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The spectrum of the Laplace operator on finite area non-compact surfaces
becomes stable if one adjoins to the L? eigenvalues the scattering frequencies. For
the bottom of the continuous spectrum (}) we need to take into account any non-
vanishing Eisenstein series at s=4. In this work the particular behaviour of the
spectrum at } is studied with respect to genericity of L? eigenvalues and of non-
vanishing Eisenstein series at s=14.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In this work we discuss some problems which arise in the spectral theory
of the Laplace operator acting on non-compact finite volume surfaces
obtained as the quotient of hyperbolic 2-space H? by discrete subgroups of
PSL(2, R). We shall be interested in the resolvent kernel, the generalized
eigenfunctions, known also as Eisenstein series, and the scattering matrix.

The spectrum consists of a continuous part filling [4, cv) and a discrete
set of eigenvalues, of which finitely many are less than or equal to .
Associated with the problem of existence of infinitely many cusp forms (i.e.,
L? eigenfunctions with zero Fourier coefficient) is the problem of stability
of the spectrum. The spectrum is unstable under perturbation. In [PS1] a
sufficient condition was found which ensures that a cusp form with eigen-
value A= %+r2, r>0 is dissolved. However, the spectrum becomes more
manageable when the scattering frequencies are adjoined with multiplicity
equal to the order of the pole of the scattering matrix. In [PS2] it is
proved that the augmented spectrum, named the singular set, is real
analytic in Teichmiiller space. The singular set occurred in a natural way in
a one-sided version of the Selberg trace formula and is the actual spectrum
of the cut-off wave operator B in the Lax—Phillips scattering theory [LP1].
The multiplicity of 3 is defined to be twice the dimension of cusp forms
with eigenvalue } plus (n+ Tr(®(3)))/2, which is the dimension of the space
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of Eisenstein series at s = 1. Here @(s) is the scattering matrix. It has been
conjectured [PS2] that generically in Teichmiiller space this multiplicity is
0. In particular this conjecture contains the question of the genericity of the
eigenvalue 1 for finite volume surfaces, raised by Wolpert [W] in connec-
tion to the study of limits of eigenvalues and eigenfunction branches when
we pinch geodesics. In this work we show:

THEOREM 1. For a generic (hyperbolic) Riemann surface with cusps with
signature (g, 0, m) where g+ m =3 there are no cusp forms with eigenvalue
A=t

We also identify the singular part of the Green’s function (i.e., the kernel
of (—A4—s(1—s)) " 'ats=1:

THEOREM 2. The kernel of the resolvent has the following expansion close
tos=1,

f-‘:19i(2)9,-(2’)+ -1 Ei(z, 1) Ei(2), 3)

i=1

(s—2)° 4s—1)

where r*(z,z';s) is regular close to %, E/(z,s) are the Eisenstein series
indexed by the cusps, and the $,(z) form an orthonormal basis of the cusp
forms with eigenvalue L (all taken to be real). The resolvent kernel is regular
at s =1 iff there are no cusp forms with eigenvalues § and all Eisenstein series
vanish at s = 1.

+r7(z,7ys),

r(z,z';s)=

For the Schrédinger operator the corresponding theorem is discussed in
[JK]. Throughout this work a non-vanishing Eisenstein series at s = § will
also be called resonance at the bottom of the continuous spectrum or even
nullvector (the second term comes from the Lax—Phillips scattering theory,
because a non-vanishing Eisenstein series e(z, 1) gives a pair j= {e(z), 0}
for which the energy form degenerates: E(j, 3#;)=0; see Sect.2). With
the help of Theorem 2 and the Lax—Phillips scattering theory, we find a
variation formula for Eisenstein series at s =3:

THEOREM 3. The first variation of a resonance e(z) at the bottom of the
continuous spectrum § is given by the formula

i=4 L | e(z)(de)(z) dz

provided there are no cusp forms with eigenvalue %.

This allows us to deduce the following (Theorem 4): if one allows metrics
which are hyperbolic outside of a compact set then Tr(®(3)) = —n generi-
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cally so the multiplicity of the point 3 is indeed 0. Theorem 3 applies also
to the case of quasiconformal deformation. We get:

THEOREM 5. The variation of a resonance at the bottom of the continuous
spectrum A(0) is different from O iff Re F(3) #0 where

(4n)~* I'(s+3)?

) ==

Lis+3)

and L(s) is the Rankin—Selberg convolution of Q, the holomorphic cusp form
of weight 4 giving the direction in the deformation space, and E(z, 1) the
resonance.

We note that the non-vanishing of F(}) is associated with the value of an
L-function at the middle of its critical line.

We also treat the degenerate case (Theorem 6). The conditions for
dissolving more than one resonance at ; are the same ones expected for a
multiple isolated eigenvalue (see [SCH]).

The examples of I'=rI°%25), I'=r°49), and I'=rI°81) are
investigated. In the deformation space of I'°(81)\H the scattering matrix at
s=1 is discontinuous (Corollary 7). The surface I"°(25)\H has one null-
vector and its destruction is associated with the non-vanishing of twisted
L-series of holomorphic cusp forms of weight 4 for 77°(25). The destruction
of the two resonances at i for I"°(49) is related to the Birch Swinnerton-
Dyer conjecture for elliptic curves (Sect. 9).

2. SCATTERING THEORY AND PERTURBATION THEORY FOR
4 ON AUTOMORPHIC FUNCTIONS

This section contains introductory material on the Lax—Phillips
scattering theory, its application to the stability of the singular set, and the
Faddeev method for the analytic continuation of the resolvent kernel. This
material is used extensively in Sections 4, 5, 6. The automorphic wave
equation has the form:

Uy =Adu+su=(4+3Hu (2.1)
Let us denote by L the operator 4 + }.
Now the study of (2.1) starts with rewriting it as a first-order system by

introducing the time derivative of » as a new variable v: v =u, so that:

v,=Lu. (2.2)

580/124:1-5
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The pair {u, u,} = f(1) is called data. We define J# to be the space of all
data f'= {f,, f>}, where f| is in the domain of |L|"? and f,e LX(I"\H). We
rewrite the wave equation in matrix notation as:

0 1
Ji=Af, where A=<L 0). (2.3)

We solve Eq. (2.1) with initial data = {f}, /5], ie
ulz, 0) = f1{2) and ulz, 0)=f,(z2). (2.4)

The data at time f is uniquely determined by its initial data and the
operator U(r) is defined as:

U(1): {u(0), 1,(0)} — {u(z), u,(1)}. (2.5)
The energy of the data f associated with the wave equation is
E(f)=—(f1, L)+ 1 217 = — (u, Lu) + |Ju, || *. (2.6)

In general E is not positive definite. To circumvent this we define a new
quadratic form G which is positive definite and is closely related to E as
follows:

We decompose the fundamental domain F into

F=Fyu |) F., 27)

a=1

where F, is compact and F, is isometric to the standard cusp
C={z; —i<Rez<3,Im:z>a}. Let:

dx d
K()=] 11175 (28)

Then we set
G(f)=E(f)+ cK(f), (2.9)

where ¢ is sufficiently large. Lemma 4.3 in [LP1] asserts that the quadratic
form K(f) is compact with respect to the quadratic form G. Lemma 5.1 in
[LP1] shows that G is positive definite. We now define J#; as the comple-
tion in the G-norm of the space .

For the automorphic wave equation with U(¢) the family of unitary
operators defined above, 2, are defined to be the closures in H#; of the
initial data of incoming and outgoing solutions, respectively,

D_={f;£o=0,(f1),=y"0,(y), (f2),=y"0;(y)for j#0},
2. ={f;£o=0,(f1),=y"0,(y), (f2);= —y"%0;(y)for j#0},
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in each cusp (transformed to o), where ¢; is a Cg° function on the real
line R which is zero for y < a. Here ¢;(y)=dp,(y)/dy.

