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Quantum unique ergodicity for SL»(O0)\H*
and estimates forL-functions
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To the memory of Ralph Phillips, teacher, collaborator and friend

1. Introduction

A basic problem in the theory of quantization of chaotic Hamiltonians is that of the
behavior of the mass of eigenstates in the semiclassical limit. For the Hamiltonian which is
the geodesic motion on the tangent space of an arithmetic hyperbolic surface the equidis-
tribution of these masses has been established for some of the eigenstates [20], [25]. In
this paper we show that the mass of the continuous spectrum of the Laplacian on arithmetic
hyperbolic three manifolds becomes equidistributed in the large energy limit, that is, we
establish the ‘quantum unique ergodicity conjecture’ [22] for these states. As in [20] this
issue of equidistribution can be reduced to establishing subconvex estimates fauGL
morphicL-functions associated with corresponding imaginary quadratic fields, see [17] or
[18] for this reduction. The main result of this paper establishes these estimates.

We turn to a more detailed description of our results. We stick to a specific hyperbolic
three manifold, the results may be extended to any congruence subgroup of the Bianchi
groups [24].

Let K = Q(+v/—1) and©O = Z[/—1] be its ring of integers. The group = SLy(O)
is a lattice in Sk(C) and acts discontinuously on the hyperbolic 3-space
H3 = SL,(C)/ SU®2). The quotientXr = I'\ H3 is a non-compact hyperbolic 3-
manifold of finite volume (the Picard manifold). THe?-spectrum of the Laplacian
on functions onXr consists of the continuous spectrum ¢t) provided by the unitary
Eisenstein serie® (w, 1/2 + it),t > 0, see (1.1) below, and a discrete spectrum cor-
responding to an orthonormal basis of eigenfunctipfnis= 1/./vol (Xr) and cusp forms
é1, $2, ... with eigenvalues O< A1 < A» < .... We parametrizéi® asw = (y, z) € H3,
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y >0,z =x1+ixp € Cand Sly(C) acts orH?3 by

g-w=<$ ﬂ)w=(y(g-w>,z(g-w)>

8
with
g - w) = y 2z w) = (a@z + B)(yz +0) + ayy?
lyz+ 812+ lyyl? lyz + 6812+ |y 2y?
Let

1m
e {(E7) om0 cr

be the standard parabolic subgroup fixing the cuspafhe Eisenstein serids(w, s) is
defined foris > 1 by

Ew.s)= Y (g w)>. (1.1)

8T\l

A Maal cusp formp (w) (such as one of thg;'s above) has a Fourier expansion

¢pw) = Y cOyKir|vly)e((v, ) (1.2)
0£veO

whereA¢ + (1+r2)¢ = 0, A = y(49;0; + 97) — yd,. To each cusp form we associate
its standard_-function, which takes the form

L(s,¢)= ) cNW)™. (1.3)
()#0

Here N(v) = vb and(v) is the principal ideal generated by This L-function and its
twists by Grossencharacters satisfy functional equations as follows:((8h = (a/|x|)*
be the basic Grossencharacter on idéajsof ©. Then the twisted.-function is defined
as

c(W)A"(v)

W#0

and is entire. The completddfunction

AGs, ¢ @A) 1= 72T <s + '4”'%) r (s + '4”'2_ ") L(s.¢ ® A7) (1.5)

satisfies

Al—s5,0Q17") = A(s, o @ A").
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The Phragmen-Lindéf principle [3] or the approximate functional equation, see [14],
implies for a fixed cusp fornp the bound

L(1/2+it, ¢ @ A") Kep A+ n+ith1He, €>0 (1.6)

for L(s, ¢ ® A'") on its critical line. This bound will be referred to as the convexity bound.

THEOREM 1.1. Fix ¢ as above. Then
(i) form fixed we have

L(1/2+it, ¢ @ A"™) Kmg (L+ 111V,
(i) for ¢ fixed

L(1/2+it, ¢ @ A™) L1 1+ |m|)159/166‘

REMARK 1.2. The dependence of the implied constants on the eigenvalue parameter
andm in (i) andr andt in (ii) are polynomial i andr (respectively andr). Also there
is nothing special about the exponents, which can somewhat be improved by the methods
below.

Our application to quantum unique ergodicity mentioned earlier uses part (i) only. As is
shown in [17], [18] (i) implies the following equidistribution result.

