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LATTICE COUNTING FOR DEFORMATIONS

OF CONVEX DOMAINS

Yiannis N. Petridis & John A. Toth

Abstract

Let D0 = {x ∈ R
n,H0(x) ≤ 1} be a strictly convex domain

in R
n with n ≤ 3 and Du = {x ∈ R

n,Hu(x) ≤ 1}, u ∈ [η, η] be
a continuous one-parameter deformation of D0 with lattice-point
counting function Nu(T ) := {m ∈ Z

n : Hu(m) ≤ T 2}. The main
result of this paper is an estimate for large values of T of the
variation of the counting function, Nu(T ), over generic volume-
preserving deformations Du.

1. Introduction

The problem of constructing manifolds and planar domains which are
isospectral, i.e., have the same spectrum for the Laplace operator but
are not isometric, has attracted a lot of attention over the past thirty
years. Much less is known about isospectral deformations: continuous
families of metrics or domains with the same spectrum. Guillemin and
Kazhdan [6] proved that negatively curved surfaces are rigid. Min-Oo
[10] extended the result to higher dimensional negatively curved mani-
folds with restrictions on the curvature and Croke and Sharafutdinov [1]
proved the result for all negatively curved manifolds. Recently, Zelditch
[15] has shown that analytic convex surfaces of revolution are spectrally
determined (i.e., any two such surfaces with analytic profile curve and
with the same Laplace spectrum are isometric).

This is not the case for manifolds with mixed positive and negative
curvature or for manifolds with boundary: Gordon and Szabo [5] con-
structed isospectral deformations of negatively curved manifolds with
boundary. They are open domains in solvmanifolds. On spheres of di-
mension n ≥ 8 Gordon [3] constructed isospectral deformations, which
can be chosen arbitrary close to the standard metric. She also con-
tructed examples of isospectral deformations on balls for the Laplace
operator with Dirichlet or Neumann data. See also [4].
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On the other hand, flat tori Λ in 2 and 3 dimensions are spectrally
determined (the case n = 3 being difficult, see [13]). The eigenvalues
of flat tori are essentially the squared lengths of the dual lattice vectors
and by a linear transformation, the spectral function

N(T ) = #{j, λj ≤ T 2}
equals the counting function for lattice points inside elliptic regions in
the plane. For this case we have the famous (unproven) Hardy conjec-
ture on N(T ):

N(T ) =
vol(Λ)

4π
T 2 + Oδ(T

1/2+δ)

for all δ > 0. The exponent 1/2 is optimal, see [7]. There has been a
great deal of work on this conjecture, most of which deals with various
estimates for spectral averages of the error term. In previous work [11]
we proved that metric averaging also behaves in a consistent fashion
with the Hardy conjecture. We showed that, for ǫ > 0 small,

∫

[1−ǫ,1+ǫ]2

∣

∣

∣

∣

N(T ) − vol(Λu,v)

4π
T 2

∣

∣

∣

∣

2

du dv ≪ T 1+δ,

where Λu,v is a family of flat tori close to a given flat torus. For a
somewhat simpler proof of this result, see [8].

In this note we are interested in the case of general convex domains,
which correspond to more general toric integrable systems. We address
the following question related to rigidity:

Question. Given a generic, one-parameter deformation of convex
domains in R

n with the same volume, how much does the lattice-point
counting function vary over the deformation for large values of T?

When n = 2, 3, we give explicit lower bounds for the variation of
the lattice-point counting function in any such deformation. Before we
state our results in detail, we discuss the simplest kind of one-parameter
deformations.

Example. Consider the special case of deformations of the form
Hu(x) = H0(x) + uκ(x) for |u| small. The condition that area is pre-
served is just

∫

{Hu=1}
κ(x)dσu(x) = 0; ∀u ∈ (−η, η),

where, dσu is surface measure on ∂Du. So, in particular, {κ = 0} must
intersect {H0 = 1}. The points on Hu = 1, where ∂uHu = 0 are these
intersection points. The condition we need for our results (see 1.3 below)
says that the intersection of these two sets is transversal.

