z)\H). Let g(z) = g1(2) + g2(2), where
g1(2) is a finite linear combination of Maaf} cusp forms and g»(z) is in the space of
incomplete Eisenstein series and ||f — g||cc < €. Since f — g is rapidly decreasing
in the cusp, we can find a k > 0 which is also rapidly decreasing in the cusp and

such that
Fi(2) > |f(2) — 9(2)]

and Fj, has small L' norm. This imitates the argument in [9, Prop. 2.3]. For the
argument to go through one needs to estimate

Fy(2)|E(2,1 = s0)|* dp.
\H
We follow the same process as above.

1 oo
2
_ = _ ,3/2 Y 1/2 2\ 2
/0 E(z,1—s0)E(1—30)dx =y +|£(2_2$0)|2 321” o250 -1 ()" | K1 /250 (209) [

The term y3/2 contributes

/ /H 21/2dyds—/ h(y)y~% dy,
27” Rs=2

which is O(1). In the other terms the y-integration can be performed explicitly.
We call the sum of these terms J2(7y) and we have

(2.23)

1 H(s) x= |o_1424,(n)|? /°° 1 )
= Kl K _ .
J2(7) Ti|€E(2 — 250) 2 ~/§Rs=2 (21" T; noi2 J, Y K1 /25, ()|” dy ds

We evaluate the integral in y using [8, p. 716, 6.576.4] to get

20 = T i 2s0)]? /m — SI{iS) a (% - i) 3 (% - i)

5, 0 s iy |o—1+4250 (10
r(2+2>( )Z nsm ® s,

The series can be evaluated using [22, 1.3.3, p. 8]. We get
Z o142 (n)[* _ ¢(s —1/2)¢(s +1/2)¢(s — i7)¢(s +17)

ns— 1/2 ¢(2s)
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The contour of integration can be moved to the line ®s = 1/2. The only pole in this
region occurs at 3/2 arising from (s — 1/2). The pole at s = 1/2 from {(s + 1/2)
and I'(s/2 — 1/4) cancels with the double zero of ((s —iv)((s + i7). The poles at
s = 1 x4y from ((s F iy) cancel with the zeros of ((s — 1/2) at the same points.
The residue at s = 3/2 times 1/|£(2 — 2s0)|? can be estimated as O(1). For the
integral on Rs = 1/2 we again use (2.11) and (2.14), multiply with 1/]£(2 — 2s)|?
and estimate by O(y~'/2). Finally we use the asymptotic growth for Res,—,, #(s)
(= o(v%/?)) and the factor so(1 — s0)/(2s0 — 1) in (1.5) to complete the proof of
Theorem 1.4.

(1]

References

T. Branson, S-Y. A. Chang, P. Yang, Estimates and eztremals for zeta function determi-
nants on four-manifolds, Comm. Math. Phys. 149 (1992), no. 2, 241-262.

T. Branson, P. Gilkey, The functional determinant of a four-dimensional boundary value
problem. Trans. Amer. Math. Soc. 344 (1994), no. 2, 479-531.

S. Y. A. Chang, J. Qing, The zeta functional determinants on manifolds with boundary.
I1. Extremal metrics and compactness of isospectral set. J. Funct. Anal. 147 (1997), no. 2,
363-399.

S-Y. A. Chang, P. Yang, Eztremal metrics of zeta function determinants on 4-manifolds.
Ann. of Math. (2) 142 (1995), no. 1, 171-212.

J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the
critical line. J. Reine Angew. Math. 399 (1989), 1-26.

J. B. Conrey, A. Ghosh, S. M. Gonek, Simple zeros of the Riemann zeta-function. Proc.
London Math. Soc. (3) 76 (1998), no. 3, 497-522.

R. Froese, M. Zworski, Finite volume surfaces with resonances far from the unitarity azis.
Internat. Math. Res. Notices 1993, no. 10, 275-277.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, Fifth edition, Alan
Jeffrey, ed., Academic Press, San Diego, 1994.

W. Luo, P. Sarnak, Quantum Ergodicity of Eigenfunctions on PSL2(Z)\ H?), Inst. Hautes
Etudes Sci. Publ. Math. No. 81 (1995), 207-237.

H. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory
(Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), 181-193.
Amer. Math. Soc., Providence, R.I., 1973.

W. Miiller, Spectral geometry and scattering theory for certain complete surfaces of finite
volume. Invent. Math. 109 (1992), no. 2, 265-305.

A. Odlyzko, Zeros of zeta functions, Math. Comp. 48 (1987), 273-308.

A. Odlyzko, H. J. J. te Riele, Disproof of the Mertens conjecture. J. Reine Angew. Math.
357 (1985)

B. Osgood, R. Phillips, P. Sarnak, Compact isospectral sets of surfaces. J. Funct. Anal. 80
(1988), no. 1, 212-234.

B. Osgood, R. Phillips, P. Sarnak, Eztremals of determinants of Laplacians. J. Funct.
Anal. 80 (1988), no. 1, 148-211.

Y. Petridis, Perturbation of Scattering Poles for Hyperbolic Surfaces and Central Values
of L-series., submitted.

R. Phillips, P. Sarnak, On cusp forms for cofinite subgroups of PSL(2,R), Invent. Math,
80 (1985), 339-364.

R. Phillips, P. Sarnak, Perturbation theory for the Laplacian on automorphic functions. J.
Amer. Math. Soc. 5 (1992), no. 1, 1-32.

R. Rankin, Contributions to the theory of Ramanujan’s function 7(n) and similar arith-
metical functions I. The zeros of the function 7 ; Tr(;”) on the line ®s = 13/2, Proc.
Camb. Phil. Soc. 35 (1939), 351-356.

A. Selberg, Remarks on the distribution of poles of Eisenstein series, in Collected papers,
Vol. I1, p. 15-45, Springer Verlag, Berlin, Heidelberg, 1991.

G. Shimura, The special values of the zeta functions associated with cusp forms. Comm.
Pure Appl. Math. 29 (1976), no. 6, 783-804.




10 YIANNIS N. PETRIDIS

[22] E. Titchmarsh, The theory of the Riemann zeta-function, Second Edition, Oxford Univer-
sity Press, London, 1986.
[23] J. Vanderkam, Ph.D. thesis, Princeton University, 1998.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MCGILL UNIVERSITY, 805 SHERBROOKE
STREET WEST, MONTREAL, QC, CaNaDA H3A 2K6

Current address: Department of Mathematics and Statistics, Queen’s University, Kingston,
ON, Canada K7L 3N6

E-mail address: petridis@mast.queensu.ca



