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TWO-DIMENSIONAL FLAT TORI

Y. Petridis and J.A. Toth

Abstract
We prove that the average order of the remainder in counting the
number of points of a random lattice inside a disc of radius

√
λ is

O(λ1/4+ε). Our proof is spectral in nature.

1 Introduction

Let (Mn, g) be a compact Riemannian manifold of dimension n with
Laplace–Beltrami operator ∆ and spectral counting function

N(λ) := #
{
λj ∈ Spec(∆) ; λj ≤ λ

}
.

Then, a celebrated theorem of Hörmander [Hö] asserts that

N(λ) = cn vol(M)λn/2 +O(λ(n−1)/2) (1.1)

for a constant cn, depending only on the dimension n. Moreover, the esti-
mate in (1.1) is sharp as can be seen by considering the round sphere, Sn.
The question of determining the optimal bound for the error term

R(λ) := N(λ)− cn vol(M)λn/2

in any given example is a difficult problem which depends on the properties
of the associated geodesic flow, and is far from being understood in detail.
Nevertheless, there are several important results along these lines: One of
the first is a result of Duistermaat–Guillemin [DG] which asserts that in
the case where the geodesic flow is clean and the set of unit-speed geodesics
in S∗M has null Liouville measure, then one can improve the Hörmander
bound in (1.1) to

R(λ) = o
(
λ(n−1)/2

)
.

Subsequently, Ivrii [Iv1,2] gave a different proof of this result and extended
it to manifolds with boundary. There are some additional improvements in
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R(λ) that are known for some specific examples. For instance, in the case
of hyperbolic manifolds, a result of Bérard [Bé] gives

R(λ) = O(λ(n−1)/2/ log λ) .
This is in all likelihood far from optimal. Indeed, it has even been con-
jectured that, at least in the non-arithmetic case R(λ) = O(λε) for all
ε > 0. In fact, even for noncompact arithmetic surfaces with cusps, such as
SL2(Z) \ H, one has

R(λ) = c · λ1/2 log λ+O(λ1/2) ,
see [Hej2, 2.21, p. 511]. For compact arithmetic surfaces arising from quater-
nion algebras Selberg proved that R(λ) = Ω(λ1/4/ log λ); see [Hej1, p. 315].
In the opposite case of completely integrable geodesic flow there are

several cases where improved error terms are known: For (generic) convex
surfaces of revolution, Colin de Verdière [C] has shown that

R(λ) = O(λ1/3) (1.2)

which agrees with a result of Van der Corput and Sierpinski [Si] for the
classical circle problem in 2 dimensions, i.e. for the torus R

2/Z2.
There are also additional more general results of Volovoy [V] under

long-time recurrence estimates for the geodesic flow, but they are difficult
to quantify. The geometrically simplest example of an integrable geodesic
flow on a surface is the 2-dimensional flat torus. In this case, Hardy’s
Careful Conjecture [H1] states that ‘it is not unlikely that

R(λ) = Oε(λ1/4+ε) (1.3)

for all positive ε’. There is much evidence, both numerical and otherwise
to suggest that the bound above is indeed optimal. For instance, a classical
result of Cramér [Cr] says that

lim
T→∞

1
T 3/2

∫ T

0
|R(λ)|2 dλ = c > 0 (1.4)

for a constant c. Hardy also gave the lower bound R(λ) = Ω(λ1/4), see [H2],
and Sarnak [S] generalized and gave a geometric interpretation of [H2]: If
the geodesic flow on a two dimensional manifold has the property that, for
some fixed T , the fixed point set of the flow for time T is two dimensional
in the three dimensional unit cotangent space, then R(λ) = Ω(λ1/4).
Despite the fact that there has been much work devoted to improving

the estimate forR(λ), deterministic results are still far away from (1.3). The
best result that we are aware of isO(λ23/73 log315/146 λ) and is due to Huxley
[Hu1]. The problem for general flat tori in dimensions n ≥ 4 is solved. In



758 Y. PETRIDIS AND J.A. TOTH GAFA

fact the estimates R(λ) = O(λn/2−1) for n ≥ 5, while R(λ) = O(λ log λ)
for n = 4 for the standard integer lattice are classical, see [F, Satz 3, p. 36;
Satz 2, p. 95]. For rational lattices and n ≥ 5 the error bound R(λ) =
O(λn/2−1) is due to Landau [L] and cannot be improved. For lattices in
n ≥ 9 the error is o(λn/2−1) iff the lattice is irrational, see [BG]. This
estimate is now known also for irrational lattices in dimensions n ≥ 5,
see [G]. For n = 3 estimating the sharp error term is not known and the
corresponding bound to (1.2) is R(λ) = O(λ5/6).
The purpose of this note is to establish the Hardy bound (1.3) in a

probabilistic sense, where we average over local metric deformations of 2-
dimensional tori. More precisely, we prove

Theorem 1.1. (i) Fix ε with 0 < ε < 1 and let I := [1 − ε, 1 + ε]
and N(λ; �u) denote the spectral counting function for the corresponding
Laplace–Beltrami operator on the flat two-torus M(�u), �u = (u1, u2) with
metric form

H(p, σ;u1, u2) = u1 σ
2 + u2 p

2.