Notation. Throughout the paper, v denotes a row vector and vt a
column vector.
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Let Du be a family of (strictly) convex domains in R
n with the same

volume (i.e., vol(Du)) = A). We assume that the domains are defined
through a one-parameter family Hu(x), u ∈ (−η, η), of smooth functions
on R

n, such that

Du = {x ∈ R
n; Hu(x) ≤ 1}.

In particular, the origin belongs to all the domains. We assume that
Hu(x) is homogeneous of degree 2. Let

Nu(T ) := #{k ∈ Z
n; Hu(k) ≤ T 2}

be the lattice-point counting function associated with the T -dilate, TDu.
We will make a non-degeneracy assumption on the one-parameter family
of defining functions which can be described as follows: Consider the
unfolded open surface in R

n+1 defined by:

(1.1) D = ∪u∈(−η,η)Du × {u}.

We denote by H(x, u) = Hu(x), the boundary defining function of D
and let ψ+

u : R
n \ {0} −→ ∂Du (resp. ψ−

u : R
n \ {0} −→ ∂Du) be the

inverse exterior (resp. interior) Gauss map of the boundary ∂Du.

Definition 1.1. We say that the deformation Du, u ∈ (−η, η) is
non-degenerate if for any (p, u) ∈ ∂D with ψ±

u (ξ) = p, ∂uψ±
u(ξ) = v

satisfying

(1.2)
∂H

∂u
(p, u) = 0,

we have that

(1.3) (v, 1) · ∇2
x,uH(p, u) · (v, 1)t ≫ 1.

Example. Consider the one-parameter family of ellipses

Hu(x1, x2) = (1 + u)x2
1 + (1 + u)−1x2

2, u ∈ (−η, η).

A straightforward computation shows that this deformation is non-deg-
enerate in the sense of Definition 1.1 for η sufficiently small. Indeed,
the critical point equation reduces to:

x2
1 − x2

2 + 2x2
2u = O(u2),

where, x2
1+x2

2 = 1+O(u). The equation x2
1+x2

2+u(x2
1−x2

2)+O(u2) = 1
gives for the Gauss map Gu(p) = ∇xH(p, u)/|∇xH(p, u)|

∂Gu

∂u
(x1, x2) = (x1,−x2) + O(u).

This implies for the inverse Gauss map

∂ψ+
u

∂u
(x1, x2) = (−x1, x2) + O(u).
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Since

∇2
x,uH(p, u) =





2(1 + u) 0 2x1

0 2(1 + u)−1 −2x2

2x1 −2x2 2x2
2





modulo higher order terms in u, the Hessian condition (1.3) is computed
to be

(v+, 1)(∇2
x,uH)(p, u)(v+, 1)t = −2x2

1 + O(u) = −1 + O(u).

A similar calculation shows that the non-degeneracy condition is satis-
fied for ψ−

u .
As usual, f(T ) = Ω(g(T )) means that there exists a sequence Tk; k =

1, 2, . . . with Tk → ∞ as k → ∞ such that f(Tk) ≫ g(Tk) when k → ∞.
Our main results are the following:

Theorem 1.2. Let Hu, u ∈ [−η, η] be a non-degenerate family of

domains Du, u ∈ [−η, η], as in Def. 1.1. Then, for n = 2, we have
∫ η

−η
|Nu(T ) − N0(T )|2 du = Ω(T )

as T → ∞. For n = 3 and any α, β ∈ R with 0 ≤ α < β
∫ β

α

∫ η

−η
|Nu(aT ) − N0(aT )|2 du da = Ω(T 2).

Theorem 1.2 implies that the domains Du are rigid in the sense of
the lattice-counting problem.

Remark 1.3. Our method does not work for domains in R
n with

n ≥ 4. Although it is desirable to remove the averaging in a in dimension
3, we are currently unable to do so.

The first five sections are devoted to the proof of Theorem 1.2. In
section 5 we prove Theorem 1.2 for n = 3.

