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THE REMAINDER IN WEYL’S LAW
FOR n-DIMENSIONAL HEISENBERG MANIFOLDS

MAHTA KHOSRAVI AND YIANNIS N. PETRIDIS

(Communicated by Jozef Dodziuk)

Abstract. We prove that the error term in Weyl’s law for ‘rational’ (2n+1)-

dimensional Heisenberg manifolds is of order O(tn−7/41). In the ‘irrational’
case, for generic (2n + 1)-dimensional Heisenberg manifolds with n > 1, we

prove that the error term is of the order O(tn−1/4 log t). The polynomial
growth is optimal.

1. Introduction

Let (M, g) be a closed n-dimensional Riemannian manifold with metric g and
Laplace-Beltrami operator ∆. Let its eigenvalues be 0 = λ0 < λ1 ≤ · · · . For the
spectral counting function N(t) = #{j, λj ≤ t} we have Hörmander’s theorem

N(t) =
vol(Bn)vol(M)

(2π)n
tn/2 + O(t(n−1)/2)

where vol(Bn) is the volume of the n-dimensional unit disk and by O(t(n−1)/2) we
mean a term with the growth not faster than t(n−1)/2 as t tends to infinity.

The estimate of the error term in Hörmander’s theorem, defined by

R(t) = N(t) − vol(Bn)vol(M)
(2π)n

tn/2,

is in general sharp, as the well-known example of the sphere Sn with its canonical
metric shows [HÖ1]. However, the question of determining the optimal bound for
this error term in any given example is difficult. Nevertheless, for certain types of
manifolds, i.e. manifolds with integrable geodesic flows, some improvements have
been obtained. The simplest compact manifold with integrable geodesic flow is
the 2-torus T

2. Hardy’s conjecture for T
2 [HA], i.e. for the Gauss circle problem,

asserts that
R(t) = Oε(t1/4+ε), ε > 0.

Hardy [HA] has also proved that for T
2, R(t) = Ω−(t1/4(log t)1/4). See [HF] for the

best Ω− result. The point is that R(t) �= O(t1/4). Cramér’s formula [CR] states
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that for T
2:

lim
T→∞

1
T 3/2

∫ T

0

|R(t)|2dt = C > 0,

which is consistent with Hardy’s conjecture.
As the first natural non-commutative generalization of T

2 consider H1/r, the
3-dimensional Heisenberg manifold, which has completely integrable geodesic flow
[BU]. Petridis and Toth [PT] have proved that, for certain ‘arithmetic’ Heisenberg
metrics on H1, R(t) = O(t5/6+ε). Later in [CPT] the exponent was improved and
the result extended to all left-invariant Heisenberg metrics. It was conjectured in
[PT] that for H1/r,

(1) R(t) = O(t3/4+ε).

Moreover, Petridis and Toth [PT] have proved the following L2 result for H1, by
averaging over perturbations of the metric g and defining M(u) = (H1/Γ, g(u)),∫

I3
|R(t, u)|2du ≤ Ct3/2+δ,

where I = [1 − ε, 1 + ε].
The conjecture (1) follows from the standard conjectures on the growth of ex-

ponential sums; see [CPT]. The exponential sums that show up have convex phase
and, consequently, van der Corput’s method and the method of exponent pairs can
be applied. In the case of (2n + 1)-dimensional Heisenberg manifolds with n > 1,
we face multiple sums with linear dependence on n−1 variables. Our main purpose
in this paper is to prove the following pointwise estimates:

Theorem 1.1. Let (Hn/Γ, g) be the (2n + 1)-dimensional Heisenberg manifold
where n > 1 and the metric g is in the orthogonal form

g =
(

h 0
0 g2n+1

)
.

Let Jn be the standard symplectic matrix

Jn =
(

0 In×n

−In×n 0

)
.

Denote the eigenvalues of h−1Jn by ±
√
−1d2

j , 1 ≤ j ≤ n. If the ratios dj
2/di

2 are
rational, then

R(t) = O(tn−7/41).