Then, for any δ > 0,∫
I2

∣∣N(λ; �u)− 1
4π vol(M(�u))λ

∣∣2 d�u = Oδ(λ1/2+δ) . (1.5)

(ii) Consider the general metric Hamiltonian for a flat two-dimensional
torus M(�u), �u = (u1, u2, u3) given by

H(p, σ;u1, u2, u3) := u1σ
2 + u3pσ + u2p

2. (1.6)

Then the following holds:∫
I3

∣∣N(λ; �u)− 1
4π vol(M(�u))λ

∣∣2 d�u = Oδ(λ1/2+δ) . (1.7)

Remark 1.2. We should emphasize that our result in Theorem 1.1 is
local. Consequently, it differs significantly from the following global result
of Randol [R1]. Indeed, if G/Γ := SL(2,R)/SL(2,Z), with dg the Haar
measure, and we define N(λ; g) to be the number of lattice points of g · Z2
inside the disc of radius

√
λ, then Randol shows that∫

G/Γ

∣∣N(λ; g) − (ζ(2))−1πλ∣∣2dg = ζ(2)−1πλ+ON

(
λ| log λ|−N

)
, (1.8)

for any integer N . Thus, when estimating over all lattices of fixed vol-
ume, one gets an asymptotic formula for R(λ) which is consistent with the
Hörmander error in (1.1) and no better. This global result thus differs con-
siderably from our Theorem 1.1. The point here is that, since our result is
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purely local, it does not take into account degenerate tori on the bound-
ary of the moduli space SL(2,R)/SL(2,Z) which appear to make a large
contribution to (1.8).

Remark 1.3. In (1.1) we average locally in the moduli space of flat tori.
Kendall in [K] averages over shifts of the standard lattice and gets the same
type of bound: ∫ 1

0

∫ 1

0
R(λ, α, β)2dα dβ = O(λ1/2) ,

where (α, β) represents a shift of the standard lattice Z
2. For shifts of a k-

dimensional ellipsoid he gets the bound O(λ(k−1)/2). Counting the number
of lattice points inside the circle centered at (α, β) corresponds to Weyl’s
law associated with the differential operator ∆+P (α, β), where P (α, β) is
a first order differential operator with constant coefficients.

Remark 1.4. Results involving spectral averaging on shorter scales than
(1.4) are known. For instance, Iosevich, Sawyer, Seeger [ISS] have recently
proved ∫ T+logT

T
R(µ2)2dµ 
 T .

Huxley [Hu2] proved the estimate∫ T+1

T
R(µ2)2dµ 
 T log T .

The distribution of R(λ2)/
√
λ for the standard torus R

2/Z2 was studied by
Heath-Brown [He] and for shifted convex ovals has been studied by Bleher
in a series of papers starting with [Bl].

Remark 1.5. The spectral averaging on the scale [0, T ] for negatively
curved surfaces has been studied in [R2]. He obtains a result similar to
Hardy’s [H1] for almost all pairs of points (x, y) ∈ M2 ×M2.

Remark 1.6. Our method is spectral in nature and avoids estimates on
exponential sums and the Hardy–Littlewood circle method. It avoids also
the sophisticated techniques developed for the circle problem and (rational
and irrational) tori.

We first take up the case where H(p, σ;u1, u2) = u1 σ
2 + u2 p

2. For
such metrics the proof of Theorem 1.1 (i) is rather computational and so
we split it up into three parts: an analysis of the averaged density of states
(section 2), mean-square density of states (section 3) and a rescaled spectral
argument (section 4).
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2 Averaged Density of States

In this section we give an asymptotic estimate for the averaged density
of states of the eigenvalues, λj , j = 1, 2, . . . , of the Laplacian ∆ on the
torus, T 2. We put �

−1 =
√
λ. Most of our estimates will be given in terms

of � but the reader should have no difficulty in expressing them in terms
of λ. We define the average density of states as follows:

AV(φ) =
∞∑
j=1

∫
I2

φ
(
λj(�u)− λ

)
d�u

= �

∑
m∈Z

∑
n∈Z

∫
I2

∫
R

eis[H(m~,n~;�u)−1]/~φ̌(�s)ds d�u , (2.1)

where φ is even, belongs to the Schwartz space S(R) and its Fourier trans-
form φ̌ ∈ C∞

0 (R) satisfies φ̌(0) = 1. The second equality follows from the
Fourier inversion formula. The density AV(φ) is a function of λ, or, equiv-
alently, � and we are interested in estimating it as � → 0. Integration by
parts in the s variable gives for any δ > 0 and � ≤ �0,