We denote the zero Fourier coefficient of f with respect to x by f®
for y>a W fexX =4, ©(2_®Z,), the F-orthogonal complement of
2_@® 2, then

fO={cy'” 0} (2.10)

for y > a in each cusp. We denote the E-orthogonal projection of J#; onto
XA by P and by

Z(t)= PU(1) P 2.11)

for 1=0. The operators Z(t) form a strongly continuous semigroup of
operators on ) with infinitesimal generator denoted by B. The operator B
has compact resolvent and has pure point spectrum of finite multiplicity
and the resolvent Rg(4) is a meromorphic function in the whole complex
plane.

One wants to use perturbation theory for the non-self-adjoint operator
B, so it is of importance to analyse its spectrum. This is the main technical
issue in [PS2]. Let us denote the scattering matrix by @(s), which appears
as a factor in the zero Fourier coefficient of the Eisenstein series, and ¢(s)
the determinant of the scattering matrix. The singular set is defined in
[PS2] as follows:

(a) If Res>1 but s#1 we define the multiplicity at s to be the
dimension of the eigenspace for s(1 —s) of 4 on L*(I"\H). Consequently,
this multiplicity is zero unless Re s= 3 or se (3, 1].

(b) If Re s <1 we define the multiplicity at s to be the multiplicity of
the eigenvalue s(1 —s) of 4 on L*I"\H) plus the order of the pole (or
minus the order of the zero) of ¢(s) at s. Consequently, if Re s <1 and s¢ R
this multiplicity is simply the order of the pole of @(s) at s, since in this
case ¢(s) cannot have a zero and s(1 —s) is not an L>-eigenvalue.

(c) For s=14 the multiplicity is defined as twice the dimension of
cusp forms with eigenvalue 1 plus (n+ tr(®(3)))/2.

Then we have the following theorem:
THEOREM 2.1 (see Theorems 3.1, 3.2, 4.1 in [PS27). The singular set is
the spectrum of the operator B + LI (counting multiplicities).

The null eigenspace of B is crucial in the rest of this work. It consists of
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data f with B*f =0 for some k. Such data are {9,0}, {0, 3} where 3 is a
cusp form with eigenvalue },ie., L3 =0, since in this case,

p(0,01=5r(5.0)=pa(s,0) = (° )(%)=r(%)=0

and

0 1\/0
B{0, 8} = BP{0, 8} = PA{0, 9} =p(L 0) <9>=P{9, 0} = {3,0)
so B*{0, 3} =0. However, there may exist other data in the null space of
B. If E(z, %) is a non-zero Eisenstein series at s=1 (having zero Fourier
coefficient of the form cy'? in one cusp) then LE(z, 1)=0, so

B9\ . (E@D\ (0 IVE@D ./ 0 \_
B( 0 )‘PA< 0 )‘P(L 0)( 0 )‘P(LE(z,%)>‘°‘

But in this case we cannot take into account (%)) because it does not
belong to . These are the only data in the nulispace of B (see
Theorem 3.2 in [PS2]).

The scattering matrix &(s) at s =3 is real and symmetric with &> =1, the
identity matrix. Consequently, its eigenvalues are +1. We diagonalize &(3)
and suppose the basis in which the diagonalization occurs is

e\(2) Eyz 1)
o= | O || B
() Ez})
with
1
coic = b

—1

We note that, if &(1) represents the scattering matrix in the basis vector
E(z, ), then in the new basis e(z) the scattering matrix is represented
by CH(3)C~'. Moreover C is an orthogonal matrix. Then the functional
equation for the Eisenstein series E(z, 1): E(z, 1) = @(3) E(z, 1) becomes
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ey(z)
42| cou) c-1Riz b
e.(2)
1
e(z)
1 ex(2)
e.(2)

-1

from which it follows that e;(z) = +¢;(z). Consequently, the only non-zero
basis elements for the Eisenstein series at s = 1 correspond to the + 1 eigen-
values of @(4). These are (n+ tr(®(1/2)))/2 in number.

After the spectrum of B has been identified in terms of the singular set,
standard perturbation theory can be applied to B when we consider varia-
tions of the metric g. The main interest is in quasiconformal deformations
in Teichmiiller space. The theory developed above, however, goes through
in the case of admissible surfaces [MU] where we consider variations of
the metric in a compact set. We consider a one-parameter family of metrics
g(t) varying real analytically in T and B(t) the associated B operators. The
result in both cases can be stated as:

THEOREM 2.2 (Corollary 5.2 in [PS2]). If A(0) is an eigenvalue of B(0)
of multiplicity 1 then B(t) has eigenvalues A(t) and associated eigenfunctions
[ varying real analytically in © for small |t|. In the case of higher multiplicity
of A(0), the eigenvalues decompose into a finite system of real analytic
Junctions having at most algebraic singularities.

The question of the spectral decomposition of L(I"\H) is viewed quite
differently by Faddeev [FA] (see also [LA, V]). The source of the func-
tional equation and analytic continuation for the Eisenstein series lies in
the resolvent identity

R(s)—R(s')=(s{(1 —5)—s"(1 —5")) R(s") R(s), (2.12)
where R(s)=(—4—s(1—5))~"'. The fundamental point-pair invariant is

lz—2'|?

u(z,z')= (2.13)

’
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for z, z’ e H. We set
1 1
q;(u,s):—j [l =)~ (t+u)— dt (2.14)
4r 0

for 6>0, u>0 (s=0+it), and k(z,z';s)=¢@(u(z,z'), s) and then the
kernel k(z, z'; s) is the Green’s function for the problem 4h+s(1 —s)h=f
at least for o > 1.

For a discrete subgroup I” of PSL(2, R) with I'\H non-compact of finite
volume we set

Hz, z55)=4% Y olu(z,yz'), s) (2.15)
vel
for o> 1.

Let us denote the stabilizer of the j-cusp z; by I';. It is generated by a
single parabolic element S; and there exists a g, with g;00 =z;. One can
choose g, € SL(2, R) so that z —» g,z maps C= {z; —4<Rez<},Imz>a}
one-to-one onto F,. Each function f on F has n+1 components
folz)=f(z) for ze F, and f,(z) = f(g,z) for ze€ C. One has the decomposi-
tion

LA\H) = LA(Fo)® @ LX(F,) (2.16)

=1

but it turns out that certain Banach spaces %, play an even more impor-
tant role in Faddeev’s approach. The space %, consists of complex valued
functions f(z) whose components fy(z) and f,(z), x = 1, ..., n are continuous
on F, and C, respectively, with

| fa(2) <cy* (2.17)
for ze C with the y-norm:

|f(2)|

111, = max [ fo(2)l + Z max === (2.18)

Since the Laplace operator is a negative operator the resolvent R(z)=
(—d4—2z)""is defined on C\[0, o). However, one can use meromorphic
continuation to attach a meaning to the resolvent on a Riemann surface
which is a two sheeted covering of the z-plane. Instead of the natural
variable z, one introduces z=s(1 —s) and then the z-plane cut along the
ray [0, oo) corresponds to the right half plane Re s>} cut along <5< 1.
The analytic continuation of the resolvent kernel can have poles only at the
following set of points:
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o at sg, if so(1 —s,) is an L2-eigenvalue and Re s, > § but 5, # 5, and
the pole is simple and

: S W) Ui 4z 25 s), (219)

So(l —s0) —s(1 —5) =,

r(z, z'; s) =

where ¥; (i=1, .., m) is an orthonormal system of eigenfunctions (chosen
to be real) with eigenvalue so(1 —s,) and r,(z, z'; 5) is regular close to s,
(see [LA, p. 333]);

o at so=13, possibly;

+ at points s, with Re sy < §. These points are called resonances and

the Eisenstein series and the scattering matrix can have poles at those
points only for Re s <1 (see [LA, pp. 338-340]).