Remark 1. Conjecturally in the ‘rational’ case the best estimate, following from
(19), is

(2) R(t) = Oε(tn−1/4+ε).

Theorem 1.2. Let (Hn/Γ, g) and {±
√
−1d2

j ; 1 ≤ j ≤ n} be as defined in Theo-
rem 1.1. If there exists at least one irrational coefficient dj

2/dn
2, then for almost

all metrics g, which are the ones where this irrational coefficient θ satisfies the
Diophantine condition ‖jθ‖ � 1/(j log2 j), we have

R(t) = O(tn−
1
4 log t).
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Remark 2. There is nothing special in choosing the diophantine condition ‖jθ‖ �
1/(j log2 j). According to Khintchine’s theorem for f(x) increasing, positive with∑

n f(n)−1 < ∞, the condition ‖jθ‖ � 1/f(j), for all j is satisfied by a generic θ
in the sense of measure.

The analogue of Cramér’s formula for Heisenberg manifolds is part of the first
author’s Ph.D. thesis at McGill University, [Kh].

2. Background on Heisenberg manifolds

2.1. Definitions and notation. For a row vector x and a column vector y in R
n

let γ(x, y, t) and X(x, y, t) be the (n + 2) × (n + 2) matrices

γ(x, y, t) =

⎛
⎝1 x t

0 In y
0 0 1

⎞
⎠ , X(x, y, t) =

⎛
⎝0 x t

0 0 y
0 0 0

⎞
⎠ .

The real (2n+1)-dimensional Heisenberg group Hn is the Lie subgroup of Gln+2(R)
consisting of all matrices in the form γ(x, y, t), i.e.

Hn = {γ(x, y, t) : x, y ∈ R
n, t ∈ R}.

Its Lie algebra hn is the Lie subalgebra of gln+2(R) consisting of all matrices
X(x, y, t), i.e.

hn = {X(x, y, t) : x, y ∈ R
n, t ∈ R}.

Let zn = {X(0, 0, t), t ∈ R} be the center and the derived subalgebra of hn. It
is also convenient to identify the subspace {X(x, y, 0), x, y ∈ R

n} of hn with R
2n.

Thus hn is the direct sum of these subspaces: hn = R
2n ⊕ zn.

Define Z = X(0, 0, 1). Then the standard basis of hn is δ = {X1, X2, ..., Y1, ...,
Yn, Z}, where the first 2n elements are the standard basis of R

2n. The nonzero
brackets among the elements of δ are thus given by [Xi, Yi] = Z for 1 ≤ i ≤ n.
These are the standard commutation relations for positions and momenta in n-space
in quantum mechanics. This justifies the use of the word Heisenberg to describe
the group manifolds at hand.

Definition 2.1. A Riemannian Heisenberg manifold is a pair (Hn/Γ, g) where Γ
is a uniform discrete subgroup of Hn, i.e. the quotient Hn/Γ is compact, and g is
a Riemannian metric on Hn/Γ whose lift to Hn is left Hn-invariant.

Heisenberg manifolds are circle bundles over tori.

2.2. Classification of the uniform discrete subgroups of Hn. For every n-
tuple r = (r1, r2, ..., rn) ∈ Z

n
+ such that ri|ri+1 for every i, let rZ

n denote the
n-tuples x = (x1, x2, ..., xn) where xi ∈ riZ. Define

Γr = {γ(x, y, t) : x ∈ rZ
n, y ∈ Z

n, t ∈ Z}.

It is clear that Γr is a uniform discrete subgroup of Hn.

Theorem 2.2 ([G–W]). The subgroups Γr classify the uniform discrete subgroups
of Hn up to automorphism. In other words, for every uniform discrete subgroup of
Hn there exists a unique n-tuple r and an automorphism of Hn which maps Γ to
Γr. Also if two subgroups Γr and Γs are isomorphic, then r and s are equal.
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Corollary 2.3 ([G–W]). Given any Riemannian Heisenberg manifold M =
(Hn/Γ, g) there exists a unique n-tuple r as before and a left-invariant metric g̃
on Hn such that M is isometric to (Hn/Γr, g̃).