AV(φ) = �

~−1−δ∑
|m|,|n|=0

∫
I2

∫
R

eis[H(m~,n~;�u)−1]/~φ̌(�s)ds d�u+O(�∞) , (2.2)

where O(�∞) means that the error is ON (�N ) for any N > 0. We decom-
pose the last expression in (2.2) into a sum of the two terms:

dρ0(φ) := �

~
−1−δ∑

|m|,|n|=0

∫
I2

∫
R

eis[H(m~,n~;�u)−1]/~ζ(s)φ̌(�s)ds d�u , (2.3)

where ζ(s) is ≡ 1 close to 0 and is in C∞
0 (R), and

dρ+(φ) := �

~−1−δ∑
|m|,|n|=0

∫
I2

∫
R

eis[H(m~,n~;�u)−1]/~
(
1− ζ(s)

)
φ̌(�s)ds d�u . (2.4)

We choose ζ(s) in the way described in the Appendix. Due to the ap-
pearance of the cutoff ζ(s)φ̌(�s) in (2.3), the argument here is somewhat
different from [DG, Prop. 2.1]. For the sake of completeness, we include
this in the Appendix. Using (6.6) (see also [U, Section 1.3]), we get

dρ0(φ) = 1
4π φ̌(0)

∫
I2

vol(M(�u))d�u+O(�∞) . (2.5)

It remains to estimate the long-time term, dρ+(φ). We can assume that
either |m�| ≥ C > 0 or that |n�| ≥ C > 0. Otherwise λj(u)− λ� λ.
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Since φ ∈ S(R), we have φ(x) 
 |x|−N for |x| large and every N > 0,
while the number of such summands in (2.2) is O(λ). So such terms
contribute O(�∞). Assume first that |m�| ≥ C > 0. Then, by integrating
in the u1 variable in (2.4), we get that

�

~−1−δ∑
|m|=C~−1

~−1−δ∑
|n|=0

∫
I2

∫
R

eis[H(m~,n~;�u)−1]/~
(
1− ζ(s)

)
φ̌(�s)ds d�u


 �

~
−1−δ∑

|m|=C~−1

~
−1−δ∑
|n|=0

∫
R

(
1

m2�

)
1
s

(
1− ζ(s)

)
φ̌(�s)ds 
 | log �|�−δ , (2.6)

since the summation over m contributes 
 � and the integration in the
s variable contributes 
 log �. When |n�| ≥ C > 0 we repeat the above
argument, except that we integrate by parts with respect to the u2 variable.
Since δ > 0 is arbitrarily small, a combination of (2.6) with (2.5) gives the
following proposition.

Proposition 2.1. Let φ ∈ S(R) with φ̌ ∈ C∞
0 (R). Then, given the

two-parameter family of metric forms H(p, σ;u1, u2) := u1σ
2+u2p2 on the

torus, we have that for � sufficiently small and any δ > 0,∣∣AV(φ;�)∣∣ = Oδ(�−δ) .

Remark 2.2. The result of Proposition 2.1, i.e. the estimate |AV(φ; �)| =
Oδ(�−δ) also holds for the three-parameter family of metric forms
H(p, σ;u1, u2, u3) := u1σ

2 + u3pσ + u2p
2. The proof is the same.

3 Mean-square Density of States

We define

dρ(φ; �u, �) = �

~−1−δ∑
|m|,|n|=0

∫
R

eis[H(m~,n~;�u)−1]/~φ̌(�s)ds

and

dρ+(φ; �u, �) = �

~−1−δ∑
|m|,|n|=0

∫
R

eis[H(m~,n~;�u)−1]/~(1− ζ(s))φ̌(�s)ds .

The mean square density of states is given by the expression

MS(φ) =
∫
I2

∣∣dρ(φ; �u, �)− 1
4π vol(M(�u))φ̌(0)

∣∣2 d�u
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=
∫
I2

∣∣dρ+(φ; �u, �)∣∣2d�u+O(�∞) . (3.1)

Here, the last estimate in (3.1) is an immediate consequence of (2.5)
and (2.6). By introducing χ(y) a function which is ≥ 1 on [1− ε, 1+ ε], and
has compact support, we are thus reduced to estimating∫

I2

∣∣dρ+(φ; �u, �)∣∣2d�u

 �

2
∑
mi,ni

∫
R4

eiΦ(m1,n1,m2,n2;�u,�s,~)/~a(�s; �)χ(u1)χ(u2)d�s d�u , (3.2)

where, by the integration by parts argument in section 2 it suffices, mod-
ulo O(�∞) errors, to sum over quadruples with max(|mj |, |nj |) ≤ �

−1−δ ;
j = 1, 2. We set �s = (s1, s2). To simplify the writing in (3.2) we have put

Φ(m1, n1,m2, n2; �u,�s,�) = H(m1�, n1�; �u)s1 −H(m2�, n2�; �u)s2 ,

and
a(�s;�) :=

(
1− ζ(s1)

)(
1− ζ(s2)

)
φ̌(�s1)φ̌(�s2)ei(s2−s1)/~ .

