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Consider a finite volume hyperbolic surface. Under perturbation the spectrum of
the Laplace operator is unstable but the singular set is stable. We characterize
the singular set in terms of the resolvent of the Laplace operator and extend
Fermi’s Golden Rule to the case of multiple eigenvalues.

Introduction

In this work we are interested in the spectral theory of the Laplace operator
acting on non-compact finite volume surfaces obtained as the quotient of hyper-
bolic 2-space H? by discx;ete subgroups of PSL(2,R). The spectrum consists of a

continuous part filling [, 00) and a discrete set of eigenvalues, of which finitely

many are less than or equal to }1-. Associated with the problem of existence of
infinitely many cusp forms (i.e. L? eigenfunctions with zero Fourier coefficient) is
the problem of stability of the spectrum. The spectrum is unstable under pertur-
bation ([8] p.363). However, the spectrum becomes more manageable when the
scattering frequencies are adjoined with certain multiplicities prescribed by the
scattering matrix. More precisely, let us denote the scattering matrix by &(s),
and ¢(s) the determinant of the scattering matrix. Then we have the following
definition:

Definition. ([9] p.2) The singular set consists of the points of positive mul-
tiplicity, if we define the multiplicity of any point s in the complex plane as
follows:

(2) f Re s > 1 but s # % we define the multiplicity at s to be the dimension

of the eigenspace for s(1— s) of A on L%(I"\ H). Consequently, this multiplicity
1s zero unless Re s = % orse€ (§, 1].

——— e
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(b) If Re s < % we define the multiplicity at s to be the multiplicity of the
eigenvalue s(1—s) of Aon L3I\ H) plus the order of the pole (or minus
the order of the zero ) of ¢(s) at s. Consequently, if Re s < 'i and s ¢ R this
multiplicity is simply the order of the pole of ¢(s) at s, since in this case go(s)
cannot have a zero and s(1 — s) is not an L2- elgenvalue

(c) For s = 1 the multiplicity is defined as twice the dimension of cusp forms

with eigenvalue % plus ntir(®(2)

The singular set occurs in a one-sided version of the Selberg trace formula
and is essentially the spectrum of the cut-off wave operator B in the Lax-Phillips
approach ([5] p.28).

In this work a new characterization of the singular set is provided using the
analytic continuation of the resolvent R(s) = (—A — s(1 — s))~!. We have the
following theorem:

Theorem 1. The multiplicity of a singular point sq is (for so # 1) the rank
of the operator:

Py, = }{ (25 — 1)R(s) ds (1.1)

where the contour encloses only s; among the singular points.

The factor 2s — 1 appears because we are using the variable s instead of the
natural z = s(1 — s). We remark that R(s) and Py, do not act on L(I" \ H) for
Resg < % but on certain Banach spaces instead (see section 2). The operator Py,
is not a projection by any means in contrast to the discrete spectral problem.
However it is a finite-rank operator. As shown in [9], p. 21-23 after the spectrum
of B has been identified in terms of the singular set i.e. the spectrum of B + }
is exactly the singular set with the correct multiplicities, standard perturbation
theory can be applied to B when we consider variations of the metric g and one
sees that the singular set is stable under deformation.

For a complete analysis of what happens at s = } we refer to [7].

The proof of theorem 1 actually provides also a basis for the image of §(2s—
1)R(s)ds in terms of the various spectral data. See Remark 2 at the end of section
3 for details. The same method used for theorem 1 can be applied to determine
the Taylor coefficients of R(s) for all negative terms (s — sp)™*, ¢ = 1,2,...
whenever they exist. In particular the following theorem can be proved, which
we state for the case of one cusp

Theorem 1'. If Re sg < 2, the resolvent has a pole of order k at sg exactly
when E(z,s) has a pole of order k at so. We set A(z,s) = (s — s0)*E(z,s) and

B_, B_,

Gosr T s

(2s — 1)R(s) = (1.2)

Then the B_;’s are finite rank operators and, if k > 1, a basis for the image of
B_;,i>1,is:
dr-i-i

ds<—i-i Fer=i=7 Az, %0) (1.3)

forj=0,1,...,6—1.
The proof is essentially the same as the one of theorem 1, if we notice that

r(z,2';1 = s) in (2.8) will never contribute for the B_;, i > 1, since it has at
most a simple pole. We omit the obvious details.
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In the last section we provide an extension of Fermi’s Golden rule, which is a
formula giving us the rate at which an imbedded eigenvalue leaves the real line
Re s = § to become a resonance. This is treated in [9] p.23-26 for a simple eigen-
value. We treat the case of multiple eigenvalues, which is not at all uncommon. If
I' is a congruence subgroup of level N and f(z) is an eigenfunction of SL(2,Z),
then the functions f(kz), k|N are linearly independent eigenfunctions for I" with
the same eigenvalue. Let us assume that m is the multiplicity of an imbedded
eigenvalue. We set A the weighted mean of eigenvalues: i.e. if the perturbation
parameter is € and A1(0) = A2(0) = - - - = A (0) split as A1(€), ..., Am(€) when
the perturbation is switched on, we set:

. 1 &
Ale) = — .
(€)= — 3" M(e) (14)
k=1
and then we have:
Theorem 2. If Y, k = 1,...,m is an orthonormal basis of eigenfunctions
of the Laplace operator with eigenvalue % + o2 >  then the rate at which the

weighted mean of eigenvalues leaves the real line to become a resonance is:

1
4mo?

R a2 . m n 1 .
2) _ s — (2 =41 2
ReA® = Re T2 ME) le=0 = kz_:lg I(Ei(z, 5 +i0), Apa(2))F (1.5)
If Re A(2) # 0, then at least one of the branches \;(¢) becomes a resonance.
The author would like to thank his adviser Prof. Peter Sarnak for his help
during the preparation of this work, which is part of the author’s Ph.D. thesis.

1. The resolvent kernel

In this section we recall some standard facts about the resolvent and its
analytic continuation, which is due to Faddeev [2] (see also [4] Chapter XIV).
Let R(s) = (—A — s(1 — 5))~!. The fundamental point pair invariant is:
|z =2 |?

dyy’ @1)

u(z,2') =
for 2,2/ € H We set:

o(u, s) = Zl;/o [((1— O]t + )~ dt 2.2)

foro>0,u>0 (s=0+it)and k(z,2';s) = p(u(z,2'),s) and then the kernel
k(z,7';s) is the Green’s function for the problem Ah + s(1 — s)h = f at least
for ¢ > 1 ([4] p.275).

For a discrete subgroup I' of PSL(2,R) with I" \ H non compact of finite
volume we set:

r(o,730) = 5 Y plu(z,72),9) (2.3)
yer

for ¢ > 1. This is the resolvent kernel. We decompose the fundamental domain
F of I into
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F:FQUOFG

a=1

where the F,, are isometric to the standard cusp. Let us denote the stabilizer of
the j-cusp z; by I';. It is generated by a single parabolic element S; and there
exists a g; with gjo0 = z‘7 One can choose go € SL(2,R) so that z — g4z maps
C = {z;—3 < Re z < },Im z > a} one-to-one onto F,. Each function f on F
has n+1 components fo(z) f(2) for z € Fy and fa(2) = f(gaz) for z € C.
One has the decomposition:

LY\ H) = L*(Fo) & é} L*(F,) (2.4)

a=1

but it turns out that certain Banach spaces B, play an even more important
role in Faddeev’s approach. The space B, consists of complex valued functions
f(z) whose components fo(z) and fo(2), @ = 1,...,n are continuous on Fy and
C respectively with: \

| fa(2) |< e (2.5)

for z € C with the py-norm:
Il £ llu= max | fo(z) | + Zmax | f‘;(#z) I (2.6)

Since the Laplace operator is a negative operator, the resolvent R(z) = (—A-
z)~1 is defined on C \ [0, 00). However, one can use meromorphic continuation
to attach a meaning to the resolvent on a Riemann surface which is a two
sheeted covering of the z- plane. Instead of the natural z variable, one introduces
z = s(1 — s) and then the z plane cut along the ray [0, o0) corresponds to the
right half plane Re s > — cut along < s < 1. The analytic continuation of the
resolvent kernel can have poles only at t the | following set of points:

e at sg, if so(1 — so) is an L2- eigenvalue and Re sg 2 but sq # %, and the
pole is simple and:

1 m
1g) = } : . (5 /. 2.7
r(z!z ,5) 30(1"‘50)""3(1—'8) Pt ¢t(z)¢|(z)+r1(z)z )s) ( )
where 9;, (i = 1,-.-,m) is an orthonormal system of eigenfunctions (chosen

to be real) with eigenvalue so(1 — so) and ry(z, 2’;s) is regular close to so,
(see [4], p.333)

e at 80 = %, possibly

e at points sp with Re so < i. These points are called resonances and the
Eisenstein serles and the scattenng matrix can have poles at those points
only for Res < } (see [4] p.338-340).
Fors,1-s non—singula.r, we have:

25— 1 Y Es(z,8)Ep(z,1-5)  (28)
p=1

r(z,2';8) = r(z,2';1-38) =
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a proof of which is given for instance in [4] p.344. For a generalization of (2.8)
to the case of finitely generated Kleinian groups we refer the reader to [1].

