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Abstract. We prove that the error term R(λ) in Weyl’s law is O(λ34/41)
for all three-dimensional Heisenberg manifolds. This result uses the
method of exponent pairs. The improved bound R(λ) = O(λ119/146+ε)

follows from Huxley’s work. We conjecture that R(λ) = Oε(λ
3/4+ε) is a

sharp upper bound for Heisenberg three-manifolds based on estimates
on exponential sums. We investigate the error term numerically.

1. Introduction

Exponential sums have various applications in analytic number theory.
Among them we mention the order of growth of the Riemann zeta func-
tion on its critical line, the Dirichlet divisor problem and the Gauss circle
problem.

In this article we present an application on the remainder term in Weyl’s
law for 3-dimensional Heisenberg manifolds. This work is continuation of the
paper [PT]. We briefly remind the reader that the Gauss circle problem can
be interpreted in this spirit as follows: We consider the torus T 2 = R2/Z2

and the Laplace operator ∆ = ∂2
x+∂2

y acting on functions on T 2, i.e., doubly
periodic functions on R2 with period 1. The standard exponential functions
e2πi(mx+ny), m,n ∈ Z are a basis of eigenfunctions and the eigenvalues are
4π2(m2 + n2). The spectral counting function

N(λ) = # {λj ∈ Spec(∆); λj ≤ λ}
is the function that counts the number of lattice points of Z2 inside a circle
of radius

√
λ/(2π). Consequently the error term of the spectral function is

the error term in the Gauss circle problem.
More generally, we would like to study the error term in the asymptotic

behavior of N(λ) for other manifolds. Let (Mn, g) be a compact Riemannian
manifold of dimension n with Laplace-Beltrami operator ∆ and spectral
counting function

N(λ)
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. Then, a celebrated theorem of Hörmander [HO] asserts that

(1.1) N(λ) = cnvol(M)λn/2 +O(λ(n−1)/2),

for some constant cn depending only on the dimension. Moreover, the esti-
mate in (1.1) is sharp as can be seen by considering the round sphere, Sn.
The question of determining the optimal bound for the error term

R(λ) = N(λ)− cnvol(M)λn/2

in any given example is a difficult problem which depends on the properties
of the associated geodesic flow, and is far from being understood in detail.

The purpose of this article is to study Weyl’s law for 3-dimensional Heisen-
berg manifolds. In [PT] we studied the error term for a specific metric on
a Heisenberg manifold and proved the estimate R(λ) = O(λ5/6 log λ). In
this work we prove the estimate R(λ) = O(λ34/41) for all metrics. The im-
portant point is the reduction of the problem to a lattice-point counting
problem with weights. Then the techniques on exponential sums come to
play a role.

Heisenberg manifolds have interesting features: on the dynamical side
they have integrable geodesic flows [Bu], on the analysis side they are to-
gether with other nilmanifolds among the few examples where the eigen-
values of the Laplace operator can be explicitly computed, see [GW], [Pe],
[DS]. They have played an important role in the isospectral problem, see
the work of Gordon, Wilson, DeTurck, [Go], [GW], [DTG], [DGGW].

We introduce notation and state our results. The 3-dimensional Heisen-
berg group H1 consists of all matrices of the form

γ(x, y, t) =

 1 x t
0 1 y
0 0 1

 , x, y, t ∈ R.

We are interested in the spectrum of Heisenberg manifolds. These are de-
fined as (Γ \ H1, g), where Γ is a discrete subgroup of H1 with compact
quotient and where g is a left H1-invariant metric. The classification theo-
rem in [GW, 2.4] allows us to restrict our attention to subgroups Γr of the
following type

Γr = {γ(x, y, t) : x ∈ rZ, y ∈ Z, t ∈ Z} .

The left invariant metrics onH1 are determined by the induced inner product
on the Lie algebra H1. We can replace the metric g with φ∗g, where φ is
an inner automorphism, in such a way that the direct sum split of the Lie
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algebra H1 = R2 + z is orthogonal, see [GW, 2.6(b)]. Here z is the center of
the Lie algebra and

R2 ≡


 0 x 0

0 0 y
0 0 0

 , x, y ∈ R

 .

With respect to this orthogonal split of H1 the metric g has the form

g =

 h11 h12 0
h12 h22 0
0 0 g3


where g3 > 0 and h11h22 − h2

12 > 0. We set

Lr =


 0 x 0

0 0 y
0 0 0

 , x ∈ rZ, y ∈ Z

 .

The spectrum of the Laplace operator associated with this metric consists
of two parts, see [GW, p. 258]:

(1) Type I eigenvalues: these are eigenvalues of the torus Lr \ R2 with
metric given by the matrix h = (hij), i, j = 1, 2, see [GW, Lemma
3.4].