To estimate the integral in (3.2), we fix δ > 0 and consider the set

Ω(m1, n1,m2, n2;�) :=
{
�u ∈ R

2;
∣∣H(mj�, nj�; �u)− 1

∣∣ ≤ �
1−δ ; j = 1, 2

}
.

By an integration by parts in the s1, s2 variables in (3.2), it suffices to
assume, modulo O(�∞) errors, that we only sum over quadruples
(m1, n1,m2, n2) with the property that for � ≤ �0,

Ω(m1, n1,m2, n2; �) �= ∅ .
So, we have that

∫
I2 |dρ+(φ; �u, �)|2 d�u is bounded by

C�
2

∑
Ω(m1,n1,m2,n2;~)�=∅

∫
R4

eiΦ(m1,n1,m2,n2;�u,�s,~)/~a(�s; �)χ(u1)χ(u2)d�s d�u+O(�∞).

Furthermore, a suitable integration by parts in u1, u2 shows that attention
can be restricted to pairs (s1, s2) ∈ supp(a) satisfying

∂
∂uj
Φ(m1, n1,m2, n2; �u,�s,�)
 �

1−δ , j = 1, 2 . (3.3)

The errors accrued are O(�∞). Written out explicitly, the inequality in
(3.3) reads

|m1�|2s1 − |m2�|2s2 
 �
1−δ

|n1�|2s1 − |n2�|2s2 
 �
1−δ , (3.4)

Since min(|s1|, |s2|) � 1 on supp a(�s; �), for a given (m1, n1,m2, n2) we
need to be able to solve (3.4) for some s1, s2 with min(|s1|, |s2|) � 1. By
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inverting the matrix equation in (3.4) using Cramer’s rule and the estimate
max(|mj |, |nj |)
 �

−1−δ, we get

|m1�|2|n2�|2 − |m2�|2|n1�|2 
 �
1−3δ . (3.5)

On the other hand, the condition Ω(m1, n1,m2, n2; �) �= ∅ means that for
some u1 = u1(m1, n1,m2, n2;�), u2 = u2(m1, n1,m2, n2; �),

(u1, u2) ·
(|m1�|2, |n1�|2) = 1 +O(�1−δ)

(u1, u2) ·
(|m2�|2, |n2�|2) = 1 +O(�1−δ) , (3.6)

where · is the standard inner product in R
2. Resubstituting (3.6) back into

(3.5) or using Cramer’s rule, we get
1
u2

(|m1�|2 − |m2�|2
)
= O(�1−3δ) , (3.7)

and
1
u1

(|n1�|2 − |n2�|2
)
= O(�1−3δ) . (3.8)

Since δ is arbitrarily small, we will abuse notation somewhat and will write
δ instead of 3δ. Consequently, the two estimates in (3.8) and (3.7) imply
that:

|m1| − |m2| 
 �
−1−δ

|m1|+ |m2| and |n1| − |n2| 
 �
−1−δ

|n1|+ |n2| . (3.9)

Thus, we have shown that

MS(φ)
 �
2

∑
m2,n2

∑
m1∈β(m2,~)

∑
n1∈γ(n2,~)

∫
R2

φ̌(�s1)φ̌(�s2)
(
1− ζ(s1)

)

× (
1− ζ(s2)

)
χ̂
(
�[s1m21 − s2m

2
2]

)
χ̂
(
�[s1n21 − s2n

2
2]

)
d�s , (3.10)

where

β(m2,�) :=
{
m1; |m1| − |m2| 
 �

−1−δ

|m1|+ |m2|
}
, (3.11)

and

γ(n2,�) :=
{
n1; |n1| − |n2| 
 �

−1−δ

|n1|+ |n2|
}
. (3.12)

We make either the change of variables

S = �(m21s1 −m22s2) , T = s1 + s2 ,

or, alternatively,

S = �(n21s1 − n22s2) , T = s1 + s2 .

We notice that, since φ̌ has compact support, �(s1 + s2) 
 1, which gives



764 Y. PETRIDIS AND J.A. TOTH GAFA

T 
 �
−1. Equation (3.10) gives

|MS(φ)| 
 �
2−2−2δ ∑

m2,n2 �=0

1
m2n2

min
(
1

�m22
,
1

�n22

) ∫
|T |
~−1

dT

+ �
2−1−1/2−2δ ∑

m2 �=0,n2=0

1
m2

1
�m22

∫
|T |
~−1

dT

+ �
2−1−1/2−2δ ∑

n2 �=0,m2=0

1
n2

1
�n22

∫
|T |
~−1

dT

+ �
2

~−1/2−δ∑
m1 �=0,m2=0

~−1/2−δ∑
n1 �=0,n2=0

min
(
1

�m21
,
1

�n21

)∫
|T |
~−1

dT . (3.13)