For s, 1 —s non-singular, we have
1 n
Hz, z';8)—r(z,2/; 1 —5) = Z Eglz, 5) Eg(z’, 1 -5) (2.20)
2s—1,7,

a proof of which is given for instance in [LA, p. 344].

After obtaining the analytic continuation of the resolvent kernel one
defines R(s) as follows: Fix u<4. Then: R(s): B, %, _,, is defined for
Re s> u as the integral operator with kernel r(z, z’; s).

3. Cusp ForMs WITH EIGENVALUE
In this section we prove the following theorem:

THEOREM 1. For a generic (hyperbolic) Riemann surface with cusps with
signature (g, 0, m) where g +m =3 there are no cusp forms with eigenvalue

=3

Recall the numbering of the eigenvalues: 0=A,<4,<4,< ---. The
proof of the theorem uses the work of Buser [BU] about the construction
of compact Riemann surfaces of genus g with 2g — 3 small eigenvalues, and
Randol’s observation [RD] that if those 2¢g — 3 eigenvalues are sufficiently
small then 4,, _,> 3.

Before going into the proof, let us review the argument in [BU, RD]. We
dissect the surface M into 2g — 2 3-holed spheres by a collection of 3g —3
simple closed geodesics in M having minimal aggregate length. The lowest
Dirichlet eigenvalue of each 3-holed sphere can be made as small as one
wants by shrinking the boundary curves. Minimax implies then that 4,, ,
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can be made as small as wanted. Together with this, through, the Cheeger
constant of a 3-holed sphere 7 becomes >1 and so the first non-zero
Neumann eigenvalue p,(7) satisfies the inequality u,(7)>3}. Minimax
implies that 4,, _,> ;.

Instead of using the Laplace-Beltrami operator on the closure of H'(X)
in L?(X), which has continuous spectrum [1, c0), we use the pseudo-
Laplacian and minimax for it on the appropriate Hilbert space. We recall
the construction of the pseudo-Laplacian [CDV, LP1].

Let M be a hyperbolic surface and H'(M) the first Sobolev space. Let
X be a closed subspace of H!'(M). We denote # the closure of # in
L*(M). For any such subspace # one can define a self-adjoint positive
operator 4, on J. It is the operator associated with the Friedrichs
extension to the restriction of the quadratic form

a(N)=] 191 (3.1)

to 7.
In this case the space # is parametrized by ae R, and we denote by J#,
and 4, the closed subspace and the extension, respectively. Let

ro0)= S x ds (32)

be the zero Fourier coefficient of fin the j-cusp. We set #, = {fe H(M):
fi1(a ©)=0,j=1,.,m}.

The advantage of 4, is that they have compact resolvent and conse-
quently purely discrete spectrum. Any cusp form for 4, is eigenfunction of
4, for all a with the same eigenvalue. The rest of the eigenvalues form a
sequence

0<pola)<pi(@)< - (33)

with u;(a)=s,(1—s5;) where Ims;>0, Res, >3, and, if 5,#3%, a7+
o(s;)a'~7=0o0r, s;=1%, p(3)= — 1, ¢'(3) = —2 log a (assuming one cusp).
We note that the 4, do not see the resonances at the bottom of the
continuous spectrum; i.e., if they exist, they do not create an eigenvalue of
4, and if they do not exist, 4, may have eigenvalue % if ¢'(3)= —2loga.

Now we consider what happens for finite volume hyperbolic surfaces X’
of genus g with m cusps. In this case there is a decomposition into
2¢g —2+m 3-holed spheres and m cusps, ie., pieces isometric to C=
S!x (b, o0) with the metric (dx? + dy?)/y>.

We will prove that in the dissection of the surface above, if we shrink the
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boundary geodesics as much as necessary, then A4, will have no eigenvalue
at A=4. We notice that

26—24+m

K= (—B H(ﬂ@@ (HY(Co{f:fe](a 0)=0}), (34)

where the T;s are 3-holed spheres and the C;’s cusps. For the T’s the argu-
ment is the same as in [RD7]. Their first non-zero Neumann eigenvalue for
4 is greater that }, ie,

[ rwresaf (3.5)

for j'T, f=0, if we shrink the boundary geodesics sufficiently. To apply
minimax, ie., domain monotonicity of eigenvalues with vanishing
Neumann data (see [CH, pp. 17-18]) one should study the spectrum of 4,
on the cusps C,. The argument is more or less the same as in [CDV]. First
consider the Laplace operator acting on L3*S'x(a, o), dx?+ dy?)
functions with zero Fourier coefficient 0. Note that here we are using the
euclidean metric on the cylinder C. In this case

F0=[ S0 y)ax. (36)

We impose the Neumann condition on the boundary S' x {a}. The eigen-
functions are

Qe m(x, y)=cos En(y —a)e?™™, meZ— {0}, ¢eR (3.7)

with eigenvalues
Ae m=E1" +4n°m? > 4n? (3.8)

since m # 0. Now consider the same cylinder but with the hyperbolic metric
(dx? + dy?)/y* and the Laplace operator acting on functions with zero
Fourier coefficient 0. We use minimax on the space of such functions. We
have

JcINfPdxdy _ [V dxdy
2 n=a 2
Y| f17 (dx dy/y?) Sl f1?dxdy
for all f with f°| (a, 0)=0, [, |Vf|*dxdy<oo, [.|f|*dxdy<co, and

then the second quotient is >4n? Since such a set of functions is dense in
the space of functions with

(3.9)

Plae=0 [ 1152 <0 [ VP<o  (10)
C
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the first Neumann eigenvalue for the cusp and for the problem with zero
Fourier coefficient identically O is greater than §, provided a is sufficiently

large.
Consequently, if we number all the eigenvalues of the pseudo-Laplacian
as Aog<A; <A,< -+, we see that minimax implies that A, ,,,>}.

(Remark: i,>0 actually but as @ —» o0, 44(a) —»0.)

However, 45,3, , <¢ in the above setting, as we get by using domain
monotonicity of eigenvalues with vanishing Dirichlet data for the whole
surface on one hand and the 2g — 2 + m 3-holed spheres on the other (see
[DPRS]). We remark that domain monotonicity of eigenvalues with
vanishing Dirichlet data does not require an exhaustion of the surface by
the subdomains, in contrast with the case of vanishing Neumann data
(see [CH, pp. 17-18]).

Now we prove that generically in the Teichmiiller space of Riemann sur-
faces of signature (g, 0, m) the number § is not an eigenvalue. We prove
that locally the complement of this set is contained in a proper real analytic
subvariety of Teichmiiller space. Take any surface I';\\H with % in its point
spectrum. We can join it with a curve of finite length in the Teichmiiller
space T(I,) with the surface I'\ H constructed above, which does not
have § in its point spectrum. By compactness we get a finite chain of open
sets Uy, .., U, covering the curve and I'oe U, I'ie U,, U,nU,_,# & for
i=2,.,k and such that we can apply perturbation theory for pseudo-
Laplacians 4%, a> a(j) as described in [PS1] in each U, (we need this
because Lemma 2.2 in [PS1] works in small neighborhoods of Teichmiiller
space). For each a > a(j) the set

Vi={reU,;jespec(d])}

is a real analytic subvariety of U,: standard perturbation theory for an
analytic family of self-adjoint operators with compact resolvents allows us
to reduce the eigenvalue problem of 47 to that of an analytic family 47
acting on a finite-dimensional space (see [RS, p. 227). Then

Vi={I;det(4] —3)=0}

which is obviously a real analytic subvariety, since we now work with
matrices. If there is an a > a(j) with V7 a proper subvariety, then on U, the
Laplace operator does not have i in its point spectrum generically.
Otherwise § e spec(4”) for all I'e U, for each a > a(}j). In this case, since the
condition ¢'()= —2loga cannot hold for more than one a, each I'e U;
has a cusp form with eigenvalue 1, i.e., the i-eigenspace of 4% does not con-
tain only truncated Eisenstein series. If V'§= U, for all a> a(k), then 1 is
a cusp form eigenvalueon U, _,nU,,so V{ =U,_,forallazalk—1)
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and so on. But V{ is a proper subvariety for some a, which is a contra-
diction. So V¢ is proper for some a > a(k). This completes the proof of the
theorem.