(2) Type II eigenvalues: Σ2 = {µ(c, k) = 4π2g−1
3 c2+2πd2c(2k+1); c, k ∈

Z, c > 0, k ≥ 0}. Here d is determined through the property that
±id2 are the eigenvalues of h−1J , where J is the standard symplectic
2×2 matrix. These eigenvalues have to be counted with multiplicity
as follows: for every c > 0, the µ(c, k) is counted with multiplicity
2cr and, if it happens that we get the same eigenvalue from different
pairs (c, k), the multiplicities are added.

It is the Type II eigenvalues that contribute the main term in Weyl’s law.
In the result below both Type I and Type II eigenvalues contribute to the
improvement of Weyl’s law.

Theorem 1.1. The Heisenberg manifold M = (Γr \H1, g) has Weyl Law

N(λ) = c3vol(M)λ3/2 +O(λ34/41).

Here c3 = (6π2)−1 and vol(M) = r
√

detg, see [GW, Prop. 2.9]. The
result in Theorem 1.1 is not optimal. In fact our analysis shows the stronger
theorem:

Theorem 1.2. If (k, l) is an exponent pair different from (1/2, 1/2), then

R(λ) = O(λ
l+2k+1
2k+2 ).
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Theorem 1.1 follows using the exponent pair (k, l) = (11/30, 16/30). For
the definition of exponent pairs and their use is estimating exponential sums
we include a discussion and refer the reader to [MO, pp. 56–60] and [GK].
Using the latest progress on estimating exponential sums, due to Huxley
[HU] we can improve the result in theorem 1.1 to

R(λ) � λ119/146+ε

. Using the conjectural bounds for exponential sums, i.e., the conjectural
exponent pair (k, l) = (ε, 1/2+ε) for every ε > 0 we are lead to the following
conjecture:

Conjecture 1.3. The pointwise estimate R(λ) = Oδ(λ3/4+δ) is sharp for
3-dimensional Heisenberg manifolds.

We provide numerical evidence for this conjecture.

2. Proof of the Theorems

Set l any positive number. Set ψ(u) = u− [u]− 1/2. We set

N(t) =
∑

(x,y)∈Z2
+,y(y+l−1x)≤t

2y, NL(t) =
∑

(x,y)∈Z2
+,y(y+2l−1x)≤t

2y.

It is important that we compute two-term asymptotic expansions, since we
must see the cancellation of the λ1 term that comes out of the counting
function for Type I eigenvalues.

(2.1) N(t) =
∑

y≤
√

t

∑
x≤(ty−1−y)l

2y =
∑

y≤
√

t

2y[(ty−1 − y)l]

It follows from the Euler summation formula [FR, Satz 3, p. 187] that

(2.2)
∑
n≤u

na =
ua+1

a+ 1
− ψ(u)ua +O(ua−1).

Using (2.2), we easily get that

N(t) =
∑

y≤
√

t

2y(ty−1 − y)l −
∑

y≤
√

t

y −
∑

y≤
√

t

2yψ((ty−1 − y)l)(2.3)

=
∑

y≤
√

t

(2tl − 2ly2)−
(
t

2
− ψ(

√
t)
√
t+O(1)

)
− E(t)
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where we call the sum on right hand of (2.3) by E(t). We get

N(t) = 2tl(
√
t− ψ(

√
t)− 1/2)− 2l

(
t3/2

3
− ψ(

√
t)t+O(

√
t)

)
−E(t)− t

2
+O(t1/2)(2.4)

=
4lt3/2

3
− (l + 1/2)t− E(t) +O(

√
t).

Clearly the estimate (2.4) implies

(2.5) NL(t) =
2lt3/2

3
− (l/2 + 1/2)t− EL(t) +O(

√
t),

where
EL(t) =

∑
y≤

√
t

2yψ((ty−1 − y)l/2).

We take l = 2π/(g3d2), t = g3λ/(4π2). Equations (2.4) and (2.5) imply for
the spectral counting function NII(λ) for Type II eigenvalues:

NII(λ) = rN(g3λ/(4π2))− rNL(g3λ/(4π2))

=
r
√
g3

6π2d2
λ3/2 − r

4πd2
λ− E(t) + EL(t) +O(

√
λ)(2.6)

We notice that E(t) and EL(t) are weighted sums of the ψ function with
monotone weight. Present methods do not give any saving when we average
over the length of the sum. A summation by parts, see the next subsection,
shows that the way to estimate the weighted sum is to take the maximum
of the weight times the maximum of the sums of psi over the subinterval.
In particular, an application of van der Corput’s method shows that

(2.7) max(|E(t)|, |EL(t)|) � t5/6 log t.