Let u, be the measures aXir (quantum mechanical densities) that correspond to the
Eisenstein series, i.e., the continuous states masses, defined as follows

we = |E(w, 1/2 + it)|2 dvol(w). (1.7)

Note that the energy (eigenvalue) corresponding te, 1/2 + it) is 1+ 2.

THEOREM 1.3. For K3 and K, compact Jordan measurable subsetXgfwe have

(K1) _ Vvol(Ky)
t—o0 u; (K2)  Vvol(K2)

The setsk; and K> can be taken to be geodesic balls for instance. Theorem 1.3 asserts
that the continuous spectrumX®f- is ‘quantum ergodic’ and confirms the general conjecture
in [22] in this case. It is the main result of the paper.

As with all the recent developments concerning subconvexity estimatésftorctions
[12], [5], [25], [15], we use families. We establish an averaged version of the expected
sharp bound, that is the LinddgIHypothesis:

L(1/2+it,¢ @ M™) <c (|1 +1im| 4 1)
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over a sufficiently small family. With this and positivity, the subconvexity estimates follow.
For the case at hand it was shown in [23] that

T
Z/ IL(1/2+it, ¢ ® A™)|?dt < T?logT. (1.8)
T

lm|<T* ™~

Note that the inequality (1.8) recovers (1.6) when we drop all but one term and use the fact
that the other terms are positive. We proceed by reducing the size of this averaging. We
show that forR79/83 < H < R ande > 0 we have

Z /|L(1/2+ it, p ® A™)|°dt < (RH) . (1.9)
R—H<|m+2it|<R+H

Thus (1.9) establishes the Lindélbound in the mean over this family. Note that for
technical reasons we maintain radial symmetrynind- 2it|. Theorem 1.1 follows from
(1.9) with H = T7%/83, The crucial point is the extension of (1.8) in the form (1.9) with

H apower ofT less than 1. This involves facing off-diagonal terms in the analysis, which
is a familiar feature with such subconvexity bounds. The burden of this estimation is then
transferred to cancellations in sums of products of the shifted coeffici@nts Precisely

we have the following theorem.

THEOREM 1.4. Fix a cusp formp. For h € O, h # 0the Dirichlet series
h
Dy (s, h) = Z cl)cla+h) (1.10)
N(a)*
o,a+h#0

extends to an analytic function in the regien= Rs > 11/18 and satisfies the estimate

Dy (s, h) Ke [RPFHE (1] + 1) + (lt] + D2 p| -2+ (1.11)
in this region.

REMARK 1.5. Note that the Rankin-Selberg method implies the bound

D le@P < X.

N(a)<X

Thus the serie®y (s, h) converges absolutely fots > 1. The key is the analytic continu-
ation and the polynomial boundsi@andr, as these give the desired cancellation in smooth
sums approximatind_ c(a)c(a + k). In the analogous setting in the hyperbolic pléirg
Good [11] was the first to establish such results for special farrasd improve them in
[10]. His method involves bounds dn*|¢|?, ¢;), whereg is a holomorphic cusp form.
Later it was shown in [5] that one could establish such cancellation more genertlfy in
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using a variant of Kloosterman’s method together with the Voronoi summation and Weil's
bound on Kloosterman sums. The recent general triple products bounds for eigenfunctions,
see [26], [21] and [1], allow for a simple treatment of these sums. This is carried out in
Section 2. This method has the advantage (at least at present) of being general. In particular,
it can be applied to the case at hand as well as to general number fields, see [2]. It also
relatesDy (s, i) directly to the spectrum of2(T'\ H), see [27], thus allowing us to use
recent bounds towards the Ramanujan conjectures, see [19], [16].

REMARK 1.6. One should be able to deal with the more general series

cla)c(a +h) _,
Dy (s, h,m) = Z W)\ (o),
a#0
though we have not done so and, in fact, we have worked hard to avoid them. Indeed in order
to deal with the most generakfunction L(s, ¢), for ¢ a cusp form on Gk(K)\GL2(A),
whereK is an imaginary quadratic field, one needs to deal witi 0 as well.