4, THE SINGULAR PART OF THE RESOLVENT AT THE BoTTOM OF
THE CONTINUOUS SPECTRUM

In this section we prove Theorem 2. The proof proceeds as follows:

PROPOSITION 4.1. Let
R(s): By — B34 (4.2)
be the operator defined by the kernel r(z, z'; s), for s near §. Then s — R(s)
has a pole of order at most 2 at .

Proof. The proof is basically the same as Lemma 4, pp. 334-335 in
[LA]J. The idea is that

(s—1/2)"

B R 7 “3)

if m> 2. For simplicity let us assume we have one cusp. Let {s,} be a
sequence of non-singular points with Re s, > 1, converging to ; and such
that Re(s,(1 —s5,)—3%)=0. For example one can choose y,—0 and
x,=(142]|y,1)/2, where y,+#0 and s,=x, + iy, is non-singular. Let

R_,, = lim (s~ 3™ R(s), (44)
s—1/2

where m is a positive integer. We have to show that R_,,=0if m> 2. Let
fe%,. It suffices to prove that R_,,f=0. Suppose R_,,f #0. Let

g8.=(5,—3)" R(s,) f. (4.5)

Then g, R_,, fin #,,. Since R _,, f(z) is not identically 0 in the cusp, we
have

IR_mf(z)y 2 ¢, >0 (4.6)
for some constant ¢, and all y in some open set. We also have

I[gnlz)~R_, f(2)1 y ¥ < (47)
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uniformly for y is some open set, for all » sufficiently large, by the defini-
tion of the norm in %,,. Consequently, for large n we get the inequality

lgdz) y Y 2e;>0 (4.8)
and for some new constant ¢, and all y in some open set,
[8a(2)] 2 ¢3>0. (4.9)
Since &, H=L*(I'\H) and Res,>3 it follows that R(s,)fe H and
so g,€ H. The inequality obtained above shows that for a new positive
constant ¢, and for all sufficiently large n we have
lgall3> ca. (4.10)

The resolvent inequality in the Hilbert space H asserts that

1
d(4,, spectrum of 4)°

|R(s) | < (4.11)

where 4 stands for the distance function in the complex plane and
A;,=s(1 —5). In our case the distance of s,(1 —s,) from the spectrum is
Is.(1—s,)— 1|, since Res,(1—s,)=14%. So we have

s, — 31" 1A 12

4.12
si—s)—1 ¢

I galls < s, — 3™ IR(s,) ) 1L 1l2 <

which is a contradiction to | g, ||3> ¢4, if m> 2. This completes the proof.

We can now prove that the kernel r(z, z'; s) has a pole of order at most
2 at {. From Lemma 2, pp. 331-332 in [LA] it has a pole of finite order
at s=1. Suppose it has a pole of order /> 3. Let C be a small circle around
1 which does not enclose other singular points and let f € %,. Then by the
previous proposition we have

j j (s— ) 1r(z, 2';5) f(2') d2' ds =0. (4.13)
CYI\H

Using the estimate in Lemma 3, p.332 in [LA] we can interchange the
order of integration and, since f can be any smooth function with compact
support in I'\H, we deduce that

j (s=3)"'r(z,2';5)ds=0 (4.14)
C
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for almost all pairs (z, z’) and consequently for all (z, z') with zz' and
z, z' not on the boundaries of the sets F;, on which we have divided the
fundamental domain of 7" in H. This is never possible, since the integral has
to be the leading coefficient of the singularity. Hence the hypothesis />3
is false and I was originally <2.

We can now find the singular part of r(z, z’; s) at s= 3. Let

A_ A4
r(z,z';8)= - 1)2 ——+r+(z z'; 5), (4.15)
where r*(z, z'; 5) is regular near s=13.
(1) We first find 4_,. We have
A
r(z, z'; l—s)=(s_'%2)2+ As_l_l+r (z,2';1—35) (4.16)

and we notice that r*(z, z’; 1 —s) is regular at s=1. Equations (4.15),
(4.16), (2.20) imply that

A A_
\]1-1 Lyrt(z, 2, s)—rt(z, z', 1 — )
§—~35 3— )
S0
24_ 1 12
+r+(z,z s)—r*(z,z;1—s)= ;= 2 Efz,s)E /(2,1 —5).
5—2 S—-§2i=‘
4.17)
The residue of the right-hand side is
lj li VE(z,1—s)d (4.18)
— - (z, _ ;
2niles—42 < S Bz, BT A
and, since the pole is of order at most 1, we get
24 l—11m Z E,(z,5)E.(z, 1—s=%ZE(z,2)E(z
i i=1 i=1
=1L B EE D) (4.19)

We see that this term is O iff all the Eisenstein series at s =1 vanish. It

defines an operator of finite rank, but it is not a bounded operator in L2,
unless all E,(z, 1) vanish. The rank of the operator is the number of linearly
independent (non-vanishing) Eisenstein series at s= 3.
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(2) It is a general fact that if R(z)= (A4 —z)~' is the resolvent of a
self-adjoint operator 4 then

lim (z—p) R(z)= ~ Py, (4.20)

o

for Im z 0 where P, is the L>-projection to the u-eigenspace of A4, even
when y is an embedded eigenvalue. To apply this in our case we recall that
R(s)= — (4 +s(1 —s))~ ! so we change variables and instead of expanding
around s =}, we expand around p=4. We have s(1 —s)— 1= —(s—J)?

R(s)=(—4—s(1 —S))*l=(s_1)z 1
2 : 2

-+ ==+ R*(p), (421)

where the last term involves non-negative powers of \/ +— . From this it
is obvious that 4 _, is the L* projection to the eigenspace of cusp forms
with eigenvalue § and if &,(z), i=1, .., k, form an orthonormal basis for
this eigenspace, all taken to be real valued, we have that the kernel of the
resolvent has the following expansion:

o1 9:(2) 8:62') i E iz, 3) Ei(z, 3
(s—3)° 4(s—3)

r(z, z'; s)= +rt(zz;s).  (422)

5. FIRST VARIATION FOR RESONANCES AT THE BOTTOM OF
THE CONTINUOUS SPECTRUM

In this section we compute the first variation of the 0 eigenvalue for the
cut-off wave operator B. Here A =s— 3. We assume that there are no cusp
forms with eigenvalue i but there exists a single nullvector (resonance)
E(z, %). This way 4 =0 is an eigenvalue of multiplicity 1 for B with eigen-

vector
E(z,3)\ _[(E(z3)
P( 0 >_< 0 ) G-h

where P is the projection onto ¥ =, © (2, ®2_). We subject our
metric to a variation inside the compact set F,. The first variation is given
by

(0)=Tr(BQ) (5.2)
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(formula 2.33, p. 90 in [K]), where B is the infinitesimal variation of the
family of operators B,, depending on the real parameter T€(—¢, ¢) and

1
0= _E?L; Ry(z) dz

and the contour C encloses only 0 among the eigenvalues of B. Let P be
the (E- and G-) orthogonal projection of 5#; onto X", which is given in
particular by: Pf = f except for the zero Fourier coefficient in the cusp
which is changed as follows,

(Pr)°= {f‘,‘”(a) <§>/ o}, (5.3)

for y>a. Let @ be a constant such that the semigroup Z(t) satisfies:
1Z()llg<c-e. (5.4)

The relation Ry(4)= PR ,(4)P holds for Re A > w and also for Re 1> 0, as
one can see by analytic continuation. It must be remarked that here the
resolvents are always taken in the space 3#; or X"

We are going to determine the action of R ,(4) and [, Rz(4) dA on pairs
( ﬁ) which are smooth and supported in F,, the compact part of the
surface. Then

_ —1
Ra=ta-17=(" 1)

(ML= =T _RGY RGYY o

‘(L(L—zz)-‘ A(L—AZ)*I)’(LRLW) ARLW)) (5:3)

and
R (A)=(L-=2) "=(U4+Li-2) "'=(d+s5(1-5)"'=—=R(s) (56)

with s=41+ 1.