After obtaining the analytic continuation of the resolvent kernel one defines
R(s) as follows: Fix 4 < 1. Then R(s) : B, — By, is defined for Res > y as
the integral operator with kernel 7(z, 2’; s).

2. Proof of Theorem 1
Let us suppose, for simplicity, that we have only one cusp. Let s be a singular
point and define the following operator:

1
P =577 [ (2= DR s (3.1

where I' is a circle enclosing so but no other singular points. The operator Py,
has kernel: .
3 F(ZS - r(z,2';s)ds (3.2)
The proof splits in a number of cases, since the definition of the singular set
contains several cases.
Case I: The first case occurs when the singular point so satisfies Re so > %

but so # 3. Since lim,_.,, a—fl"_—';:’)_’)-(%(’ﬁ);; =1, it is easy to see that (2.7) implies
in this case that P,y has kernel Y [, v;(2)v:(2'), where the ¥;(z),i=1,...,m
is an orthonormal basis of eigenfunctions with eigenvalue so(1 — so) (chosen to
be real). The theorem for sy now becomes obvious.

Before discussing the other cases we remark that for Reso < § the order of
the pole of E(z,s) and ¢(s) at so is the same: this follows from the functional
equation E(z,s) = ¢(s)E(z,1 — s), since E(z,1 — s) never vanishes identically
(unless possibly for so = 2) and if E(z,1 — s) has a pole at sg, then so does

©(1 = s), but <p(s)go(1 -s)=1.

Case II: The second case involves a singular point so with Resp < -,i; but
so ¢ R. We note that : §(2s — 1)r(z,2;1— s)ds = 0 since, for Res < 1,5 ¢ R,
r(z,2';1 — s) is regular. So, using equation (2.8), we get:

1 . _ 1 'y
57 /(2s - 1)r(z,2';s)ds = 27”_/ E(z,8)E(2',1—s)ds (3.3)
The Eisenstein series E(z,s) has a pole of finite order at so and the contour

integral on the right hand side of (3.3) is the residue of £(z, s)E(z',1 - s) at so.
Suppose that x is the order of this pole. Then

2,,,/E(z S)E(z',1-s)ds= ;:;_ ((s—so) E(z,s)E(Z, 1——.s))l,_.o

= Y ("'l)d‘,A(z s0)(—1) ££ (2,1~ 50)

i+j=n—-1 ( )

3.4

where A(z,s) = (s — 80)*E(2, 5) is regular at sp. The integral kernel of this
operator is, therefore, of the form:




336 PETRIDIS

N
Y a(z)bi(2) (3.5)
1=0

and, for such a kernel, it is obvious that it defines a finite rank operator, of
rank < N+ 1.In our case N = k — 1. We need to know that the functions:
A(z 8), fori =0,1,...,k—1 are linearly independent. The following lemma

proves something stronger which we will use later:
Lemma 3.1. In the same context as above, the functions

di
F&I‘TA(Z’ 50) (36)
for i = 0,1,...,k — 1 have no non-trivial linear combination that is an L?
eigenfunction.
Proof. Denote —-—A(z s) by AG¥)(z,s). For s # so, s non-singular, we have:
—AA(z,8) = —(s — 50)"AE(z,s) = s(1 — 5)A(z, 5) (3.7)
—AAM(z,8) = 5(1 — ) AWV (2,5) + (1 — 25)A(z, 5) (3.8)

and an easy induction shows that AA() belongs to the linear span of A,
A AG) Let us write:

—AAW(z,5) = Z pj- (5)AU)(z, s) (3.9)
igi
The following two relations will be proved inductively:
pi=s(1-3s) (3.10)

fori=0,1,...and: . )
Mio1 = HiZy+ (1 - 2s) (3:11)

for i=2,3,.... Equation (3.9) implies:

_AA(t-#-l)(z,s) = Z /“J( )A(])( + Zp;(s)A(]‘i'l)(z, s) (312)
i<i J<i
So A(‘+1)(Z,S) has coefficient #:Ii(s) = p:(s), which is equal to 3(1 - 3) by

inductive hypothesis. Also pi*!(s) is the coefficient of A®) in the left side of
(3.12), while the right side gives:

dpi(s)
ds

The induction is complete and (3.11) is proved. Formula (3.11) gives a recursive
formula for ui_,(s) which can be solved explicitly to give:

pi_1(s) = i(1—2s) (3.14)

Now we can prove the statement of the lemma. Another induction will do it. Let
us first remark that A(z, so) is not in L?(I"\H). Since the Eisenstein series have a