Since every left-invariant metric g on Hn is uniquely determined by an inner
product on hn, we can identify the left-invariant metrics with their matrices relative
to the standard basis δ of hn.

For any g we can choose an inner automorphism ϕ of Hn such that R
2n is

orthogonal to zn with respect to ϕ∗g. Therefore (Hn/Γ, g) will be isometric to
(Hn/Γ, ϕ∗g), and we can replace every left-invariant metric g by ϕ∗g and always
assume that the metric g is in the form

g =
(

h 0
0 g2n+1

)
,

where h is a positive-definite 2n × 2n matrix and g2n+1 is a positive real number.
The volume of the Heisenberg manifold is given by vol(Hn/Γr, g) = |Γr|

√
det(g),

where |Γr| = r1 · r2 · · · rn for r = (r1, r2, ..., rn).

Notation. The matrix h−1Jn is similar to the skew-symmetric matrix h−1/2Jnh−1/2,
so it has pure imaginary eigenvalues which we denote by ±

√
−1d2

j ; 1 ≤ j ≤ n.

2.3. The spectrum of Heisenberg manifolds. Denote the spectrum of M =
(Hn/Γr, g) by Σ(r, g), that is, the collection of all eigenvalues of the Laplacian,
counting the multiplicities. Then Σ(r, g) = Σ1 ∪ Σ2, where Σ1 contains the eigen-
values of the first type corresponding to the 2n-dimensional tori as a submanifold
of M , and Σ2 is the second part resulting from the non-commutative structure of
the Heisenberg manifold.

More precisely, let Lr = {X(x, y, z), xi ∈ riZ, y ∈ Z
n, z ∈ Z} be a lattice in the

Lie algebra h. Then Σ1(r, h) is the spectrum of the Laplace operator on the flat
torus (R2n/Lr, h), see [G–W, p. 259].

The second part of the spectrum, Σ2 contains the eigenvalues of the form:

µ(c, k) = 4π2c2/g2n+1 +
n∑

i=1

2πcd2
i (2ki + 1)

and
Σ2(r, g) = {µ(c, k) : c ∈ Z+, k ∈ (Z+ ∪ {0})n},

where every µ(c, k) is counted with the multiplicity 2cn|Γr| .

3. Proof of Theorem 1.1

3.1. Computation of the error term. The spectral counting function corre-
sponding to type II eigenvalues is defined by

(3) NII(t) = #{µ(c, k); µ(c, k) ≤ t},
where every µ(c, k) on the right-hand side of (3) is counted 2cn|Γr| times, for each
pair (c, k) such that µ = µ(c, k).

In the calculations for NII(t), without loss of generality, we assume that r =
(1, 1, ..., 1). In the general case, the only change is a coefficient |Γr| in 2cn|Γr|,
for the multiplicity of each µ(c, k), which also appears in the coefficients of vol(M)
and vol(R2n/Lr, h) = |Γr|det(h). Therefore, we continue with the computation of
NII(t) only for r = (1, 1, ..., 1) and we count every µ(c, k) with multiplicity 2cn. We
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compute asymptotics with 2 terms in the expansions, since we need to see that the
second term of order tn cancels the contribution of the main term of type I (torus)
eigenvalues. The calculations with 2 terms require the Euler summation formula
[GK], which we quote in its only use in this paper:

(4)
∑
n≤u

na =
ua+1

a + 1
− ψ(u)ua + O(ua−1).

Here ψ(u) is the first Bernoulli function (row of teeth function) defined by ψ(u) =
u − [u] − 1/2. Now µ(c, k) ≤ t if and only if

c
(
c +

∑
d2

i g2n+1ki/π +
∑

d2
i g2n+1/(2π)

)
≤ tg2n+1/(4π2).