2. Poincar series

This section is devoted to proving Theorem 1.4. kost 0, h € O we define the
Poincake series

Pi(w,s)= Y y(g-wZe((h, z(g-w))), (2.2)
g€l oo\’

wherew = (y, z). These functions are slight modifications of those introduced in [24] and
their analogs for the hyperbolic upper half plane were used for a similar purpose in [11].
They converge absolutely fts > 1, as they are majorized by(w, o), and, moreover,
define analytic (irv) automorphic functions of moderate growth. For the fixed cusp form
¢ (w) in Theorem 1.4 we consider the integral

1(s) = / ¢ (w)2 Py (w, 5) dvol(w). (2.2)
nHe

This integral converges absolutely and defines an analytic functierfaffs > 1. We
unfold as in the Rankin-Selberg method to get

o) 1 ,1 dx1dxod
10 = [ [ [ ewyen ) S
0 0 Jo y

© d
= Ycwet+m [ Ke(@rlviyKerls + hiyy® <. (2.3)

%
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The integral may be evaluated, see [13, 6.576, 4] to give

(s +iNC(s —inT(s)?

) = 872 (25)
X Z C(U)c(];_:_ m|vthl” F(s+ir,s,2s,1— |1+ h/v|2). (2.4)
20 [v]
LEMMA 2.1. The function
L

J(s) = Z c(w)c(v + h)

F(s+ir,s,25,1— |1+ h/v]?
v]?s
v#0

is analytic forfis > 11/8 and satisfies the bound
J(s) Ke (L4 |2 p|t-2r+2/9+

in this region.
Proof. According to (2.4) we have

87T (2s)
= - - I1(s).
C(s +inNI(s —iNI(s)2

J(s) (2.5)

Now, while P, (-, s) is hotin L2(I"\H3), it is of moderate growth and the expansiort ¢f)
via the Parceval formula is easily justified. We remark iRt ¢o) = 0. We have

o 1 (> :
1) = Y6 0P 0 + o [0 EC L2+ 10)
j=1 s
< (Py(-, $)E(-, 1/2 + it))dt. (2.6)

We proceed to analyze the discrete spectrum sum, since the analysis of the continuous
spectrum is similar and, in fact, the bounds towards the Ramanujan conjecture used below
(cf (2.9)) are not needed, since the coefficients of the unitary Eisenstein series satisfy the
optimal Ramanujan bounds. In fact, one can explicitly write the Fourier expansion of the
Eisenstein series for the grolip= SL»(Z[+/—1]), see [8, 2.17, 2.18]

2s —1 ¢g(2s)
Lo A
['(2s)¢k (2s5)

E(w,s) = 2y* +

Y ol o1 o (@)yKas-1(27 ] y)e? 2,
w#0
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where g (s) is the Dedekind zeta function of the number fiedglruns over the Gauss
integersZ[i] and

o (@) = ) (N@)"
(©)l()

We have, see [13, 6.561, 16],

o) 1 1_ dx1dxod
Pt = [ [ [ Gwedn y> S
0 0 JO y

® o1 dy
= cj(h) Y= T Kir; 2 |hly)—3
0 y3

cj(h)
|h|2s—1

25 302m) 12 (s — 1/24irj /2T (s — 1/2 — ir;/2), (2.7)

where the Fourier expansion of tlﬁé—normalizedqﬁj is

¢j(w) =Y c;j()yKir, (2 |v]y)e((v, 2)).
v#0
We can assume that the orthonormal bgsigv) consists of Hecke eigenforms. Denote

by 1 ;(v) the eigenvalue of the Hecke operaigt v # 0. Proceeding as in [9] one has for
everye > 0

7112 (V)]

500 <e X i

(2.8)

We now invoke the strongest bounds towards the Ramanujan conjectures in this case [16]
I9rj1 <2/9, 2 (0)] K PO (2.9)

Actually forI" = SL»(Z[i]) itis known thatdr; = 0, see [7], however, for the more general
" only (2.9) is known. Combining (2.7), (2.8), (2.9), (2.6) we deduce ilta} is analytic
for o > 11/18 and satisfies

IT(s —1/2+ir; /2T (s — 1/2 —irj/2)]
IT(L+ir))]

1(s) <. |h|1—2c7+2/9+€ Z
j#0

2, b))

(2.10)

Now the main result in [26] concerning the precise exponential decay af (92, o)
asserts that

92, dj)] < (Irj| + D)3 TIril2, (2.11)
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Using this in (2.10) together with Stirling’s formula f@r (1 + ir;)|, we are lead to

I(s) Ke |A"27H29FEN (1 |1y
J

x [['(s —1/2+1r; /2T (s — 1/2 —ir;/2)]. (2.12)
Hence
F(Zs)h172a+2/9 5/2 _
J(s) e TG FINTG —INTGR Z(1+ IriD¥2I0 (s — 1/2 4 irj/2)