2. The case n = 2

Since Nu(T ) = AT 2 + Ru(T ) for all u ∈ I = (−η, η), it suffices to
prove Theorem 1.2 for Ru(T ). As is standard, one has to mollify Ru

appropriately to be able to compute effectively and, in particular, to
apply Poisson summation formula. This is done as follows.

Let ρ be a nonnegative C∞ function compactly supported in, say,
[1/2, 2]2, with

∫

R2 ρ = 1. As usual we define the family of mollifiers

constructed out of ρ by ρδ(x) = δ−2ρ(x/δ). We define the mollified
counting function for TDu by

N δ
u(T ) =

∑

k∈Z2

χTDu
⋆ ρδ(k),
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which, using the Poisson summation formula, equals

(2.1) N δ
u(T ) = AT 2 + T 2

∑

k 6=0

χ̂Du
(Tk) ρ̂(δk) = AT 2 + Rδ

u(T ).

Since ρ is compactly-supported, there exists a constant C (independent
of Du) such that

(2.2) N δ
u(T − Cδ) ≤ Nu(T ) ≤ N δ

u(T + Cδ).

We henceforth fix δ = T−1 once and for all. It is possible to choose
δ even smaller in our argument, but one gains nothing by doing this.
With this choice of T we get from (2.2) and (2.1) that

(2.3) Rδ
u(T − Cδ) + O(1) ≤ Ru(T ) ≤ Rδ

u(T + Cδ) + O(1).

By using Green’s formula and stationary phase [9, Corollary 7.7.15,
p. 229], one can show that the Fourier transform of the characteristic
function of a convex domain Du in R

2 has the following asymptotic
expansion as ξ → ∞:

χ̂Du
(ξ) = |ξ|−3/2(2π)1/2(K(ψ+

u (ξ))−1/2e−i〈ψ+
u (ξ),ξ〉+πi3/4

+K(ψ−
u (ξ))−1/2e−i〈ψ−

u (ξ),ξ〉+πi3/4) + O(|ξ|−5/2),

where ψ+
u (ξ) and ψ−

u (ξ) are the points of ∂Du where the exterior normal
is ξ and −ξ respectively, and K(x) is the Gauss curvature at x. As a
result

Rδ
u(T ) = T 1/2

∑

k 6=0

c±eiT 〈ψ±
u (k),k〉

|k|3/2K(ψ±
u (k))1/2

ρ̂(k/T ) + O(1).

Since all the domains Du are strictly convex, we have 1 ≪ K(x±
u ) ≪ 1.

Introduce a cut-off function in the u variable, φ(u) ∈ C∞
0 ([−η, η]) and

put dµ(u) = φ(u)du. Then
∫ η

−η
Rδ

u(T ) dµ(u)(2.4)

=
√

T
∑

k 6=0

∫ η

−η

c±eiT 〈ψ±
u (k),k〉

|k|3/2K(ψ±
u (k))1/2

ρ̂(k/T ) dµ(u) + O(1).

We would like to apply a stationary phase (with parameters) argument
this time in the u-variable to estimate the integral sum in (2.4). To do
this, fix ωk = k/|k| and note that, since ψ±

u (k) is the inverse Gauss map,
it is positive homogeneous of degree zero in the k-variable, i.e., ψ±

u (k)
depends only on the direction of k. Thus, we can define f(u, ωk) as

(2.5) f(u, ωk) = 〈ψ±
u (k), k〉/|k|.
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To decompose the sum in (2.4) we need to consider the solutions of the
critical point equation

(2.6)
∂

∂u
f(u, ωk) = 0.

We claim that near each point (u(0), ω
(0)
k ) satisfying (2.6), there exists

a locally unique C∞ solution u = u(ωk) to (2.6). To see this, we differ-
entiate H(u, ψ±

u (ω)) = 1 with respect to the u-variable to get

(2.7) ∇xH(u, ψ±
u (ω)) · ∂ψ±

u (ω)

∂u
+

∂H

∂u
(u, ψ±

u (ω)) = 0.