On the other hand the eigenvalues of type I give

NI(λ) = vol(Lr \ R2)
λ

4π
+O(λ1/2).

The volume of the torus is r
√

det(h). Because ±id2 are the eigenvalues of
h−1J , we have d4 = det (h)−1, and the volume of the torus is rd−2. We
see that the λ terms cancel and we get as improvement in the Weyl Law
R(λ) � λ5/6 log λ. Although this is a weaker result than Theorem 1.1, we
include it, as van der Corput’s method is more easily accessible.

Remark 2.1. We also see that r
√
g3d

−2 is the volume of the Heisenberg
manifold.
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2.1. Application of Van der Corput’s method. We show only the
bound E(t) � t5/6 log t. The bound for EL(t) follows immediately from
this.

A summation by parts gives

(2.8) E(t) = 2
√
t

√
t∑

n=1

ψ
(
(tn−1 − n)l

)
−
∫ √

t

1

∑
n≤x

ψ
(
(tn−1 − n)l

)
dx.

We need to show that the sums in (2.8) are � t1/3 log t for x ≤
√
t. The

main point in Van der Corput’s method can be summarized in the following
proposition, see [FR, Satz 1, p. 41]

Proposition 2.2. Let f(u) be a twice-differentiable function on the interval
[a, b] and satisfies either f ′′(u) ≥ λ for all u ∈ [a, b], or, f ′′(u) ≤ −λ for all
u ∈ [a, b], where 0 < λ ≤ 1. Then

(2.9)
∑

a≤l≤b

ψ(f(l)) � |f ′(b)− f ′(a)|λ−2/3 + λ−1/2,

with the implied constants being absolute.

Remark 2.3. The relation of ψ(u) with exponential sums comes through the
Fourier series

ψ(u) = −
∑
k 6=0

exp(2πiku)/(2πik).

This transforms the sum in (2.9) into a sum∑
a≤l≤b

e(f(l)).

With the help of the Euler-Maclaurin formula this is transformed to an
integral ∫ b

a
e((f(x)) dx� λ−1/2,

if |f ′′| ≥ λ > 0 on [a, b], by van der Corput’s Lemma.

We set f(u) = (tu−1−u)l, so that f ′(u) = −tu−2− l and f ′′(u) = 2t/u3 ≥
2t/b3 for a ≤ u ≤ b. Theorem 2.2 gives for 2t/b3 ≤ 1∑

a≤m≤b

ψ
(
(tm−1 −m)l

)
�

(
t

4a2
− t

4b2

)(
2t
b3

)−2/3

+
(

2t
b3

)−1/2

(2.10)

� t1/3(a−2 − b−2)b2 + t−1/2b3/2.
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We choose L to be the largest integer with 2−Lx ≥ t1/3 ≥ x2/3, i.e., L ≤
[log x/(3 log 2)]. In particular L � log x � log t. We have, using a dyadic
decomposition,∑
n≤x

ψ
(
(tn−1 − n)l

)
=

∑
n≤2−Lx

ψ (f(n)) +
L∑

l=1

∑
2−lx≤n≤2−l+1x

ψ (f(n)) +O(L)

= O(2−Lx) +
L∑

l=1

∑
2−lx≤n≤2−l+1x

ψ
(
(tn−1 − n)l

)
+O(L)

� t1/3 +
L∑

l=1

t1/3
(
x−2 − 2−2x−2

)
22x2 + t−1/2(2−l+1x)3/2

� t1/3 log t.

using (2.10) to estimate the inner sum in the second line of (2.11). Also we
used that

λ =
2t
b3

=
2t

(2−l+1x)3
≤ 2t

8(t1/3)3
≤ 1

4
≤ 1.

2.2. The method of exponent pairs. This method is due to Phillips’
[PH], [GK, p. 30–31]. It treats exponential sums where (a, b) ⊂ [N, 2N ],
and where f ′(x) is approximately tx−s for some t > 0 and s > 0. More
precisely, we define F(N,P, s, t, ε) to be the set of functions f such that f is
defined and has P continuous derivatives on [a, b] ⊂ [N, 2N ] and such that
the following estimate holds for 0 ≤ p ≤ P − 1, a ≤ x ≤ b:
(2.11)
|f (p+1)(x)−(−1)ps(s+1) · · · (s+p−1)tx−s−p| < εs(s+1) · · · (s+p−1)tx−s−p.