Let bi = d2
i g2n+1/(2π). Then

µ(c, k) ≤ 4π2t/g2n+1

if and only if c(c +
∑

2biki +
∑

bi) ≤ t. So

NII(4π2t/g2n+1) =
∑

c(c+2
∑

biki+
∑

bi)≤t

2cn = 2
∑

c≤
√

t

cn
∑

∑
biki≤ t

2c−
c
2−

∑
bi
2

1.

Define

(5) α =
t

2c
− c

2
− 1

2

n∑
i=1

bi and si =
i∑

j=1

bjkj .

We adopt the following notation. When a sum is indexed by the variable ki, this
means that the range of ki is 0 ≤ ki ≤ (α − si−1)/bi. We have

(6) N2(t) =
1
2
NII(4π2t/g2n+1) =

∑
0<c≤

√
t

cn
∑
k1

∑
k2

· · ·
∑
kn

1.

Evaluating the last sum on the right-hand side of (6), we get
∑
kn

1 =
(α − sn−2)

bn
− bn−1kn−1

bn
− ψ

(
α − sn−1

bn

)
+

1
2
.(7)

Continuing with the next summation in (6), we get
∑
kn−1

∑
kn

1 =
(

α − sn−2

bn
+

1
2

) ∑
kn−1

1 −
∑
kn−1

bn−1kn−1

bn
−

∑
kn−1

ψ

(
α − sn−1

bn

)
.

Evaluating
∑

kn−1
1 and

∑
kn−1

kn−1, using the Euler summation (4), we obtain

∑
kn−1

∑
kn

1 =
(α − sn−2)2

2bnbn−1
+

1
2
(α − sn−2)

(bn + bn−1)
bnbn−1

−
∑
kn−1

ψ

(
α − sn−1

bn

)
+ O(1).

By induction we get
∑

k1,...,kn

1 =
αn

n!b1b2...bn
+

(b1 + · · · + bn)αn−1

2(n − 1)!b1b2...bn

−
∑

k1,...,kn−1

ψ

(
α − sn−1

bn

)
+ O(αn−2).
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We set β =
∑n

i bi. Hence,

∑
0<c≤

√
t

k1,...,kn

cn =
∑

0<c≤
√

t

cnαn

n!b1b2...bn
+

∑
0<c≤

√
t

βcnαn−1

2(n − 1)!b1b2...bn

−
∑

0<c≤
√

t

k1,...,kn

cnψ

(
α − sn−1

bn

)
+

∑
0<c≤

√
t

cn · O(αn−2).(8)

For the first sum on the right-hand side of (8) we substitute α = t/(2c)−c/2−β/2,
use the binomial theorem and (4), and obtain

∑
0<c≤

√
t

cnαn =
tn+1/2

2n

n∑
j=0

(−1)j

2j + 1

(
n
j

)
− tnψ(

√
t)

2n

n∑
j=0

(−1)j

(
n
j

)

+
tn

2n+1
{−1 − β + β

n∑
j=0

(−1)j

(
n
j

)
} + O(tn−1/2).

Here we notice that the sums involving the binomial coefficients can actually be
calculated explicitly. By plugging x = 1 into the expansion of (1− x)n we get that

1−
(

n
1

)
+

(
n
2

)
−· · · = 0, which shows that the term with the row-of-teeth function

disappears. By integrating over [0, 1] the expansion of (1 − x2)n we get

1 −
(

n
1

)
/3 +

(
n
2

)
/5 − · · · =

∫ 1

0

(1 − x2)n dx =
∫ π/2

0

sin2n+1 u du =
(2n)!!

(2n + 1)!!
;

see [GR, 3.621.4, p. 412]. This gives

∑
0<c≤

√
t

cnαn = tn+1/2 2nn!n!
(2n + 1)!