Since ∇x H (u, ψ±
u (ωk)) is parallel to ωk, it follows from (2.7) that

∂
∂u〈ψ±

u (ωk), ωk〉 = 0 is equivalent to ∂H
∂u (u, ψ±

u (ωk)) = 0. We differenti-
ate (2.7) again in u to get

〈

∇2
xH(u, ψ±

u (ωk)) ·
∂ψ±

u

∂u
(ωk),

∂ψ±
u

∂u
(ωk)

〉

(2.8)

+ 2∇x
∂H

∂u
(u, ψ±

u (ωk)) ·
∂ψ±

u (ωk)

∂u

+
∂2ψ±

u

∂u2
(ωk) · ∇xH(u, ψ±

u (ωk)) +
∂2H

∂u2
(u, ψ±

u (ωk)) = 0.

We rewrite (2.8) as

∂2

∂u2
ψ±

u (ωk) · ∇xHu(ψ±
u (ωk))(2.9)

= −(∂uψu(ωk), 1) · ∇2
x,uH(u, ψu(ωk)) · (∂uψu(ωk), 1)t.

At points where ∂uH(u, ψ±
u (ωk) = 0 the non-degeneracy assumption on

the deformation implies that the expression in (2.9) is bounded away
from zero. But, by the definition of the map ψu,

∂2

∂u2
ψ±

u (ωk) · ∇xHu(ψ±
u (ωk))(2.10)

= ±|∇xH(u, ψ±
u (ωk))| ·

〈

∂2

∂u2
ψ±

u (ωk) , ωk

〉

.

Thus, since by convexity 1 ≪ |∇xH| ≪ 1 near H = 1, we get from
(2.10) and (2.9) that

(2.11)
∂2

∂u2
〈ψ±

u (ωk), ωk〉 ≫ 1.

The nondegeneracy condition (2.11) on the phase function in (2.4) im-
plies that by the implicit function theorem the solution u = u(ωk)
to (2.6) is locally C∞. By possibly decomposing the parameter space
u ∈ [0, 1] via a partition of unity, we get C∞ solutions u = uj(ωk); j =
1, ..., M for some M ≥ 1. Without loss of generality, we assume that
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M = 1. The nondegeneracy condition (2.11) allows us to apply station-
ary phase in (2.4). We actually only need the following simple conse-
quence of the stationary phase lemma (see [9, Th. 7.7.5, p. 220]):

Lemma 2.1. Let f ∈ C∞(R; R) and χ ∈ C∞
0 (R) with supp(χ) ⊂

[0, 1]. Given

I(f) =

∫

R

eiTf(x)χ(x) dx,

we have for T > 0 large and some constant C > 0,

|I(f)| ≤ C
(||χ||L∞ + ||∇χ||L1)T−1/2

inf{|∇2f(x)|1/2, x ∈ supp(χ)} .

Let χ(x) ∈ C∞
0 (R) be a cut-off function equal to 1 for |x| ≤ 1

C0
and

zero when |x| ≥ 2
C0

where C0 > 0 is sufficiently large. Then, choosing
N > 0 large we define the arcs

(2.12) Ωj =

{

ω ∈ S1,
j − 1

N
≤ ω ≤ j

N

}

, j = 1, . . . , N.

We write the sum in (2.4) by grouping the k ∈ Z
2 with the same length

and summing first over the lengths of k. We denote this first summation
by

∑

r=|k|6=0. First, we decompose the sum:

T 1/2
∑

r=|k|6=0

N
∑

j=1

∑

ωk∈Ωj

∫ η

−η

c±eiT |k|〈ψ±
u (ωk),ωk〉

|k|3/2K(ψ±
u (ωk))1/2

ρ̂(k/T ) dµ(u)(2.13)

= T 1/2
∑

r=|k|6=0

N
∑

j=1

∑

ωk∈Ωj

∫ η

−η

c±eiT |k|〈ψ±
u (ωk),ωk〉

|k|3/2K(ψ±
u (ωk))1/2

· χ(u − u(ωk)) ρ̂(k/T ) dµ(u)

+ T 1/2
∑

r=|k|6=0

N
∑

j=1

∑

ωk∈Ωj

∫ η

−η

c±eiT |k|〈ψ±
u (ωk),ωk〉

|k|3/2K(ψ±
u (ωk))1/2

· [1 − χ(u − u(ωk))] ρ̂(k/T ) dµ(u).