J
x (s — 1/2 — it /2)]. (2.13)

Fors = o +it we use Stirling’s formula and the Weyl law for the distribution of eigenvalues

Z 1"*CrR3

Irjl<R
to get

J(s) Ke (L4 |e)Y2|p|t-2o+2/5+e, (2.14)
This completes the proof of Lemma 2.1. O

To make effective use of Lemma 2.1 we first transform the Gauss hypergeometric function
using

4z
" (14 2)?
see [13, 9.134, 3]. Hence

F<a,b,2b )=(1+z)2“F(a,a—b+1/2,b+l/2, z2),

1 1 h —2s—2ir
F(s+ir,s,25,1— |1+ h/v]?) = (#)
L+ 1+ h/v))?

In this form we can expand the hypergeometric functions in its Taylor series uniformly for
1/2 < Ns < 2 to get the bound

1— |14 h/v|)?
y F(s+ir,ir+1/2,s+1/2,( L+ /oD )

1+ (14 h/v]
2

Also |1+ h/v| =14 O(Jh/v]), hence

S = YD (Z le)e + MIhl(s| + 1)) |

= |v|2s |v|20+1

—25—2ir
) 1+ 0(h/vD)) =1+ O(hl(s| + D/Iv].

v
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We deduce that
J(s) = Dg(s, h) + Gy(s, h)
whereG (s) is analytic indis > 1/2 and satisfies
G (s) <e |3t + 1) (2.15)

for o > 11/18. Combining Lemma 2.1 with (2.15) we conclude tBgi(s, ) is analytic
in 11/18 < o < 2 and satisfies the bound

Dy (s, h) e [RMOFE([t] 4+ 1) 4 (Jt| + )IY2|p 20 +2/9%,

This completes the proof of Theorem 1.4.

3. Subconvexity

In this section we prove (1.9) after which Theorem 1.1 follows easily. Using the approxi-
mate functional equation fdt (s, ¢ ® A'), see [4], [14], and a dyadic smooth partition of
the sums in it we can bounb(1/2 + it, ¢ ® A) by at mostO (log |z + im|) sums of the
form

c(a) a \" ||
swim =3 s () @ (%) oy

whereG is a real-valued smooth function supported in, say, the intéfy@, 2) and X is
of size at mosR, where|m +it| < R. Infactitis the cas« is of sizeR that is the critical
case. Thus (1.9) follows if we can establish that for a fixed smgoth 0, supported in
(1/2, 2) with ¥ (1) = 1, andR"%/83 < H < R, the bound

A ‘Zf <w)|sx(t,m)|2dt <Le (RH)ME. (3.2)

We begin with the restrictio®/ /2 < R < H and write

& _ it g eR/Z,
||

that is arga) = 276,.We have

c(@)c(B)

A=Y "Glal/X)G(BI/ X)——— o]

a.p
) Z/ (%) e((Bu — Op)m +itlog(le|/|B]) /) dt. (3.3)
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Applying the Poisson summation formulasinwe get

Z v <|m+2#) e(m(6y — 0p))
= Z/ (%) e(x(0y —6pg) — vx) dx

. R
- HZf ¥ <|y + 2it/H| — ﬁ) e(H(0y — 05 — v)y) dy
=HY Yr.ui(HO — 05 — v)), (3.4)

where

VR (Y) =¥y +2it/H| — R/H).

Repeated integration by parts shows that

IZfR,H,t(S)Z/ w<\/y2+4t2/H2—R/H> e(—y&)dy <n (& + D7V

—00

forany N > 1. Hence, if we choose 1/2 < 6, — 65 < 1/2, which we can assume, then
only the termv = 0 is significant in (3.4). That is

it| — R
Sy (%) e(m (6 — 8))
© 2it| — R
= [ v (%) e(y (6 — 0p)) dy + On(H™M).
Returning to (3.3) we have
ZG(|a|/X)G(|/3|/X)C(T);(|ﬁ) / / ('y At )
a,p

e((e e,g)y+ L og ¥

g |ﬂ|> dydr + small error

which gives
c(@c(B)

leeB]
wa,H(Zn(ea —6g)H, Hlog(la|/|B])) + small, (3.5)

A= —ZG(IaI/X)G(IﬂI/X)
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wherey/H = y1, 2t/H = x1 and

VR H(x1, y1) = ¥(|Ix1+iyil — R/H). (3.6)