+
tn

2n+1
(−1 − β) + O(tn−1/2).(9)

In the second summation in (8) we use
1
n

=
∫ 1

0

(1−x)n−1 dx =
n−1∑
i=0

(−1)i

i + 1

(
n − 1

i

)

to get

∑
0<c≤

√
t

cnαn−1 =
∑

0<c≤
√

t

cn
{ (

t

2c

)n−1

−
(

n − 1
1

) (
t

2c

)n−2 (
c

2
+

β

2

)
+ · · ·

}(10)

=
tn

n2n
+ O(tn−1/2).

For the fourth summation in (8), using α ≤ t/(2c), we have

(11)
∑

0<c≤
√

t

cnαn−2 = O

⎛
⎝ ∑

0<c≤
√

t

tn−2c2

⎞
⎠ = O(tn−1/2).
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Substituting the results from (9), (10) and (11) back into (8), we have

N2(t) =
2nn!

(2n + 1)!b1b2...bn
tn+ 1

2 − tn

2n+1n!b1b2...bn

−
∑

0<c≤
√

t
k1,...,kn−1

cnψ

(
α − sn−1

bn

)
+ O(tn−

1
2 ).

Since NII(t) = 2N2(g2n+1t/(4π2)) and bj = d2
jg2n+1/(2π), we have proved that

NII(t) =tn+1/2

√
g2n+12n+1n!

(2π)n+1(2n + 1)!d2
1d

2
2...d

2
n

− tn
1

(2π)n2nn!d2
1d

2
2...d

2
n

− R(t) + O(tn−1/2),

where

R(t) =
∑

0<c≤
√

t

cn
∑
k1

∑
k2

· · ·
∑
kn−1

ψ

(
α − sn−1

bn

)
.(12)

On the other hand, we denote the spectral counting function, corresponding to type
I eigenvalues, by NI(t). Since NI(t) represents the spectral counting function of
the 2n-dimensional torus T equipped with the metric h, we have

(13) NI(t) =
πn

n!

√
det(h)

tn

(2π)2n
+ O(tn−1/2) =

1
22nπnn!d2

1d
2
2...d

2
n

tn + O(tn−1/2).

Therefore, if N(t) denotes the spectral counting function of the Heisenberg manifold
(M, g), then N(t) = NI(t) + NII(t). From (12) and (13), we have

N(t) = tn+1/2

√
g2n+12n+1n!

(2π)n+1(2n + 1)!d2
1d

2
2...d

2
n

− R(t) + O(tn−1/2),

where R(t) is defined by (12). Since vol(Hn/Γ) =
√

det(h) · g2n+1, we get the
correct constant in the main term in Weyl’s law for a (2n+1)-dimensional manifold.

3.2. Proof of Theorem 1.1. Suppose that bn−1/bn is a rational number, i.e.
bn−1/bn = pn−1/qn−1 where pn−1 and qn−1 are two positive integers such that
(pn−1, qn−1) = 1. Then, using the fact that ψ(u) has period 1, we get

∑
kn−1

ψ((α − sn−1)/bn) =
∑
kn−1

ψ

(
α − sn−2 − bn−1kn−1

bn

)

=
qn−1−1∑

j=0

ψ

(
α − sn−2 − jbn−1

bn

)
×

([
α − sn−2

qn−1bn−1

]
+ O(1)

)
.

We substitute back into (12). The O(1) term contributes O(tn−3/2) as it gives the
sum in (8) with 2 fewer variables. We get

(14) R(t) =
∑

0<c≤
√

t

k1,...,kn−2

qn−1−1∑
j=0

cn

(
α − sn−2

qn−1bn

)
ψ

(
α − sn−2 − jbn−1

bn−1

)
+ O(tn−

3
2 ).
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Without loss of generality, we continue with estimating the first summation on the
right-hand side of (14) with j = 0:

∑
kn−2

cn (α − sn−2)ψ(
α − sn−2

bn
) =

∑
kn−2

cn(α − sn−3)ψ(
α − sn−2

bn
)(15)

−
∑
kn−2

cnbn−2kn−2ψ(
α − sn−2

bn
).