Then, an application of Lemma 2.1 together with convexity implies that
the first integral sum on the right-hand side of (2.13) is bounded by

∑

0<r=|k|≤T

|k|−2 ≪
∫ T

1

dr

r
= O(log T ).

To estimate the second integral sum on the right-hand side of (2.13),
we repeatedly integrate by parts in the u-variable to get

∫ η

−η

c±eiT 〈ψ±
u (k),k〉φ(u)

|k|3/2K(ψ±
u (k))1/2

[1 − χ(u − u(k))] ρ̂(k/T ) du = O(T−∞).
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Thus, (2.13) gives

∫ η

−η
Rδ

u(T ± Cδ) du = O(log T ),

and since from (2.3) we have that Rδ
u(T − Cδ) + O(1) ≤ Ru(T ) ≤

Rδ
u(T + Cδ) + O(1) as T → ∞, we have proved:

Proposition 2.2. Under the non-degeneracy assumption (1.3) on the

deformation,

∫ η

−η
Ru(T )φ(u)du = O(log T ) + O(1) = O(log T ).

3. Lower spectral bounds for Ru(t)

We only need such bounds for a fixed u, say u = 0. We follow here
a simple argument due to Sarnak [12, p. 226]: Consider the quantum
Hamiltonian P = H(∂θ1

, ∂θ2
) on the 2-torus. Let T0 be a nonzero period

for the Hamilton flow of p(x, ξ) = H(ξ1, ξ2) and let φ ∈ S(R) satisfy

φ > 0 and so that its Fourier transform φ̂(T ) ∈ C∞
0 (R) contains only the

period T0 in its support. Then, the Duistermaat-Guillemin wave-trace
formula [2] gives

(3.1)

∫ ∞

−∞
φ(T − x) dN(x) ∼

∞
∑

j=0

cjT
1/2−j , T → ∞,

with c0 ≫ 1. Recall that A is the common area of all Du. From the
Weyl formula we have

∫ ∞

−∞
φ(T − x) dN(x)(3.2)

= 2A

∫ ∞

−∞
φ(T − x)x dx +

∫ ∞

−∞
φ(T − x) dR(x)

=

∫ ∞

−∞
φ′(T − x)R(x) dx + O(1),

since φ̂(ξ) = 0 near ξ = 0. Then, by integrating by parts in (3.2) and
using that φ′ is Schwartz and R(T ) = O(T ) by the Hörmander bound,
it follows that

Proposition 3.1.

1

T

∫ 2T

T
|R(x)|dx ≫ T 1/2.
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4. Variance estimates over the deformation

We set V (T ) =
∫ η
−η |Nu(T ) − N0(T )|2du. Since A = area(Du) is

constant,

V (T ) =

∫ η

−η
|Ru(T ) − R0(T )|2 du(4.1)

=

∫ η

−η
|Ru(T )|2 du + 2η|R0(T )|2 − 2R0(T ) ·

∫ η

−η
Ru(T )du

≥ 2η|R0(T )| ·
(

|R0(T )| + O

(∫ η

−η
Ru(T )du

))

.

From Proposition 2.2,
∫ η

−η
Ru(T )du = O(log T ).

On the other hand, by Proposition 3.1, |R0(T )|2 = Ω(T ), and so, from
(4.1), we get that

(4.2) V (T ) ≥ 2η|R0(T )| · [|R0(T )| + O(log T )] = Ω(T ).

This completes the proof of Theorem 1.2. q.e.d.