For the estimate on the first line of (3.13) we used the range of m1 and m2
in (3.11) and (3.12). For the second estimate we notice that, when n2 = 0,
(3.12) gives n21 
 �

−1−δ. The third estimate is deduced using (3.12) and
the fourth using (3.11) and (3.12).
Thus, since |m2�|2 + |n2�|2 ≥ C > 0 and |m1�|2 + |n1�|2 ≥ C > 0, it

follows that

min
(
1

�m22
,
1

�n22

)

 � and min

(
1

�m21
,
1

�n21

)

 � ,

and so,

|MS(φ)| 
 �
−2δ

~
−1−δ∑

m2,n2 �=0

1
m2n2

+ �
1/2−2δ

~
−1−δ∑
m2 �=0

1
m2

+ �
1/2−2δ

~−1−δ∑
n2 �=0

1
n2
+ �

2−1/2−δ−1/2−δ


 �
−2δ| log �|2 + �

1/2−2δ | log �|+ �
1−δ. (3.14)

Since δ > 0 in (3.14) is arbitrarily small, we have proved

Proposition 3.1. Consider the two-parameter family of flat metrics on
T 2=R

2/Z2 given by the Hamiltonian functionsH(p,σ;u1,u2) := u1σ
2+u2p2.

Then, for any δ > 0,

MS(φ) :=
∫
I2

∣∣dρ(φ; �u, �)− 1
4π vol(M(�u))φ̌(0)

∣∣2 d�u = Oδ(�−δ) .

We now turn to the proof of our main theorem. For this we will need to
combine the estimates for the averaged and mean-square density of states
with a rescaled, well-known spectral decomposition, see [DG], [V].
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4 The Spectral Decomposition: Proof of Theorem 1.1(i)

Let φ ∈ S(R) with φ(λ) > 0, and φ̌ ∈ C∞
0 (R) with φ̌(0) = 1. We start with

a rescaled spectral argument used by Duistermaat and Guillemin [DG],
but applied to the eigenvalues of ∆ rather than

√
∆. Taking into account

this rescaling we will naturally encounter semiclassical density of states on
scales of order ∼ �

2 where �
−1 =

√
λ. Our starting point is the following

basic spectral decomposition (see [DG], [V]):∫ ∞

−∞

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u) =

∫
λ′≥λ+1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

+
∫
|λ−λ′|<1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

+
∫
λ′<λ−1

∫ ∞

−∞
φ(x− λ′)dx dN(λ′; �u)

−
∫
λ′≤λ−1

∫ ∞

λ
φ(x− λ′)dx dN(λ′; �u) .

(4.1)
In the case at hand, all of the quantities in (4.1) depend on the external
parameters (u1, u2) ∈ I2 and our task is to estimate the (integrated) asymp-
totics of both sides of (4.1). First, we turn to the simplest term, which is the
third term on the right-hand side of (4.1). Indeed, since 1 =

∫ ∞
−∞ φ(s)ds,

it follows that∫
λ′<λ−1

∫ ∞

−∞
φ(x− λ′)dx dN(λ′; �u) = N(λ− 1; �u) .

To estimate the other terms in (4.1), we will need the following result which
hinges on the estimates for the averaged and mean-square density of states
in sections 2 and 3:
Proposition 4.1. Let H(p, σ;u1, u2) = σ2u1 + p2u2. Then, for any
φ ∈ S(R) as above, we have that∫

I2

∣∣∣∣
∫ ∞

−∞

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)− 1

4π
vol(M(�u))λ

∣∣∣∣d�u = Oδ(λ1/4+δ) .

Proof. First, by the Fubini theorem,∫ ∞

−∞

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u) =

∫ λ

−∞

∫ ∞

−∞
φ(x− λ′)dN(λ′; �u)dx .

Since φ ∈ S(R) and 0 ≤ λj ∈ Spec(∆),∫ ∞

−∞
φ(x− λ′)dN(λ′; �u) = O(|x|−∞) , (4.2)
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as x→ −∞. Thus, from (4.2) it follows that
∫ ∞

−∞

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u) =

∫ ∞

−∞

∫ λ

−λ
φ(x− λ′)dx dN(λ′; �u) +O(1) .