Definition 2.4. Let k and l be real numbers such that 0 ≤ k ≤ 1/2 ≤
l ≤ 1. Suppose that for every s > 0, there is some P = P (k, l, s) and
some ε = ε(k, ls) < 1/2 such that for every N > 0, every t > 0 and every
f ∈ F(N,P, s, t, ε), the estimate

(2.12)
∑

n∈(a,b]

e(f(n)) �k,l,s (tN−s)kN l + t−1N s

holds. Then we say that (k, l) is an exponent pair.

It is known [GK, p. 21], [MO, p. 46–59] that there exist two processes
called A and B which produce from the exponent pair (k, l) two new expo-
nent pairs

A(k, l) =
(

k

2k + 2
,
k + l + 1
2k + 2

)
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and
B(k, l) = (l − 1/2, k + 1/2).

A repeated application of the two processes produces the exponent pair
BA3B(0, 1) = (11/30, 16/30), from the trivial exponent pair (0, 1). Van
der Corput’s estimate (2.7) corresponds to the exponent pair AB(0, 1) =
(1/6, 2/3). Process A is based on the Weyl-van der Corput’s inequality, while
process B is based on stationary phase and the Poisson summation formula.
The main application of exponent pairs to sums of the ψ(u) function can be
summarized in the proposition, see [GK, Lemma 4.3, p. 39]:

Proposition 2.5. Suppose that (k, l) is an exponent pair. If f ∈ F(N,P, s, t, ε)
and f is defined on [a, b] ⊂ [N, 2N ], then

(2.13)
∑

n∈[a,b]

ψ(f(n)) � tk/(k+1)N ((1−s)k+l)/(k+1) + t−1N s.

We apply this proposition to f(x) = (tx−1 − x)l. We easily check that
f ∈ F(N, 2, 2, tl, ε) for every ε and every t sufficiently large, since f ′(x) =
(tx−2 − 1)l, f ′′(x) = −2tlx−3. Using a dyadic decomposition as in the
application of van der Corput’s method above we get∑

n∈[2−j−1u,2−ju]

ψ(f(n)) � tk/(k+1)(2−j−1u)(−k+l)/(k+1) + t−1(2−j−1u)2,

for u ≤
√
t. If k < l the series 2−j(−k+l)/(k+1) converges and we get the

estimate∑
n≤u

ψ(f(n)) � tk/(k+1)u(l−k)/(k+1) + t−1u2 � t(k+l)/(2k+2).

This completes the proof of Theorem 1.2.

Remark 2.6. The exponent pair we used (k, l) = (11/30, 16/30) is not the
best known. Based on the work of Huxley [HU], which provides the best
estimates known for the lattice counting problem, we can estimate∑

n≤x

ψ(f(n)) = O(λ23/73 logA λ)

for x ≤ λ1/2. This gives R(λ) � λ119/146 logB λ.

Remark 2.7. Conjecture 2 in [MO, p. 59] states that (ε, 1/2 + ε) is an expo-
nent pair for every ε > 0. This gives the conjecture

R(λ) � λ3/4+ε
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for every left-invariant metric on a 3-dimensional Heisenberg manifold. We
remark that 5/6 = 0.833333, 34/41 = 0.8292682, 119/146 = 0.8150684932
and 3/4 = 0.75.

3. Numerical investigation

In this section we include numerical investigations for the error term in
Weyl’s law for the Heisenberg manifold (Γ1 \H1, g1), where

g1 =

 1 0 0
0 1 0
0 0 2π

 .

In [PT] we explained how the spectral function for this metric is related to
counting the number of lattice points under the hyperbola xy = c and below
the line y = x with weight the y coordinate. One considers the standard
lattice Z2 and the lattice L =

{
(x, y) ∈ Z2, x ≡ y mod2

}
. As we explained

above we expect the error to be of order t3/4+ε in both cases. We show
both the absolute error E(t) and EL(t) and the relative error E(t)/t3/4 and
EL(t)/t3/4. For comparison we include the numerics for the error term ∆(x)
in the Dirichlet divisor problem:∑

n≤x

τ(x) = x log x+ (2γ − 1)x+ ∆(x).

Here τ(n) is the number of divisors of n and the sum counts the number of
lattice points in the first quadrant below the hyperbola x1x2 = x. Here the
conjectural bound is ∆(x) = Oε(x1/4+ε). We also include the numerics for
Gauss’ circle problem∣∣{(x, y) ∈ Z2, x2 + y2 ≤ t

}∣∣ = πt+R(t)

where R(t) is also expected to be of order t1/4+ε.
We also show the histograms showing the distribution of the normalized

errors for the standard lattice, the lattice L, the Dirichlet divisor problem
and the Gauss circle problem. Heath-Brown [HB] proved that in the last
two problems the normalized error has a distribution function. We hope to
address this issue for Heisenberg manifolds in future work.

All the numerical investigations were performed on Matlab.
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