5. The case n = 3

We assume now that Du, u ∈ (−η, η) is a non-degenerate deformation
of convex domains. We indicate only the differences between the case of
n = 3 and n = 2. Let the mollifier scale be δ = δ(T ) be chosen later. We
make a polar variable decomposition in the summation indices k ∈ R

3:
we write r = |k| and ωk = k/|k| ∈ S2. Then, by exactly the same
Poisson summation formula argument as in section 2, Eq. (2.13) we get
that for any a ∈ R,

∫ η

−η
Rδ

u(aT ) dµ(u)(5.1)

= T
∞

∑

r=1

N
∑

j=1

∑

ωk∈Ωj

∫ η

−η

c±eiaT |k|〈ψ±
u (ωk),ωk〉

|k|2K(ψ±
u (ωk))1/2

ρ̂(kδ) dµ(u)

= T
∞

∑

r=1

N
∑

j=1

∑

ωk∈Ωj

∫ η

−η

c±eiaT |k|〈ψ±
u (ωk),ωk〉

|k|2K(ψ±
u (ωk))1/2

· χ(u − u(ωk)) ρ̂(kδ) dµ(u)

+ T
∞

∑

r=1

N
∑

j=1

∑

ωk∈Ωj

∫ η

−η

c±eiaT |k|〈ψ±
u (ωk),ωk〉

|k|2K(ψ±
u (ωk))1/2

· [1 − χ(u − u(ωk))] ρ̂(kδ) dµ(u).
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Just as in section 2, the last integral in (5.1) is O(T−∞) by repeated
integration by parts in the u-variable. We apply stationary phase with
parameters, see [9, Th. 7.7.6, p 222] to the first integral on the right-
hand side of (5.1) and, up to a bounded error, O(1), we get

∫ η

−η
Rδ

u(aT ) dµ(u)(5.2)

=
√

T
∞

∑

r=1

∑

ωk∈Ωj

j≤N

c±eiaTr〈ψ±(u(ωk),ωk),ωk〉
g(r, ωk)

r5/2

where g(r, ω) = (K(ψ(u(ω), ω) det(〈∇2
uψ(u(ω), ω), ω〉))−1/2ρ̂(rδω). Let

a ∈ [α, β] and form the double variation,

(5.3) V (T ) =

∫ β

α

∫ η

−η
|Nu(aT ) − N0(aT )|2 dµ(u) da.

Since by assumption vol(Du) = A for all u ∈ (−η, η), it follows from the
Cauchy-Schwarz inequality that

V (T ) =

∫ β

α

∫ η

−η
|Ru(aT ) − R0(aT )|2 dµ(u) da

≫
∫ β

α
|R0(aT )|2da

+ O

(

∣

∣

∣

∣

∫ β

α
|R0(aT )|2da

∣

∣

∣

∣

1/2

· |M(T )|1/2

)

,

where

(5.4) M(T ) =

∫ β

α

∣

∣

∣

∣

∫ η

−η
Ru(aT ) dµ(u)

∣

∣

∣

∣

2

da.

Again, just as in the n = 2 case, we work with the mollified mean square,

(5.5) M δ(T ) =

∫ β

α

∣

∣

∣

∣

∫ η

−η
Rδ

u(aT ) dµ(u)

∣

∣

∣

∣

2

da.

It follows from (2.3) that

(5.6) M(T ) − M δ(T ) = O(δ2T 4),

(recall Ru(T ) ≪ T 2 in n = 3). Put

(5.7) Φ(ω, ω′, r, r′) = r〈ψ±(u(ω), ω), ω〉 − r′ 〈ψ±(u(ω′), ω′), ω′〉.
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Then, inserting the estimate (5.2) into (5.5) implies that

M δ(T ) = T
∑

r,j,ωk∈Ωj

r′,j′,ω′
k
∈Ωj

∫ β

α
c±eiaT Φ(ω,ω′,r,r′)r−5/2(r′)−5/2f(r, r′, ωk, ω

′
k)da

(5.8)

+ O(T 1/2δ−1/2),

where

f(r, r′, ω, ω′)

(5.9)

= [K(ψ(u(ω), ω) det(〈∇2
uψ(u(ω), ω), ω〉

· K(ψ(u(ω′)), ω′) det(〈∇2
uψ(u(ω′), ω′), ω′〉]−1/2ρ̂(rδω)ρ̂(r′δω′).