(4.3)
Put �

−1 =
√
λ and consider the rescaled operator H := �

2∆ with eigen-
values λj(�) = �

2λj : j = 1, 2, .... Then, making the change of variables
Λ := �

2x, and taking (4.3) into account, it follows that, moduloO(1) errors,
we are reduced to estimating

I(�u, �) = �
−2

∞∑
j=1

∫ 1

−1
φ

(
λj(�; �u)− Λ

�2

)
dΛ

= �
−2

~−1−δ∑
m,n

∫ 1

−1
φ

(
H(m�, n�; �u)− Λ

�2

)
dΛ+O(�∞) . (4.4)

Next, we apply the Fourier inversion formula to the right-hand side in (4.4)
and split the resulting integral into two pieces corresponding to the zero
and non-trivial period spectrum. More precisely, let ζ ∈ C∞

0 (R) be non-
negative, even and equal to 1 close to 0. Its support should be small enough
as explained in the Appendix. Then,

I(�u, �) = I0(�u, �) + I+(�u, �) , (4.5)

where

I0(�u, �) = �
−1Trace

∫ 1

−1

∫ ∞

−∞
eis[H(Q1,Q2;�u)−Λ]/~ζ(s)φ̌(�s)ds dΛ ,

and

I+(�u, �) = �
−1Trace

∫ 1

−1

∫ ∞

−∞
eis[H(Q1,Q2;�u)−Λ]/~(1− ζ(s))φ̌(�s)ds dΛ ,

and Q1 = m�, Q2 = n�. First, we estimate I0(�u, �) on the right-hand side
of (4.5) as explained in the Appendix. We get

I0(�u, �) = 1
4π vol(M(�u))�

−2 +O(1) . (4.6)

To prove Proposition 4.1, we need to estimate∫
I2

∣∣I(�u, �)− I0(�u, �)
∣∣d�u =

∫
I2

∣∣I+(�u, �)∣∣d�u .
To do this, we appeal to Proposition 3.1 on the mean-square density of
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states and apply the Cauchy–Schwartz inequality. First,∫
I2

∣∣I+(�u, �)∣∣2d�u
≤ �

−2 ∑
mi,ni

∫
eiΦ(m1,n1,m2,n2;�u,�s,~)/~a(�s, �u; Λ1,Λ2, �)dΛ1 dΛ2 d�s d�u , (4.7)

and

a(�s, �u; Λ1,Λ2;�)

= ei[−Λ1s1+Λ2s2]/~
(
1− ζ(s1)

)
φ̌(�s1)

(
1− ζ(s2)

)
φ̌(�s2)χ(u1)χ(u2) .

Note that since φ̌ ∈ C∞
0 (R) the summations in (4.7) are restricted to in-

dices with max(|mi|, |ni|) 
 �
−1−δ. Moreover, since min(|s1|, |s2|) ≥ 1 on

supp a, by an iterated integration in the Λ1,Λ2 variables, we get∫ 1

−1

∫ 1

−1
a(�s, �u; Λ1,Λ2;�)dΛ1 dΛ2 =

(
�
2

s1s2

)
· b(�s, �u; �) ,

where

b(�s, �u;�) = (ei(−s1+s2)/~ + ei(s1−s2)/~ − ei(−s1−s2)/~ − ei(s1+s2)/~)

× (
1− ζ(s1)

)(
1− ζ(s2)

)
φ̌(�s1)φ̌(�s2)χ(u1)χ(u2) .

We notice that b(�s, �u;�) = O(1) as � ≤ �0. The last three terms corre-
sponding to the boundary terms with Λ1 = −1 or Λ2 = −1 contribute
O(�∞) to (4.7). This follows by an integration by parts in one of the si
variables, since |H(mi�, ni�; �u) + 1| � �

1−δ. So, the end result is that∫
I2

∣∣I+(�u, �)∣∣2d�u

=
C~−1−δ∑

|mi|,|ni|>0

∫
eiΦ(m1,n1,m2,n2;�u,�s,~)/~a(�s, �u; 1, 1, �)

1
s1s2

d�s d�u+O(�∞) .

(4.8)
Since

s1s2 ≥ 1
2(s1 + s2) when min(s1, s2) ≥ 1 ,

it follows by the argument in Proposition 3.1 that the right-hand side in
(4.8) is



∑
m2,n2

∑
m1∈β(m2,~)

∑
n1∈γ(n2,~)

∫
|s1|,|s2|≥C

φ̌(�s1)φ̌(�s2)
|s1|+ |s2|

× χ̂
(
�[s1m21 − s2m

2
2]

)
χ̂
(
�[s1n21 − s2n

2
2]

)
d�s ,
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which is bounded by

�
−2−2δ ∑

m2,n2

1
m2n2

min
(
1

�m22
,
1

�n22

)∫
C<|T |
~−1

dT

T

 �

−1−2δ| log �|3 .

The sets β(m2,�) and γ(n2,�) are defined in (3.11), (3.12) and the argu-
ment follows as in (3.13) with the only change being the appearance of the
denominator |s1|+ |s2|. Now, by the Cauchy–Schwartz inequality, we have∫

I2

∣∣I+(�u, �)∣∣d�u

(∫

I2

∣∣I+(�u, �)∣∣2d�u
)1/2


 (�−1−3δ)1/2 
 λ1/4+3δ .