To evaluate the first term on the right-hand side of (15), we proceed as in (14). That
is, since bn−2/bn is a rational number, we can write it as bn−2/bn = pn−2/qn−2,
where pn−2 and qn−2 are two relatively prime, positive integers. So
(16)

∑
kn−2

ψ

(
α − sn−2

bn

)
=

qn−2−1∑
j=0

ψ

(
α − sn−3 − jbn−2

bn

)
×

([
α − sn−3

qn−2bn−2

]
+ O(1)

)
.

For the second term in (15) summation by parts gives
∑
kn−2

kn−2ψ

(
α − sn−2

bn

)
=

α − sn−3

bn−2

∑
kn−2

ψ

(
α − sn−2

bn

)

−
∫ α−sn−3

bn−2

1

( ∑
0≤kn−2≤x

ψ(
α − sn−2

bn
)
)
dx.(17)

The first sum on the right-hand side of (17) has been evaluated in (16). The second
term is equal to

∫ α−sn−3
bn−2

1

( ∑
0≤kn−2≤x

ψ(
α − sn−3 − bn−2kn−2

bn
)
)
dx

=
∫ α−sn−3

bn−2

1

( qn−2−1∑
j=0

ψ(
α − sn−3 − jbn−2

bn
)
)
×

([ x

qn−2

]
+ O(1)

)
dx

=
( qn−2−1∑

j=1

ψ(
α − sn−3 − jbn−2

bn
)
)
×

( 1
2qn−2

(
α − sn−3

bn−2

)2

+ O(α)
)
.

Taking the results from the last equation and (16), (17) back into (15), we have
proved that

∑
0<c≤

√
t

k1,...,kn−2

cn (α − sn−2) ψ

(
α − sn−2

bn

)

=
∑

0<c≤
√

t

k1,...,kn−3

qn−2−1∑
j=0

cnψ

(
α − sn−3 − jbn−2

bn

)
O((α − sn−3)2).

We use the last result in (14) to get

R(t) = O

⎛
⎝ ∑

0<c≤
√

t

cn
∑
k1

∑
k2

· · ·
∑
kn−3

(α − sn−3)2
(

ψ(
α − sn−3

bn
)
)⎞

⎠ .
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Finally, by induction, after n − 1 steps, and given α = t/(2c) − c/2 − β/2 we get

R(t) =O

⎛
⎝ ∑

0<c≤
√

t

cnαn−1ψ(
α

bn
)

⎞
⎠

=O

⎛
⎝ ∑

0<c≤
√

t

cn(
t

c
− c − β)n−1ψ

(
t

2cbn
− c

2bn
− β

2bn

)⎞
⎠ .

If (k, l) is an exponent pair [GK], by [GK, Lemma 4.3, p. 39], if f(x) satisfies the
properties in the definition of exponent pairs, then

(18)
∑

m∈[a,b]

ψ(f(m)) 
 tk/(k+1)N ((1−s)k+l)/(k+1) + t−1Ns.

We apply (18) to f(x) = (tx−1 − x − β)/(2bn). Using a dyadic decomposition we
get

∑
m∈[2−j−1u,2−ju]

ψ(f(m)) 
 tk/(k+1)(2−j−1u)(−k+l)/(k+1) + t−1(2−j−1u)2,

for u ≤
√

t. If k < l the series 2−j(−k+l)/(k+1) converges and we get the estimate
∑
m≤u

ψ(f(m)) 
 tk/(k+1)u(l−k)/(k+1) + t−1u2 
 t(k+l)/(2k+2).

This implies, using summation by parts, that

(19) R(t) = O(tn−1/2+(k+l)/(2k+2)).

The exponent pair (11/30, 16/30) (see [GK]) gives the statement of Theorem 1.1.
The conjectural best exponent pairs (ε, 1/2 + ε) gives the conjecture 2.