Fala(e) = (6= ) + oy (6) = (1= 20) 4 pia(s)  (319)
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pole of order & at so, the zero Fourler coefficient of A(z, so) is of the form cy! —*°
with ¢ # 0 and, since Reso < % , this term cannot be in L?. Suppose that the

AU)(z, 50)’s have no non-trivial lmear combination which is an L? eigenfunction
for j <1i. Also suppose that :

A(H’I)(Z,SO) = Z/\JA(J)(Z,SQ)+f(Z) (315)

j<i
with f an L2-eigenfunction. We see that Af = —Af and (3.9), (3.15) imply:
AAT(z,50) =Y N Yl (50) AV (2, 50) — Af(2) (3.16)

igi g

On the other hand:

; d
—AAGHD (7, 50) = (- —A)AD(2,5)|5=5 = Z (5)AY)(z, 8)|s=sp
j<i

d
__.Z b SO)A(’)(Z S0 +Zp (50)AU+Y)(2, 50)

i<i Jj<i
=2 ( % (s0) + 45 1(So)> AY) (2, 50) + p(50) A0+ (z, 50)
Jj<i

=) ( : —2(s0) + H5_ 1(80)) AY)(z,50) + pi(s0) (Z A APz, 50) + £(2)

igi i<i
(3.17)
In (3.16) A¥)(z,50) has coefficient A;ui(so) and in (3.17) it has Aipi(so) +

%(So) + pé_1(s0). Moreover the equations (3.16) and (3.17) give a linear com-
bination among the A, A, ..., A®) which is an L? eigenfunction, because —Af
and pi(so)f are L? eigenfunctions with the same eigenvalue. However, this linear
combination is non-trivial:

C%}(30) +pi_1(s0) = (1~ 280) + (1~ 2s0) = i+ 1)(1 = 250) #0  (3.18)

since so # 1. This finishes the proof of the lemma.

We now know that the image of P, is a certain subspace of the space spanned
by the k elements A()(z,s¢), fori = 0,1,...,& — 1. To conclude the proof that
the rank is exactly x, we need to know that those functions really belong to
the image. We are going to present x functions fo(2), fi(2),..., fe—1(2) which
are compactly supported and the elements P, fi(z) are & linearly independent
vectors in the span of A%)(z), A()(z),.. A=1(z) fori=0,1,..., 6= 1.

We first remark that in this setting the height at which we spht the surface
into a compact part and a cusp does not play any role: the analytic continuation
of the resolvent is independent of it and the same is true for the Eisenstein series,
their poles and their singular parts at the poles. Consequently the rank of Py,
is independent of the height we cut at. We choose the functions f;(z) to be :
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fi(z) = { ‘g—f—(z, 1—sg) forz G.Fo; (3.19)
0 otherwise

We need the following lemma about the Macdonald Bessel functions:

Lemma 3.2, The Macdonald Bessel function K,(z) together with all its
derivatives in s (& K,(z) etc.) decrease exponentially as & — 0o.

The lemma is well-known for K,(z). A proof can be based on the following
formula:

[o ]
K,(z) = / e~ <sht cosh st dt (3.20)
0
(see, for instance, [11], p.181). Then:
dt _ [ [ emTeoshtticosh st dt, for i even
ds Ki(=) = {f0°° e~Tcoshtfiginh st dt, for i odd (3.22)

For z > 4, zcosht > £ + 2cosht (because for a,b > 2 we have ab > a + b), so:

d’ e~ % [° em2cohtyi cosh st dt, for i even; d'
—K,(2) < 0 . ’ b= F—K,(2
ds’ o(2) < { e~ ¥ [T e 2cohtyisinhst dt, for i odd; } ¢ s +(2)
(3.22)
This completes the proof of the lemma.
We have the following asymptotic expansions for F(z/,1 — sg):
E(7,1-s0) =y ™" + (1 - s0)y/*° + O(e™¥") (3.23)

and:

o1 =0 gy 5 (J)e -1y ny o)

a+b=j
(3.24)
for j = 1,...,k — 1. From this we see that the dominant term, i.e. the term
growing more quickly as y/ — oo, is ¥’ ~*°(Iny’)7: Here we note that Re so < 3
i.e. 1 — Resg > % Then P,, maps as follows:

fi = Az, 50) (/ (v'*7*°)?(Iny/)*~ 1+ + lower order terms dz') +
Fo

+(N‘1— 1) A(l)(”ssO) (/ (3/'1-'0)2(111 y’)"““‘ + lower order terms dz’) 4o
Fo

. (3.25
fori =0,1,...,5—1, where lower order terms means terms of the form y*(In y)2
with Re a < 1.
An integration by parts gives:

a+1
[t ay= sy - =25 [vap-tay 629

a+1

and, inductively:
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b .
“(Iny)® d —Z—ﬁi)i—zﬂ +1(In )b~ (3.27
Vnyldy =2 o By (ny 27)
j=0

where ij is the number of permutations of j elements out of b objects.
This formula suggests that the main contribution in the integrals in (3.25)
comes out of integrating (y'*~*°)%(Iny’)’, because all other terms have order
of growth at most y!=*0+*0(Iny/)?*~2. After performing the integration, the
terms [(y'?7*0)?(Iny)® %’,‘7 give contributions whose coefficient of y(1=%0)2-1
is:
P (-1)® bi(—1)®
b( ) = ( ) : (328)
[2(1 = s0) = 1]+1  [2(1 = s0) — 1)*+!

In order to show that the & x x matrix of the coefficients of A(*)(z, so) is non-
singular it suffices to show that its determinant has order of growth at least
y(1=20)2=1 Gince all terms of the form y(!=%0)2=1(Iny)™ with m # 0 are of
order bigger than y(1=%0)2-1 when evaluating the determinant of the x x «
matrix mentioned above, y(1=%0)2=1 gets as coefficient the determinant of the
matrix:

(r=1)(=1)*"1 (r=2)(=1)""2 0(-1)°
Bi-s0)=1]F =s)-1/T [7(7%0)%17’
K!(=1)" (k=1)(=1)"" 11(-1)
[2(1~s0)—1]%+1 2(1-s0)-1]* " [2(1-s0)-1] (3.29)
((r=1))(=1)2=1)  (95_3)i(=1)25=3 ‘ —1)y(=1)%~1
[2(1,‘-:0)—-1]2(""1)'4'1 [2?1-%)-1]%-3 N[z (I=s0)-1J%

By taking out a factor [2(1~sg)—1] from each row and setting z = 7(1—:}0)-_—1,
we see that the matrix has non-zero determinant iff the determinant of the
following matrix is non-zero:

(k= Dlzr-? (k —2)1z5=2 ... 0!z
Klz" (k= Dlz=-t ... 1z!
(3.30)
(2(k - 1)')!_,32(»-1) (26 — 3‘)!:1:2"'3 cor (K- 1')!:1:’°“1

The expansion of this determinant gives only terms of degree x(x — 1) in z, so
the determinant is non-zero iff the following Hankel matrix is non-singular for
n=g-1:

o0 2 ... al
uoo ! - (n-f:-l)! san
al(n41)! (42! ... (@n)

We evaluate the determinant of this matrix as follows: From the j column we
take out a factor of (j — 1)!, and, then from the i row we take out a factor of
(1 = 1)!, so the determinant becomes:

, i o)
H @@ - 1)! H (G =Dt I(Gg?ﬁz(T:ll—)T)i,jzl,---,n+l| (3:32)

i'<n i'sn
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i((“:ﬁ 2));,,~=1,...,,,+1| =1 (3.33)

(see, for instance, [6], page 679). This is enough to ensure the claim about the
rank of §(2s — 1)R(s)ds, in the case that Res < 1 and s ¢ R.

We have:

Case III: If Resy < % and sg is real and the Eisenstein series have a pole at
S0, the following thing can happen:

/(23 - r(z,2';1 - s)ds (3.34)
r

may be a non-zero kernel, if the Laplace operator has an L? eigenspace at so(1—
o), and in this case this is the kernel of the L? projection on the so(1 — s0)
eigenspace i.e.

k
D 9i(2)9i(2") (3.35)
i=1

where the ¥;(z) form an orthonormal basis for this eigenspace. The functions

AU)(z,50)’s and the ¥;(z)’s are linearly independent as follows from the lemma
3.1 above. Here we take as test functions to apply Py, the fo, f1,..., fx—1 defined

above and: 52 F
3. _ i(z or z € Iy,
vi(2) = {0 otherwise (3.36)

for i = 1,2,...k. The result is a (k + k) x (k + k) matrix which we hope is
non-singular. This matrix can be written in the form:

(é g) (3.37)

where A is a kK X k matrix, Bis k x k, C is k x k and D is k x k. They depend on
the height we separate the fundamental domain and we study their asymptotic
behaviour as y — oo. The matrix A is the matrix studied previously i.e. its
determinant has order of growth at least y(1=%0)2-1  Also:

D = ((9i,95)2)i j=1,..k (3.38)
and obviously tends to the identity matrix I. For example we have:

x—1
fi -—»Ao(z,so)/ (-—1)"'1;9&_1E(z',l-—so)f,-dz'+~-~+t91(z)/ V1 fjdz'+- -
. Fo

Fo
(3.39)
. ge-1 i i
3, — Ao(2, 50) f (S B, 1= s0)rde 4 -+ 93(2) / 91 pde 4
F F
’ ’ (3.40)

So B and C contain elements of the form:

[ (<17 5B = s (341)
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The zero Fourier coefficient of ¥(2) is of the form ¢ - y*°, where Re sq < % The
constant ¢ can be zero. Then the main term of the integral, taking into account

the asymptotic behaviour of di:;E(z’, 1 — so) comes out of integrating:

c

T (Iny) ! (3.42)

/y""’(ln yY cy'oyidy = C/y"(ln yYdy =

When evaluating a determinant every term contains exactly one element from
each row and each column. Consequently, the only terms in the determinant of

(é g) that have order of growth y(1~20)2=1 can be those coming from det A.

Note that limy_,o D = I by (3.38). And we know from the previous case that

detA # 0. So y{1=%0)2=1 has again nonzero coefficient in the determinant and
the matrix is non-singular iff the cut is made high enough.

Case IV: The next case to consider is Reso < 1 and ¢(s) has a zero at so.
Then we expect the multiplicity to be the dimension of the L? eigenspace for

so(1 — so) minus the order of the zero. In this case ¢(s) would have a pole of
order 1 at 1 — so € (3, 1]. The residue of the Eisenstein series E(z,s) at 1 — so

will be an L? eigenfunction which is non-cuspidal. Set:

u(z) = s-l.i1n-1.so(3 —(1-s0))E(2,5) = tlir?o(so —t)E(z,1-1) (3.43)
and
co = ,—1-i1n-1.;0(3 — (1= s0))p(s) (3.44)

Then the MaaB-Selberg relation implies: [ |u(z)|2dz = cq (see [10] p.652).

The operator P,; = §(2s — 1)R(s)ds has a kernel in which there are
two contributions again: one from §(2s — 1)r(z,2';1 — s)ds and one from
§ E(z,s)E(2',1 — s)ds. The resolvent kernel r(z,2';1 — s) represents the or-
dinary resolvent kernel, as 1 — s has real part > % So the contribution of
$(25 — 1)r(z,2';1 — s)ds equals:

k
Y 9i(2)9i(2") (3.45)
=1

where ¥;, i = 1,2,..., k is an orthonormal basis for the L? eigenspace of so(1 —
50). We can take 9,(z) = 3\/%2, We now look at the other contribution:

fE(z, $)E(Z',1-s)ds = f<p(s)E(z, 1-3s)E(z',1—2s)ds (3.46)

and the integrand has a pole of order 1, so we get:

Jlim (s~ 50)p(s) E(z, 1~ ) (2, 1~5) = — lim s“’(f)su(z)u(z’) = —91(2)91(2')
0 (3.47)

since, if p(s) = ‘_(i_‘o + -+, then p(1 - 5) = ’—091_1_—‘ + ---and:
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. p(s) 1 _ 1
sl-l*r?o So—5 sLao o(1—s)(so—s) co (348)

Now that the term 9,(z)9;(2’') cancels, the remaining kernel, which is
Ef=2 9;(2)9i(2'), gives an operator of rank k — 1.

Case V: The last case is the case so € (0, 1] and ¢(s) has no pole or zero at
80. Then all the eigenfunctions at so(l — 80) are cusp forms with eigenvalue less
than ;. The only term contributing is § r(z, 2/, 1—s)ds, since E(z,s)E(z',1~5s)
is regular at sp and the result follows.

Remark 1: For Resq > 1 5180 # % formula (2.7) identifies the residue of the
resolvent as follows: if

R(s) = ;‘Af‘i‘g+Ao+A1(s~sa)+~-- (3.49)
with corresponding kernels satisfying:
r(z,2';8) = 1(z Z) + Ao(z,2") + Ai(z,2")(s — 50) + - (3.50)
close to sg, then:
Aes(a1) = g W) (351)

For apphcatlons (see the next section) one is also interested in Ag(z,2') if 5o =
; + i0 is an embedded eigenvalue. For sq = + ic we write the corresponding

expansion close to 1 — s = 1 — io for R(s) and r(z,2';s):

B_,
R(s) = Y )+Bo+B1(s-—(1—so))+
with corresponding kernels satisfying:
B_i(z,2
r(z,2';s) = ;ﬁz—) + Bo(z,2') + Bi(2,2') (s = (1 = s0)) + -+ (3.52)