Formula (5.5) makes sense as long as R,(4?) makes sense and we con-
sider it as R, (4): L3(I'\H) — L*(I"\H). For instance, the above calculation
cannot be applied to find R (1)(51%,'"?), because E(z, $)¢ L* in our case.

The operator R(s) has a pole of order 2 at { in general but, if there are
no cusp forms with eigenvalue &, it has pole of order 1 and its kernel has
singular part

lE(Z’ %) E(Z,9 E)
4 s—1

(5.7)
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(see Theorem 2) so R, (4%) has singular part at 0 represented by the kernel:

1E(z 3) E(Z, 5

4 A (58)

Let I, be the half circle y,(t) =re” for te [—n/2, n/2]. Then we have

1 , 2
o fc Ry(4) di= lim == fr' Ry(4) di =resy R y(4). (5.9)

r—0

So

r—02mi r—0 2mi

1 2
— j Rp(A) di= —lim -—j Ry(A) di= —lim -2—_Pj R, (A)di P
2nide r, r,

2 J ( AR,(3%)  R(4%)

=i Pl e 2r,2) aRLG2)

) diP  (5.10)

since LR, (A%)=1+ A’R,(4%). Consequently

2 ARL(2%)  Ry(4?)

~him Zﬁjr, (1+ A2R,(72) umm) & (511

ends up having kernel

0 FE(z3) E(z,;
( 0 0 ) (5.12)
This kernel is the kernel of Q for smooth pairs (1) supported in the com-
pact part of the surface F, or, more generally, for smooth pairs in #, with
zero Fourier coefficient vanishing in the cusp. We note that P leaves those
pairs untouched, since their zero Fourier coefficient is 0 in the cusp. For
such a pair integration with the kernel given above gives a certain multiple
of the null vector (*',/%)) and this is left untouched by P because it has
the right kind of zero Fourier coefficient.

We are now in a position to calculate Tr(BQ). The operator Q obviously
maps X onto the space generated by the null vector (%Y%), the only

eigenvector of B at 0, and
B= (0 O) (5.13)

L0

in the domain F, and it is the O operator in the cusp. We have

(B Y\ (0 O\/E@z )\ 0
B ( 0 )‘(L' 0>( 0 )‘(L'(O)E(z,%)> (>.14)
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and the last pair is supported in the compact part of the surface and is
smooth. So everything in ¢ is mapped by BQ onto a multiple of:

(L'(O) ?E(z, %))' (5.15)

So, in order to find the trace, we can pick a basis containing (, g, /2,)
and we need to find where it is mapped by BQ. It is going to be a certain
multiple of itself and the multiplication coefficient is going to be the trace,

0 \_[ [0 Bz EL 0 ,
Q(L(O)E(z,%))‘fr-\”<o 0 )(L‘(O)E(z',%>dz

(5 DI BULO) B ) sae

SO we get
Tr(BQ) = j E(Z, )WL(O)E(Z, L)) dz'. (5.17)

So we have proved:

THEOREM 3. The first variation of a resonance e(z) at the bottom of the
continuous spectrum § is given by the formula

j = %f e(z)(de)(z) dz (5.18)
I\H

provided there are no cusp forms with eigenvalue ;.

Remark. One can consider also the following case: there exists a
resonance e(z) at 3 and there are k linearly independent cusp forms with
eigenvalue 1. We can assume an orthonormal basis for them is given by:
3,(2), ..., 3,(2), taken to be real valued. Since there are degeneracies, i.e.,
the O eigenspace of B contains the data (°3), (%), (g), ... (¥), (5,), we
define the weighted mean of the eigenvalues (p. 86 in [K]) to be

M) = Tr(B(1) O(r)). (5.19)

1
2k+1

The weighted mean varies in a real analytic way and its first variation ("
is given by

AW = Tr(BQ) (5.20)

2k+1

580/124/1-6
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[K, p. 90]. Following the same argument as before, we find that Q has
kernel represented by the matrix

(f=1~9i(2)9.'(2') ze(z) e(z') >
0 Y 19:(2)8,(2")

i=1

(5.21)

at least for compactly supported data. We have

5 (S> - (Loe) . B (?)) = (29) B (3) = (8) (5.22)

Everything is mapped by BQ in a linear combination of (), (%) and
. 0 ) i(eLe)e 0
Bo(. )=8B(.,* : = e 5.23
0(2)= (st otos) Gigetoze) 62

. (0 ( L(feLY))e 0
Bo( .. )=B* ” = ) 24
¢ (LS,) (5 0 9.-L3)-)9.-) (m eL5) L) 6
We can choose a basis containing (/) and (), j=1, .., k and then

’ 1 1 ,
A= —— . = L dz. 5.25

AT 3, OO &2 (5:25)
We note that this number depends only on the resonance. Since the
calculation goes through, even if there is no resonance, i.e., e(z)=0 but
there exist cusp forms at %, we get that in this case the weighted mean of
the eigenvalues has first variation 0.

6. APPLICATIONS OF THE VARIATION FORMULA

Consequences of Theorem 3 above are drawn for the case of quasiconfor-
mal deformations (i.e., in Teichmiiller space) and for deformations in the
space of admissible surfaces [MU].

For the second case we note that the Lax—Phillips theory is valid in this
setting as noticed by Miiller [MU] and that Faddeev’s method works too.
Consequently, the fundamental identity (2.20) between FEisenstein series
and the analytic continuation of the resolvent is still valid and we get the
same singular part at the point s=1. Consider now a family of metrics
g.=e%g in the conformal class of g where f is compactly supported. Using
Theorem 7 in [CDV] we can assume there are no cusp forms with eigen-
value } for a generic such f. Then

d,=e 94, (6.1)
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and
Ad,=—fe 4= —f4,

. (6.2)
Ad=—14

g

In this case the variation of a resonance at the bottom of the continuous
spectrum is

i=t L (e(2))? f(z) dz (63)

(as follows from (5.18)) and from this formula it follows that A can
be made different from 0 for almost all functions f which are compactly
supported; i.e.:

THEOREM 4. By a generic perturbation (for a dense G; set of functions
in CF(K) for K compact and fixed) one can destroy a nullvector, and, conse-
quently, in the space of admissible surfaces resonances at the bottom of the
continuous spectrum do not exist generically. The multiplicity of s=13 is

generically zero in this setting.

For the case of hyperbolic surfaces we work as in [PS1]. Lemma 2.2 in
[PS1] allows us to reduce a quasiconformal deformation given by a family
of metrics g(¢) into one given by a family of metrics @X*(g(g)) with the
properties (here ¢,.: M — M are diffeomorphisms):

(i) @(&(e))=4£(0) for y > a,
(i) @X(g(e))=§(e) for y <a/2,
(iii) o =identity, |d¢./0¢| = O(1) uniformly in the collar ¢/2 <y <a.