(4.9)
This completes the proof of Proposition 4.1. ✷

By reshuffling the terms in the spectral decomposition, it is clear that∣∣N(λ− 1; �u)− I0(�u, �)
∣∣2 
 ∣∣I+(�u, �)∣∣2

+
∣∣∣∣
∫
λ′≥λ+1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

+
∣∣∣∣
∫
|λ−λ′|<1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

+
∣∣∣∣
∫
λ′≤λ−1

∫ ∞

λ
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

.

(4.10)

Integrating both sides of (4.10) over the deformation parameters u1, u2, we
get∫

I2

∣∣N(λ− 1; �u)− I0(�u, �)
∣∣2d�u 


∫
I2

∣∣I+(�u, �)∣∣2d�u
+

∫
I2

∣∣∣∣
∫
λ′≥λ+1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

d�u

+
∫
I2

∣∣∣∣
∫
|λ−λ′|<1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

d�u

+
∫
I2

∣∣∣∣
∫
λ′≤λ−1

∫ ∞

λ
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

d�u

= T0 + T1 + T2 + T3 . (4.11)

From Proposition 4.1 we have that for any δ > 0,

T0 =
∫
I2

∣∣I+(�u, �)∣∣2d�u = Oδ(�−1−δ) .
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Consequently, it remains to estimate the terms T1, T2, T3 on the right-hand
side of the inequality (4.11). We start with T1:

|T1| =
∫
I2

∣∣∣∣
∫
λ′≥λ+1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

d�u

≤ CN

∞∑
m=1

(∫
I2

∣∣∣∣
∫
m≤λ′−λ≤m+1

dN(λ′, �u)
∣∣∣∣
2)
m−Nd�u

≤ CN

∞∑
m=1

(∫
I2

(
N(λ+m+ 1; �u)−N(λ+m; �u)

)2
d�u

)
m−N . (4.12)

One gets the first inequality above by splitting up the range of λ′−λ ∈ [0,∞)
and using the fact φ ∈ S(R). We let λ̃ = λ +m. It follows from Proposi-
tion 3.1 for the mean-square density of states that for any δ > 0,∫

I2

(
N(λ+m+ 1; �u)−N(λ+m; �u)

)2
d�u 
 (m+ λ)δ,

so that the last line in (4.12) is bounded by

CNλ
δ

∞∑
m=1

m−N+δ = Oδ(λδ) .

The end result is that

|T1| =
∫
I2

∣∣∣∣
∫
λ′≥λ+1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

d�u = Oδ(λδ) . (4.13)

The term T3 can be estimated in the same way as T1. So, in particular it
follows that:

|T3| = Oδ(λδ) (4.14)

for any δ > 0. We now turn to the estimating the term T2:

T2 =
∫
I2

∣∣∣∣
∫
|λ−λ′|<1

∫ λ

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

d�u

≤
∫
I2

∣∣∣∣
∫
|λ−λ′|<1

∫ ∞

−∞
φ(x− λ′)dx dN(λ′; �u)

∣∣∣∣
2

d�u

=
∫
I2

∣∣N(λ+ 1; �u)−N(λ− 1; �u)∣∣2d�u ,
since φ(x) ≥ 0 and ∫ ∞

−∞ φ(x)dx = 1. Then∫
I2

∣∣N(λ+ 1; �u)−N(λ− 1; �u)∣∣2d�u = Oδ(�−δ) ,
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where the estimate is a consequence of Proposition 3.1 for the mean-square
density of states. Therefore, we have that

|T2| = Oδ(�−δ) . (4.15)
Combining the estimates (4.9), (4.13), (4.14), (4.15) and (4.6) with the
integrated spectral decomposition in (4.11) gives∫

I2

∣∣N(λ− 1; �u)− 1
4π vol(M(�u))λ

∣∣2 d�u = Oδ(λ1/2+δ) +Oδ(λδ) +O(1)
for any δ > 0. This completes the proof of Theorem 1.1 (i). ✷

5 Generic Flat Tori: Proof of Theorem 1.1 (ii)

Here we take up the case where
H(p, σ;u1, u2, u3) := u1σ

2 + u3pσ + u2p
2 .

Then, just as in the proof of Theorem 1.1 (i), we get from the eigenfunction
equation that for some �u = �u(m1, n1,m2, n2; �),

u1m
2
1 + u3m1n1 + u2n

2
1 = �

−2 +O(�−1−δ) ,

u1m
2
2 + u3m2n2 + u2n

2
2 = �

−2 +O(�−1−δ) . (5.1)
Furthermore, since there are now three parameters, there are three inequal-
ities analogous to the estimates in (3.5) and (3.6). These inequalities come
from solving the system of three equations that we get by computing the
Fourier transforms in the u1, u2, u3 variables in the expression for MS(φ; �).
These are

m21n
2
2 −m22n

2
1 
 �

−3−δ ,

m1m2(m2n1 −m1n2)
 �
−3−δ ,

n1n2(m2n1 −m1n2)
 �
−3−δ. (5.2)