In particulary g, g is radial in(x1, y1) and hence so is its Fourier transfor}n

VR 1 (EL &) = Vr (&)

and so

VR, 1 (27 (60 — 0p), log(lal/181)) = V& u (1 log(a/B)D). 3.7)

Integration by parts in the definition of the Fourier transfornyafz, see (3.6), gives

n R
R n (D] <y - (1+ i

foranyN > 1 and
~ ) R v+1
V(8D < {4 (3.8)

for its v-th derivative. From (3.7) we can write (3.5) as

H? < G(lal/ X)G(IB]/ X)c(e)c(B) »
A=—52 e (||£3||/ )C(a)c(ﬂ)t/fR,H(HlIog(oz/ﬁ)l) (3.9)

o.p
with a small error. Hence, & > 0 is arbitrarily small, the contribution to (3.9) of the terms
with | log(ee/B)| > H%~1is negligible. Alsola| and|g| are of sizeX, so we have

C(T;;('ﬁ DIl log/B))  (3.10)

H?2
A== > GUal/X)G(BI/X)

le—Bl X HS-1

with small error. The contribution to (3.10) of the diagonak g is

2 2
H? Y Glal/X)? lcg‘l)zl VrH(0) Ke H2XR/H < (RH)M*. (3.11)

This is in agreement with the required bound (3.2). For the off-diagonal terms we have
X > H7?% (otherwise there are essentially no such terms). We write g + & with
h # 0. According to (3.10) we have

lh| < XHL, (3.12)
We estimate the sum for each suchlLet

= GUB+hI/X)GUBI/ X)c(B)e(B+h) -
Sthy=Y" YR V.1 (H|log(L+ h/B))).

B
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From (3.12) we have
log(L+h/B) = h/B + O(H?7?).

Hencellog(1+ h/B)| = |h|/IB] + O(H¥2)and|1+ h/B| = 1+ O(H’1). Hence

Sty = Y GUBI/X + 0<H‘3_1))G('ﬁ'/x)%
B

x(L+ OH ™M) r u(HIRI/IBl + O(H?™Y)).
Using (3.8) withv = 1 we get

)2 c(B)e(B+h)

NG Yru(H|R/IBl) + O(H®71R?/H?).  (3.13)

S(hy=Y_ G(BI/X
B
Finally we can write the first sum as follows

h) ~
S Gl 02l C R G g
B

N(B)
1 2s
= — X ‘D¢(h,S+l)Bh’H’X(S)dS, (314)
21i Jops=2
where
BN d
Binx(s) = /0 i (HIH ) G2 . (3.15)

For—1 < o < 2 we integrate by party/ times in (3.15) and use (3.8) to get
Bhmx(o +it) <y.e (t] + 1N R/ H)N 1T,

Now we shift the contour in (3.14) tbls = —7/18 + €1, wheree is arbitrarily small.
According to Theorem 1.4 we pick up no poles. Moreover, if we apply the bounds from
Theoren 1.4 we obtain

oo

—00
x (|R|*Yore 4+ 1) + (7] + D2y ar. (3.16)

Having gained the key cancellation from Theorem 1.4 we now proceed with somewhat
crude estimations. We také = 7 in (3.16) and get

Sth) < H2873R2 + X*7/9(R/H)8+e|h|ll/9+e‘
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We sum om: satisfying (3.12) to see that the off-diagonal contributior tis
<< H25—1R2XH5—1 + H2(XH5—1)20/9+6 X—7/9(R/H)8+E
& R3¢/ H2 4 R8S/%+e /[T4/9,
This satisfies the desired bousd (R H)1*€) as long as
H > R7%/8, (3.17)

This bound for the off-diagonal contributions together with the bound for the diagonal
contribution (3.11) proves (3.2). As pointed out at the beginning of this section this implies
(1.9). Applying (1.9) withH = T76/83 shows that forn fixed

T+1
/T . IL(1/2+it, ¢ ® A™)|?dt < T8, (3.18)

A standard argument, see [12], allows us to go from such mean-value estimates to the
pointwise estimate

IL(1/2+it, ¢ @ M| < TOY166+¢ (3.19)

Actually we were very generous (or crude) in the estimations (3.13 ) and (3.17). One can
easily improve the exponents, but, rather than doing so, we remark that this would lead to
the removal of the in (3.19). This then proves Theorem 1.1, part (i). Part (ii) is deduced
in the same way.
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