Using (3.50), (3.52) and (2.8) we get:

r(z,2';s) =

A_y(2,2") , 1 & )
— Y —— . . — . 3
1_5_30+,«1o(z,z)+ +23_1‘§=1E,(z,s)E,(z,1 5) (3.53)

Z?:l E{(Z, S)E.'(Z’, 1- S) ds

BO(Z, z}) = ] L(Z_Z_ﬂ_ds = Ao(z ZI) +

s = (1 - s0) ’ r [s—(1—s0)](2s-1)
n /
— / 3 2:’:1 E‘(Z’ S)E,'(Z ) 1- S)
=4o(z )+ lim 25— 1
= Ao(Z zl) + Z?:l E{(Z, 1- SQ)E,'(Z’,S())
’ 1- 280

(3.54)
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Remark 2: The proof of theorem 1 also identifies a basis for the image of
$(2s — 1)R(s)ds as follows:

In Case II we can take A(z s0), £A(z,50),.. A(z, s0).

In Case III we take those in I and a bas13 for tﬁe eigenfunctions with eigen-
value so(1 — sg).

In Case IV we only take a basis of eigenfunctions for sg(1 — sp) but exclude
the residue of Eisenstein series at sg.

In Cases I or V we take a basis of eigenfunctions for so(1 — sg).

dKl

3. Proof of Theorem 2

The idea is (see [9] p.21) to use perturbation theory for the cut-off wave
operator B which has discrete spectrum. However, since B is not self-adjoint,
we choose to use variational formulas that use traces (see [3] p.79) instead of
energy inner products, as was done in [9] p.24. The heart of the proof is to
reduce the problem of computing Re A into a comparison between the limits
lim, Lo+ (A+ } + 0% +ie)~! and lim, o~ (A + L + 0% +iec)~!, where § + 0% is
an imbedded eigenvalue. This comparison is provided by formula (3.54).

Weset L =4+ ;1{, A= (2 (1)), E the energy form for the wave equation
Uy = Lu:

F ((2)) =—(f1, Lfi)rz + (f2, fo)r2

Hg the completion of the space of pairs of C*® functions with compact support

in the norm: f ;
1 _ 1 2
¢ <<fz)> =F ((fz)) *ellfill

for ¢ sufficiently large, P the E-orthogonal projection to the complement of the
space D4 @ D_. in Hg, where D4 are the spaces of outgoing and incoming data
(see [5] p.121). The operator P may only change the zero Fourier coefficients of
data at each cusp. The operator B is the infinitesimal generator of the semigroup
PU(t)P where U(t) is the standard wave operator. We denote by Rp(z) the
resolvent of an operator F i.e.: Rp(z) = (F — z)~1. We have:

Rp(\) = PRA(N)P (4.1)
for Re A sufficiently large ([5] p.29). A calculation with matrices gives:

ARL(X?)  Ry(\
Ra() = ( e Aé;((x)))

(4.2)
-AR(A+3)  -R(A+ 2) )
I- /\2R(/\+ Ly =AR(A+13)
since R;(A\?) = —R(s) and A = . The operator R(A) has an analytic

continuation to the whole plane, although not as an L? operator. Since we w1ll
consider imbedded eigenvalues corresponding to singular points on Re s = 2, it
is enough to consider R(s) : By — Bi, Res > 0. The operator RA(A) has an
analytic continuation by (4.2) and by analytic continuation (4.1) remains valid
whenever both sides make sense. One should note that there are data with zero
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Fourier coefficient of the form {cy%, 0}, which are left untouched by P and at
which we cannot apply Ra()).

We determme the prOJectlon Q for B at io corresponding to an imbedded
eigenvalue § + o2 (50 = } +io):

1
Q=5 /FRB(/\) d) = ——%P/FRA(A)d,\ P
1 -AR(A+3) -R(A+1)

B %P/,(I—VR(H%) AR\ + 1)

where the contour I" encloses only ¢o among the singular points of the resolvent
of B. By formula (3.51) the contour integral gives us an operator with kernel:

( ST (@) g T w,-(zm(z')) (44
- m .
SEVIL ()% (2) 3 X ()i (2)

Also we note that, since the v;(z)’s are cusp forms, the operator P on the left
will not change the outcome of the previous operators. If g = (g;) is any pair

which is supported in some compact set and the zero Fourier coeflicients of g1, g2
vanish above the cut a then: Pg = g. So:

3 L= ¥3(2) [ ¥5(2)91(2")dz" + 5i595(2) [ 9 (+')g2(')d?’ )
ie1 93(2) [ $5(2)91(2)de’ + § 3070, 95(2) [ 4i(2)g2(2")d2!

(5
f: [3(91,%;) —%92”/’1)](1'01-#1252)) ZE(( )’(Z>)(§;)

i=1
(4.5)
where E represents the energy inner product. Since E‘((‘w )) = —(¥;, Ly;) +

) dA P “y

Qg

(io;,ioh;) = 20% we see that Q is an E-orthogonal projection (see [9] p.24).
The second variation for the weighted mean of eigenvalues A is given by: (see

(3], page 79)
3@ = %Tr(éQ —2BSBQ) (4.6)

where B is the second variation of B and S is the constant termin the Laurent
expansion of the resolvent of B around the singular point ic. We have:

do(y) =28 (= (). (o4,)) (i)
=;%iﬂ(<z:)’<ir;j))(% o) (24,) @

]:1

o) (ko)

We want to compute the trace of BQ, so, by choosing any basis containing all
the data (L\b ) j=1,2,...,m we find that:
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0 (i) = Lo (0-2)) (15,) - paswn (13,

j=1
(4.8)
So:

m

Tr(BQ) =) _—(Lll)k, ¥i) (4.9)

k=1

M

which is purely imaginary and we can ignore it when we take real parts. We now
try to evaluate Tr(BSBQ) = Tr(SBQB). We have:

B (g;) (L(;l) (4.10)

0 \_ 1w 0 Y; 1/)'_1m'-_¢'
@i )=rm () (3,)) (28, ) =t ()
(4.11)
s e (g 1 i -
BQ@B (g;) _W;(Lgl,mp,)(w ) (4.12)
Suppose that S(;3 ) (z;;) = wj, a certain pair of data. Then
R 1 . .
SBQB ( g;) = 5‘7—2;(1391,10'1/)]')wj (4.13)
and
SBQBwy = 53 E(Lwl ky 105 )wj (4.14)
j=1
Using (4.6), (4.9), (4.14) we get:
A 2 L 1 U .
Re M@ = ~—ReTr(SBQB) = ——Re ‘;(Lwl,k,zw,,) (4.15)

We use contour integrals to relate the operator S with the operator Ag of (3.49):

S = RB('\)d/\ P/ R" dAP

r A bl ZO'
ARL(A%) Ry (A%
— A= A=—io
=p /p (zwnfw) o (m) d\ P (4.16)
A—ic A—to
—ZO’AQ -Ao
=P <I+02Ao —iaAo> P
SO: ,
— ‘0 —_ —AOL¢k 4 1
wk‘5<wk> ‘P(-iaAoLm) (4.17)

We remark that the same calculation can be repeated for the eigenvalue —ic
of the operator B and that the real part of the variation has to be the same,
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because of the nature of the spectral problem for A4, i.e. -;- + i0 and % — 10 give
the same eigenvalue for A. The corresponding operator S will look like:

& idBo —Bo

S—P(I+o—230 iaBo>P (4.18)
s( .0 \_p(—Boltx | _ -
5 (ka) =P (iaBoL¢k> = Wk (419)

and
. 1 & . ~
Re A = —W;RC (Lby g, —iok) (4.20)
=1

Noticing that L is self adjoint and that Lf is compactly supported so we can

ignore the effect of P on the pairs (_ ~AoLyi ) and ('B°L¢“

ioAoLyx iaBoL%) when taking inner

products with Lk, we get:

Re i@ = .;. ( 1 ) ZR@ [(Lw1 by iowe) + (Liby, k,-wdnc)]

mo?

Z Re [(w1,k, ic L) — (W, iUL'/)k)]

2
Zma k=1

‘_"—277102 ERe [(—AoLvw,ioivn) - (~Bolwn,iclyn)]  (4.21)

m

((Bo — Ao) Lk, io L)

= [ : Z((Bo — Ao)Lut, ka)]
From relation (3.54) we get:

—2ic

(Bo - Ag)iyy = 3 Bltil=%0) /F B, so) (L) ()d  (4.22)

i=1

and finally, using (4.21), (4.22):

ReA® = —

Z}: / Ei(2,1 - so) L (2)dz - / Ei(+', s0)Lpw(2')d2'

k=1i=1

ZZ/ Ei(z, s0) L (z)dz - /E(z so) Lk (2')dz’

klzl

ZD(E.(: s0), L(2))I?

=1i=1

4m0'

4mo'2

4ma'2
(4.23)
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Remark: The difference in the constant we find compared to [9] is due to the
fact that we take ||¢k||;2 = 1 while in [9] we have E(¢) = 1, so in the case
m = 1 our answer agrees with formula (5.29) in [9].
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