So the variation is in fact a variation in a compact set. Then we note that
Lemma 2.3 in [PS1] is still valid, although the proof changes as follows:
In {PS1] one studies a cusp form u with eigenvalue 1+ 2. The first
variation of the Laplace operators A, corresponding to a quasiconformal
deformation is denoted by £ and the first variation of the Laplacians J,
corresponding to the metrics (e) = p*(£(¢)) is denoted by L. In our case
u is not a cusp form but an Eisenstein series so it does not decrease
rapidly in the cusps. However, Lu decreases quickly in the cusps, since the
coefficients of the differential operator L involve ¢, ¢ with ¢+ iy =0, a
holomorphic cusp form of weight 4. It is well known that such cusp forms
decrease rapidly. The operator Lu — Lu also decreases exponentially in the
cusps and the lemma is verified. Now the calculation on pages 355-356 in
[PS1] is applied and, as a consequence, we get the following theorem:
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THEOREM S. The variation of a resonance at the bottom of the continuous
spectrum A(0) is #0 iff Re F(3)#0 where

(41t)_’F(s+%)2L(S 3)

27 I(s)

F(s)= 3

(6.4)

and L(s) is the Rankin—Selberg convolution of Q, the holomorphic cusp form
of weight 4 giving the direction in the deformation space, and E(z,3) the
resonance.

7. DEGENERATE CASE FOR RESONANCES AT THE BOoTTOM
oF THE CONTINUOUS SPECTRUM

In this section we prove the following theorem:

THEOREM 6. If there are n nullvectors e, e, ... e, and } is not an L?
eigenvalue then the degeneracy is removed if the following matrix has distinct
eigenvalues:

((ess Aej)LZ)i.j= 1nne

If none of the eigenvalues is O then under the perturbation all nullvectors are
destroyed. In case the variation is in Teichmiiller space the matrix has entries
which are Rankin—Selberg convolutions of the e;s and the holomorphic cusp
form Q of weight 4 (expanded at the various cusps) evaluated at the middle
of their critical lines.

Proof. For simplicity we assume the degeneracy comes out of only two
nullvectors. The analysis in [PS2] shows that  is in this case a semisimple
eigenvalue of B+ 3 (see also Sect. 1). Even though ] may be an exceptional
point (in fact a branch point), which would imply that, under perturbation
of the metric, the eigenvalue O of B produces branches of an analytic func-
tion, given by Puiseux series for |¢] small, Theorem 2.3 (p.93) in [K]
implies, because of the semisimplicity, that the eigenvalues are in fact
continuously differentiable at ¢ =0. They are of the form (see [K])

0+ e + o(e) (7.1)
0+ &AM + o(s), (7.2)

where 24, 1" are the eigenvalues of

BV =0BQ. (7.3)
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The operator Q = Q(0) is the projection to the space of the nullvectors. If
the eigenvalues are distinct, there is no further splitting. In case we can
solve the eigenvalue problem for B on the image of Q (ie., the vector
space spanned by the two nullvectors) then we remove the degeneracy of
the O eigenvalue for the operator B. Let us assume that e,(z, })=
e,(z), ex(z, 3) =e,(z) are two nullvectors, which are linearly independent
and span the space of Eisenstein series at s = 1. We try to solve

0BOw = iw, (7.4)

_ (a2 ex(2)
= () p (45, 05

The operator Q leaves (°§') and (%) unaffected, so

(s () (81). 0o
5=(1 o)
B<ei(()2)>=<L'e?(z)> (7.7)

for i=1, 2. As in Section 5, one sees that on compactly supported data Q
acts with kernel

where

Since

we have

(0 %(81(2)61(2')4—62(2)ez(Z')))_

0 o (7.8)

Since e,(z) and e,(z) are linearly independent, Eq. (7.6) implies:
a <% J-I'\IHI e(2') Le(z') d2' — 2) + B3 j.r\ . ez Le)(z')dz' =0  (19)

al -fr\w ez’ ) Le(z')dz' + B (%j

ex(z') Ley(2') dz’ — /1) =0. (7.10)
mH

This is a homogeneous system in «, § and we are looking for non-trivial
solutions. So the determinant has to be 0, ie.,
iirumelz) ['.e}(z') dz’— & Lfppez’) Lefz')ds
%Ir\w ex(z') Le,(z') dz’ "?Ir\w ex(z') Ley(z') dz' — 4

,:0. (7.11)
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Since L is self-adjoint

f e(z') Ley(z') dz' = f e)(z') Le(z') dz'. (7.12)
\H NH

One removes the degeneracy if the two solutions of the quadratic equation
(7.11) are distinct. The two solutions are not distinct only in the case that
the discriminant D is 0,

2
16D=(J 61(2’)L91(Z')d2'+J ez(Z')Lez(Z/)dZ’>
A MH

—4(f el(z’)L'el(z')dz'-f ey(z') Ley(z') d'
I'\H I\H

_ (J e (z') Le,(2") dz’)z)
"H
2
- ( | ez le:) =] exle) Leo) dz')
My NH

2
+4 (J‘ e,(z') Ley(z') dz’) .
MNH
So the discriminant is 0 iff

j e,(z) Le,(z') dz' = j es(z') Ley(2') d2'
N\H n"H
(1.13)

j e,(z') Ley(z') dz' =0.
'\H

If either is not satisfied, there are two distinct eigenvalues of B") on the
image of Q and if none is 0 the two nullvectors are moved off the point 0,
i.e., they cease to be nullvectors under perturbation. We have

A # 0o
2
j e,(z')L'el(z')dz'-f ez(z’)l',ez(z')dz'#(f el(z')L'ez(z')dz').
NH KM I'"\H
(7.14)

The conditions (7.13) are exactly the same for the degenerate case of energy
levels of the Schrodinger equation (see, for instance, [SCH, p. 2491]).
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8. APPLICATIONS OF NUMBER THEORY:
NULLVECTORS FOR CONGRUENCE SUBGROUPS

In this section p is a prime number.

LeMma 8.1.  No principal congruence subgroup of SL(2, R) has one or
two nullvectors.

Proof. Following Huxley [HU1], we have that the number of cusps for
I(N), N23 is K=3N?T], ,(1—1/p?) and the trace of the scattering
operator at s=1 is —K, where Ko=NT1, ~(1+1/p). The number of
nullvectors is (K — K, }/2.

If K—Ky=2 or 4 and N=p{ p3*---pi, where p,, .., p, are primes and
a, .., a, positive integers, then

P pm=lp 1) (et 1) =1 or 2 or 4 (81

and this can happen only for N=3. But then K= K,=4.

LEMMA 8.2. The only congruence group of the form I'°(N) with only one
nullvector is I'°(25) and the only ones with two nullvectors are: I'°(49),
I'°(256), I°(81), and all I'°(25p), where p is a prime different from 5.

Proof. We follow Huxley's notation again. For I'%(N), K= fo(N),
where f,(N) is a multiplicative function with

folp¥*1y=2p°

(8.2)
folp*)=p*+p°~!
and K, =f,(N) is a multiplicative function given by
f{pP)=2a for p#2 (8.3)
a+1 for a=1,2,3;
S2(2%)=<2a—-2 for a=4,5; (84)

4a—12 for az=6.

We start by examining powers of primes p“. An elementary argument
shows that p=35, a=2 give one nullvector and p=3 and a=4 give two.
Also p=2 and a=38 give two nullvectors and no other prime powers give
one or two nullvectors (for details see [P]). So 7/°(25) has one nullvector
and I"°(49), I'°(256), and I'°(81) have two nullvectors each. Now we
examine the case of composite levels. We assume that m, n are both
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different from 1 and are relatively prime. Since f; and f, are multiplicative
functions the number of nullvectors for I'%(mn) is

fo(m”)—fz(mn)_fo(m)—fz(m) Jo(n) = fr(n)
2 B 2 2

We investigate when this number can be 1 or 2. First we note that f,(k) =1
only if k=1, since f, is multiplicative and is not 1 on prime powers by
formula (8.2). Similarly a case by case study of (8.3), (8.4) shows that
fo(k)=1 only if k= 1.