We split this multiple integral sum up into three pieces. For simplicity
we first study the diagonal, although it is actually included in the third
piece.

5.0.1. The diagonal. Consider the set

∆ = {(r, ω, r′, ω′), r = r′ and ω = ω′}.

Then, since f(r, r′, ω, ω′) = O(1), the sum of the terms in (5.8) with
(r, ω, r′, ω′) ∈ ∆ is bounded by

(5.10) T

1/δ
∑

|k|=1

|k|−5 ≪ T

∫ 1/δ

1
r−3dr ≪ T.

5.0.2. The off-diagonal. Part I. Fix M > 0 and consider the set of
subindices

G = {(r, ω, r′, ω′); Φ(ω, ω′, r, r′) ≫ rM ; r, r′ ≤ 1/δ}.

Then, by carrying out the integration in the a-variable, this part of the
sum in (5.8) is

≪ T

T

∑

(r,ω,r′,ω′)∈G

1

r5/2+Mr′5/2
(5.11)

≪
∫ 1/δ

1

∫ 1/δ

1

1

r1/2+Mr′1/2
drdr′ ≪ δM−1.
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5.0.3. The off-diagonal. Part II. Here we estimate the piece of the
sum coming from the complement of G. This includes the diagonal.
This is just the set

B = {(r, ω, r′, ω′); Φ(ω, ω′, r, r′) ≪ rM ; r, r′ ≤ 1/δ}.

The main tool in estimating this multiple sum is the implicit function
theorem, which allows one to reduce effectively the number of indices
in the summation. First we note that 〈∇uψ(u(ω), ω), ω〉 = 0, and that
〈ψ(u, ·), ·〉 is positive, homogeneous of degree one. Thus, the chain rule
gives

(5.12) ∇ωΦ(ω, ω′, r, r′) = r∇ω〈ψ±(u(ω), ω), ω〉 ≫ r,

where, the last estimate is a consequence of Euler homogeneity, since
ω ·∇ω〈ψ±(u, ω), ω〉 = ψ±(u, ω) and ψ± takes its values on the boundary
of the convex domain, Du(ω), containing 0 ∈ R

3.

Let r, r′ be parameters and consider solutions (ω(0), (ω′)(0)) of the
equation

(5.13) Φ(ω, ω′; r, r′) = 0.

Then, given the lower bound in (5.12) for ∇ωΦ it suffices to assume that

∂

∂ω1
Φ(ω, ω′, r, r′) ≫ r.

By the implicit function theorem, locally near the point (ω(0), (ω′)(0))
there exists a function F ∈ C∞(R × S2 × R

+ × R
+) such that for all

(ω, ω′, r, r′) satisfying (5.13), we have

(5.14) ω1 = F (ω2, ω
′, r, r′).

The Taylor expansion of F implies that for (r, ω, r′, ω′) ∈ B,

(5.15) ω1 = F (ω2, ω
′, r, r′) + O(rM−1).

Thus, the part of the sum in (5.8) coming from the set B is
(5.16)

≪ T





1/δ
∑

k∈Z3;|k|=1

|k|−5/2









1/δ
∑

l∈Z2;|l|=1

|l|−5/2+M−1



 ≪ T

(

1

δ

)M−1

.

Consequently, from (5.16), (5.6), (5.10), and (5.11) it follows that

(5.17) |M(T )| ≪ max{T, T 1/2δ−1/2, δM−1, T δ1−M , δ2T 4}.

Choosing M = 3/4 and δ = T−2 we get

(5.18) |M(T )| ≪ T 3/2.
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On the other hand, by the same trace formula argument as in section 3
with n = 3, one gets

∫ β

α
|R0(aT )|2da = Ω(T 2).

This completes the proof of Theorem 1.2 for n = 3. q.e.d.

Remark 5.1. It is likely that Theorem 1.2 yields generic quantita-
tive rigidity results for volume-preserving deformations, −∆u; u ∈ I,
of quantum completely integrable Laplacians. These would include sur-
faces and tori of revolution. We hope to discuss this point in more detail
elsewhere.
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