4. Proof of Theorem 1.2

In Theorem 1.2 we assume that at least one of the coefficients dj
2/dn

2, 1 ≤ j ≤
n−1, is irrational. Without loss of generality, we can assume that this happens for
j = n − 1. In fact, obtaining the formula (12) was based on an optional ordering
for the summations over k1, k2, . . . , kn−1 in (6).

According to Vaaler’s theorem [Va] (see also [GK, p.116]), for every positive
integer J , there exist constants {γj ; 1 ≤ |j| ≤ J}, satisfying the property |γj | 

1/|j|, such that for every real number ω,

ψ(ω) −
∑

1≤|j|≤J

γje
2πi(jω) 
 1

J
.(20)

Therefore, by fixing J and taking ω = (α − sn−1)/bn in Vaaler’s theorem, we have

(21)
∑
kn−1

ψ

(
α − sn−1

bn

)



∑
1≤|j|≤J

|γj |
∣∣∣ ∑

kn−1

exp(2πij(α−sn−1)/bn))
∣∣∣+ α − sn−2

J
.
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To estimate the right-hand side of (21), we have∣∣∣∣∣∣
∑
kn−1

e2πi(j
α−sn−1

bn
)

∣∣∣∣∣∣ =

∣∣∣∣∣∣e
2πi(j

α−sn−2
bn

)
∑
kn−1

e−2πi(j
bn−1kn−1

bn
)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1 − e

−2πi(j
bn−1

bn
)((

α−sn−2
bn−1

)+1)

1 − e−2πi(j
bn−1

bn
)

∣∣∣∣∣∣(22)

≤ 1

| sin(πjbn−1
bn

)|
≤ 1

2‖ jbn−1
bn

‖
,

where, for every real number θ, ‖θ‖ is the distance between θ and the nearest integer.
For almost all irrational θ there exists a constant Kθ such that ‖jθ‖ ≥ Kθ

jlog2j
for

every positive integer j. Therefore, applying this approximation for the right-hand
side of (22), we have

(23)
∣∣∣ ∑

kn−1

exp(2πij(α − sn−1)/bn)
∣∣∣ ≤ 1

2‖jbn−1/bn‖
≤ K|j|log2j,

where K is a positive constant, dependent on bn−1/bn.
Substituting (23) in (21), and noticing that |γj | 
 1/|j|, we obtain

(24)
∑
kn−1

ψ

(
α − sn−1

bn

)

 J log2J +

α − sn−2

J
.

Substituting (24) in (12), we have

(25) R(t) 

∑

0<c≤
√

t

cn
∑
k1

∑
k2

· · ·
∑
kn−2

(
J log2J +

α − sn−2

J

)
.

For the last summation on the right-hand side of (25), we have

∑
kn−2

(
J log2J +

α − sn−2

J

)
=

∑
kn−2

(
J log2J +

α − sn−3 − bn−3kn−3

J

)


 (α − sn−3)J log2J + (α − sn−3)2J−1.(26)

Therefore, by induction, we have

(27)
∑
k1

∑
k2

· · ·
∑
kn−2

(
J log2J +

α − sn−2

J

)

 αn−2J log2J + αn−1J−1.

Substituting (27) in (25) and using (5), we see that

R(t) 

∑

0<c≤
√

t

cn(αn−2J log2J + αn−1J−1)



∑

0<c≤
√

t

{
cn(

t

c
)n−2J log2J + cn(

t

c
)n−1 1

J

}
(28)

=tn−2
∑

0<c≤
√

t

(
c2J log2J + tcJ−1

)
.
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We take J = cρ on the right-hand side of (28) and get

R(t) 
tn−2
∑

0<c≤
√

t

c2+ρρ2 log2 c + tn−1
∑

0<c≤
√

t

c1−ρ


ρ2tn+(−1+ρ)/2log2t + tn−ρ/2.(29)

So, to optimize the estimate on the right-hand side of (29), we choose ρ = 1/2 −
2 log log t/ log t and we are done: R(t) 
 tn−1/4 log t.
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