In order that the left-hand side of (8.5) is 1, one of the summands on the
right-hand side has to be 1 and the other 0. If (fy(m)— f5(m))/2 #0, then
fo(n) has to be 1,ie, n=1. If (fo(m)— fo(m))/2=0, then f,(m)=1,1e,
m=1. So we cannot have only one nullvector if N has distinct prime
factors.

At last we examine how composite levels can give two nullvectors. If the
left-hand side of (8.5) is 2, the right-hand side of (8.5)is0+2or 1+1 or
2+0. The case 1 + 1 is impossible, since it implies that f(m)=f(n)=1=
m=n=1.

In the case 0+2, I'°(m) has no nullvectors and f,(m)((fo(n)—
f2(n))2)=2. If m# 1, as assumed, f>(m)=2 and I"°(n) has 1 nullvector,
i.e., n=>5% In this case m has to be prime, as follows from (8.3), {8.4) and
is different from 5.

The last case is the case 2+ 0. Then I'°(n) has no nullvectors and
((fo(m)— f5(m))/2) fo(n)=2. Since n#1, fo(n)#1, so it has to be 2 and
there is only one nullvector in I"°(m), so m=5% All I'°(p) with p prime
have fy(p) =2, ie., have two cusps. But this is not true for higher powers
of primes and, consequently, no composite levels have two cusps, as follows
from formula (8.2). We find again that n=p, a prime different from 5.

This completes the proof the lemma.

It follows from [HUI] that, if N | m?, with m <18, then I"°(N) carries
no exceptional eigenvalues.

The examples we want to consider are the following: The surface
I'°(25)\H is a surface of genus 0 with 6 cusps and two ramified points of
order 2. The surface I"°(25)\H has one nullvector. There is no cusp form
with eigenvalue 1. The deformation space is five dimensional. The destruc-
tion of the nullvector is associated with the non-vanishing of a certain
Rankin-Selberg convolution. This is discussed in detail later in this section.

The surface 77°(49)\H is an elliptic curve with eight punctures and two
ramified points of order 3. Its Teichmiiller space is ten dimensional. It has
two nullvectors and j is not an eigenvalue. We come back to this surface
in Section 9.

Also F°(81)\H is a surface of genus 4 with 12 cusps and no ramification
points. It has 2 nullvectors and j is not an eigenvalue. Its deformation

Joln) + Sa(m).  (8.5)
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space is 21 dimensional. The surface 7"°(54)\H has also genus 4 and 12
cusps and no ramification points. Consequently, the two groups 7°(81)
and 7"°(54) have the same deformation space, since they have the same
signature. However, on 7"°(54) there are no nullvectors and % is not an
eigenvalue, since 54 | 187 This is the first example of a Teichmiiller space
where the multiplicity at § is not only generically 0, but also there exists a
lower dimensional subset where it is not 0. This proves the corollary:

COROLLARY 7. The scattering matrix at i is not a continuous function on
the Teichmiiller space of the surface I'°(81)\H.

In the rest of this section we investigate closer the example of 77°(25). In
particular we want to determine the nullvector, i.e., the Eisenstein series
that does not vanish at s = 1. We follow [HU1] again. If BX(z/m, s5) are the
Eisenstein series with characters, where x is a proper character modulo ¢,
g|m, mq|25, and

o e B v xe)xd)y
BX(z, s) C};w d};m G rd (8.6)
(c, d)# (0, 0)
then we have the functional equation
BN Gt ) L1 7'0 IRRP
— 251 AT 125 _
Bl(z,5)=n G 7) q' ~¥B%(z,1—ys). (8.7)
We also denote
xe) x(d)y®
E¥z 5)= T o (8.8)
x (c,%=l [cz + d|?
and then we have
E% = BXz, s)/L(2s, ¥*). (8.9)

For I'%(25), y can be the trivial character, in which case g =1 and m can
be ! or 5 or 25, or g is S5, m=35, and yx is a proper character mod S. The
multiplicative group mod 5 is generated by 2 and there are three proper
characters mod 5, denoted here y,, ¥,, and y which is the quadratic charac-
ter mod 5. We have x,(2)=1i, 7,(2)= —i, and y(2)= —1 and y}=y. For y
the trivial character or the quadratic character mod 5, L(2s, i%) ={(2s).
The functions {(2s5) and {(2— 2s) both have a pole at s=13, while, for
quadratic mod 5, the functions L(2s, y) and L(2 —2s, y) do not. It is easy
to see that
{2-25) _

Sl—i,l’?/z-—c—(g)—— —1. (8‘10)
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Then the functional equation for E ﬁ(z, s) for ¢ trivial or quadratic mod 5

implies that those Eisenstein series vanish at s=3. However, for g

quadratic mod 5:
i L2=20 Ly
s=1n L2s1)  LLx)

Then the functional equation implies that:

o2 W_1) oy (2 L
511(5,2) ) oA <5 2) (8.12)

The last statement shows that Ei:(z/S, 1/2) and E;:(Z/S, 1/2) are linearly
dependent and the space of Eisenstein series at s = is spanned by

0?1 nfZ 1
Ez:(5,2> BX (5 2>/L(l,x). (8.13)

The nullvector has Fourier expansion at o

2nnx 27my>
K 8.14
5\/— Xl)nzl canXl ( 25 )\/J_’ o( 25 ( )

as follows from [HUI1].

Remark. 1In a similar fashion one can determine the two nullvectors for
I'°(49) and I'%(81). We omit the proof but we describe the two nullvectors

for "°(49),
1 |
£ G 2) B(; 2)/“1 )

2z 1 _afZ 1 _
£8(53)= 24 (5 5) o

mif3

(8.11)

and

where y is primitive mod 7 with y(3)=e

We now consider the L-function assoctated with the first variation of the
nullvector E;‘d(z/S, 1/2). The first variation of the nullvector EQ(z/S, 1/2) is
(AE%(2/5,1/2), EX\(2/5, 1/2)) 2 where 4= —4 Re(Q(z) y*(0/02)(y*(8/02)))
(see [PS1]). Among the Eisenstein series E,(z, s), indexed by the cusps,
one of them at least is non-vanishing at s = 1/2. This one, say E,(z, s), has
to be a non-zero multiple of the resonance Ei;(z/S, 1/2) when evaluated at
s=1/2. Then the non-vanishing of the first variation of the resonance is
equivalent to the non-vanishing of (AE"I(z/S 1/2), E(z, s));2 at s=1/2.
This inner product can be unfolded to give ‘the Rankin-Selberg convolution
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of Q(z) and E"l(z/S 1/2), both expanded at the k cusp. So we need to find
which of the six Eisenstein series (indexed by the cusps) does not vanish at
s=1/2. Following Huxley we number the cusps as —1, —5, —5/2, —5/3,
—5/4, —25 and we set E_((z,5), E_s(z,5), E_s5p(z,5), E_sp(z,9),
E_s54(z,5), E_js(z,5) as the corresponding Eisenstein series. Then the
formula (valid for all admissible characters)

e _ h N
£ (5e)= £ x0(;) T 1 Lo (Gay) Eomee o
(8.15)

(see [HU1]) where the third sum extends over e mod(4k, N/hk), for s=1/2
gives a system of six equations with six unknowns. We recall that

1 z 1 z 1 2z 1
1 “J=F']Z _}= LS el
E‘(Z’ 2) E’<5’2) E (25 2) 0 (5’2) 0 (8.16)

To solve the system one needs also (8.12) and the fact that t(x,)/t(%,) # 1,
which follows from the fact that t(x,) = —2 sin(6n/5) — 2i sin(2xn/5) is not
purely imaginary and as a result 7(%,)=yx(—1)t(x,) = —1(x,) # t(xy).
Then we get that E 5,(z, 1/2) and E_5;5(z, 1/2) do not vanish and are
multiples of Ei:(z/S, 1/5). So we have to study

1
(AE" (5 2) _sslz, s)>L2 (8.17)

at s=1/2. As remarked earlier, it is the Rankin-Selberg convolution of the
Dirichlet series of a holomorphic cusp form Q of weight 4 and the L-series
of the resonance E"l(z/S 1/2). We aim at writing this convolution as an
explicit Euler product if we assume that Q is an eigenfunction of the Hecke
operators T,(p), (p, 5)= 1. Under this assumption, if

0(z)= 3. a(n)er™ (8.18)

n=1

at —5/2, then
Lis, Q)=[[ (1 —a(p) p~*+p*~*)"!
P
=[T(-a(p) p~) ' (1—ay(p)p~)~" (8.19)
F4
The second expression we get by factoring the Hecke polynomials. By

adjusting the coefficient in front of E}(z/5, 1/2), we can assume the null-
vector has a series at oo of the form

2
z b(n)yl/ZeZmnx/ZSK ( ;"51})) (820)
n#0
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with b(1)=1 and b(n)=3_, _, xi{c) ¥;(k). Then the coefficients of the
nullvector are multiplicative: b(mn)= b(m) b(n) for (m,n)=1. Moreover
they satisfy

b(p " *)=b(p"") bp)—b(p") (8.21)

which can be proved easily using the fact that y, is a character. Essentially
the above argument shows that the normalized nullvector is an eigen-
function for the Hecke operators T(p), (p, 5)=1. The space of functions
of moderate growth splits into subspaces which are eigenspaces
simultaneously of 4 and the Hecke operators, since 4 commutes with them.
In this case the eigenspace for 1/4 is one dimensional, so a nullvector is
also eigenvector for the Hecke algebra. We need the Fourier coefficients of
the nullvector at the cusp —5/2. Since Ei:(z/S, 1/2) is a Hecke eigenform,
it has the same coefficients b{(n) for (5, n)=1 at all cusps.

The Dirichlet series for the nullvector has an Euler product of the form
(excluding the prime 5):

[T-bp)p=+p )" (8.22)

p#S

It is easy to verify that

0 if p=2,3mod5
b(py=< —2 if p=4mod5 (8.23)
2 if p=1modS5.

The Hecke polynomials can be factored as follows: For p=4mod 5 we
have 1+2p*+p ¥=(1+p~*)2. Forp=1mod Swehave 1 -2p *+p ¥=
(1—p~*)% For p=2,3mod 5 we have 1 +p~*=(1—ip~*)(1 +ip~°). So
the Dirichlet series for the nullvector has the Euler product (excluding the
prime 5):

[TU=u@p)y ' 0=-p)p™)" (8.24)

pP#£S

Now it is well known how to get the Euler product for the Rankin-Selberg
convolution (see [SH]). Ignoring the prime 5 and the term [T,(1 —p°~ %)
we get

[T [ =xu(pradp) p )X =71 (p) o (p) p %)

p#S

x (1= x:(p)aa(p) p )1 =1 (p) ax(p) p~*)1 7" (8.25)
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which gives

[T La—xip)alp)p >+ x:(p)* p* )

p#*S5

x(I1=jg(pyalp) p~>+1:(p) p>~>)1° 4 (8.26)

We define, as usual, twisted L-series by

Lis, 0 )= ¥, 20 a® "‘(")”(" =11

n=1

i (pp) a(p’) (827)

r

and similarly we define L(s, Q, 7,). We see that

npalp) X = —x(p)alp) X+ x(p)* p*X*)~"  (8.28)

uMg

since

o

Y oap Y X =(1—a(p)X+p*X?)"’ (8.29)
r=0
which is the formal expression for the coefficients of a Hecke eigenform. So,
if we exclude the prime 5, the Rankin-Selberg convolution we are inter-
ested in is essentially the product:

[T (=P ") L(s, @, x1) L(s, @, 7y)- (8.30)

pP#5

We have seen that the nullvector is unstable and the generic multiplicity of
the point £ is 0 on the Teichmiiller space of 7"°(25) if the Rankin-Selberg
convolution discussed above is non-zero at the middle of its critical line,
i.e., the point 2. After the calculation above we see that we have to consider
whether the two twisted L-series above vanish at 2, which is again the
middle of their critical line.

9. DEFORMATIONS BY CHARACTERS

We review the setting (see [S]). The first homology group of I'\H is
isomorphic to I/[ 1, I"]. Its dual group consists of the unitary characters
x of I' and A, ={x|x(p)=1, per, pparabolic}. The cohomology
classes in the first de Rham cohomology which can be represented by forms
of compact support have a square integrable harmonic representative
(which can be taken to be cuspidal; ie., if w=wody+w, dx, [ow,=
j cw, =0 for C a path corresponding to a parabolic). Fix zoe I'\H and
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n: ' — I'/[I, I'] the natural projection from =, (I"\H)—> H,(I'\H, R). For
any cuspidal harmonic square integrable form w we set

Xuly) = e (9.1)

which is a cuspidal character in the connected component of the trivial
character in 4.

The deformation depends on a real parameter § and the corresponding
spectral problem concerns L>-functions satisfying:

J(z)= xou(¥) f(2). (9:2)

The resolvent kernel for this problem has been continued analytically by
Venkov [V]. The Lax-Phillips scattering theory has been extended to
include this problem in [PS2]. So the theory developed here can be
extended too. The first variation of a nullvector e is given by

j Le.edxfy (9.3)
NH y

and here L ={de,w). This condition can be expressed in terms of
L-functions as follows: We unfold the integral and perform an integration
by parts to get (apart from constants and Gamma factors) L(3) where

L(s)=}, 'QEZTI.)%’L) (9.4)

n#0 n

is the Rankin-Selberg convolution of

e(z)=) o(n) y'? Ko(2m |n| y)e*™> (9.5)
and
wo(z)= Y. b(n) y'? Ko(2n |n] y)e*™. (9.6)
n#0

If M\H has genus g>1, so there exists cohomology, the L-series above
becomes the L-series of a Rankin-Selberg convolution of a holomorphic
cusp form of weight 2 for I" and the nullvector.

The surface I'°(49)\H has genus 1, so there exists a one-dimensional
space of holomorphic differentials of the first kind, generated, say, by w. In
fact w is a newform, since I'°(7)\H and I'(1)\H are of genus 0 and have
no cusp forms of weight 2. Since we have two nullvectors, one deals with
the degenerate case. All the conditions for removing the degeneracy and
killing the nullvectors can be expressed in terms of the special values of
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various twisted L-series of w at the middle of their critical line (up to trivial
factors). The twists depend on the Fourier coefficients of the nullvectors,
which are given by (non-quadratic) characters mod 7 (see the example of
I'°(25) in Section 8). These L-series will be factors of the Hasse-Weil
zeta function of the elliptic curve over the field F=Q(e?™7), since
Gal(Q(e*™’y=(Z/1Z)*. The Birch Swinnerton-Dyer conjecture [BI]
relates the non-vanishing of the Hasse—Weil zeta function at s=1 to gz,
which is the rank of the F-points of the elliptic curve. This rank is finite by
the Mordell-Weil theorem and the conjecture is that the Hasse—Weil zeta
function vanishes to order g, at s=1.
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