Multiplying the first equation in (5.1) by m22 , the second by m
2
1 and sub-

tracting gives
�
−2(m22 −m21) = u3m1m2(m2n1 −m1n2)

+ u2(n21m
2
2 − n22m

2
1) +O(�−3−δ)

= O(�−3−δ) , (5.3)
where the last inequality in (5.3) follows from the first two estimates in (5.2).
Similarly, multiplying the first equation in (5.1) by n22, the second by

n21 and subtracting gives
�
−2(n21 − n22) = u3n1n2(m2n1 −m1n2)

+ u1(n21m
2
2 − n22m

2
1) +O(�−3−δ)
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= O(�−3−δ) , (5.4)

which follows from the first and last estimates in (5.2). Combining the
inequalities in (5.3) and (5.4) gives

|m1| − |m2| 
 �
−1−δ

|m1|+ |m2| and |n1| − |n2| 
 �
−1−δ

|n1|+ |n2| .

Restricting to quadruples satisfying the inequalities (3.9), the proof of
Theorem 1.1 (ii) then proceeds exactly as before.

6 Appendix: Proofs of (2.5) and (4.5).

To prove (2.5) we set
χ̌(s,�) = ζ(s) · φ̌(�s) . (6.1)

From (2.3) it is clear that, up to O(�∞) errors, we have

dρ0(φ) = � · Trace
∫
R

eis[−~
2∆−1]/~χ̌(s,�)ds .

We consider the operator P = (−�
2∆− 1)/�. The one-parameter group of

operators U(s) = eisP satisfies the equation
∂
∂sU(s) = (−i�∆ − i�−1)U(s)

and its Schwartz kernel Ũ(s, x, y;�) is given by

Ũ(s, x, y;�) =
1

(2π�)2

∫
R2

ei[(x−y)·ξ+s|ξ|2−s]/~ dξ .

This calculation holds for R
2. Since the torus Γ \ R

2 is covered by R
2, we

have
U(s, x, y;�) =

∑
γ∈Γ

Ũ(s, x+ γ, y; �) .

The trace formula∑
j

χ(λj) =
∫
Γ\R2

∫
R

U(s, x, x; �)χ̌(s,�) ds d vol(x)

gives
dρ0(φ) = c0�

−1∑
γ∈Γ

∫
R2

∫
R

eiγ·ξ/~eis(|ξ|
2−1)/~χ̌(s,�)ds dξ (6.2)

with c0 = vol(Γ \ R
2)/(2π)2. We choose the support of χ̌(s; �), or, equiva-

lently ζ(s) to be sufficiently small, as explained in (6.3) below. The main
contribution in (6.2) comes from the range |ξ|2 ∼ 1, because on the com-
plement we can integrate by parts in s as many times as needed and get
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O(�∞) error. We look first at the summands with γ �= 0. We integrate by
parts in the (ξ1, ξ2) variables. Since |ξj | ≤ 2, say, and γ �= 0, we can find a
constant c > 0, independent of �u, such that max(|γj |) ≥ c. We take

supp(χ̌) ⊂ (−c/5, c/5) . (6.3)

Then ∣∣∣ ∂
∂ξj

(
γ · ξ + |ξ|2s)∣∣∣ = |γj + 2ξjs| ≥ c/5 . (6.4)

With the choice (6.3) for the support of χ̌ we can ignore the contribution
of γ �= 0, up to O(�∞) errors. We get

dρ0(φ) = c0�
−1

∫
R

∫
R2

eis(|ξ|
2−1)/~χ̌(s; �) ds dξ +O(�∞) . (6.5)

We set φ~(τ) = �
−1φ(τ/�) and from (6.1) it follows that χ = ζ̂ ∗ φ~. We

change to polar coordinates in (6.5) and substitute r2 − 1 = �x to get

dρ0(φ) = 2πc0�−2
∫ ∞

0

∫
R

ζ̂
(
(r2 − 1)/� − y

)
φ(y/�)r dy dr +O(�∞)

= πc0�
−1

∫ ∞

−1/~

∫
R

ζ̂(x− y)φ(y/�)dy dx+O(�∞) .

By Fubini, we do the x-integration first using∫ ∞

−1/~
ζ̂(x− y)dx =

∫
R

ζ̂(x− y)dx+O(�∞) = ζ(0) +O(�∞) .

Since ζ(0) = 1, we get finally

dρ0(φ) =
vol(Γ \ R

2)
4π

∫
R

φ(v)dv +O(�∞) . (6.6)

Proof of (4.5). By the trace formula for the operator P = (−�
2∆− Λ)/�

we get

I0(�u, �) =
vol(M(�u))
4π2

�
−3∑

γ∈Γ

∫ 1

−1

∫
R2

∫
R

eiγ·ξeis(|ξ|
2−Λ)/~χ̌(s; �)ds dξ dΛ .

The main contribution to the integrand in Λ comes from the range |ξ|2 ∼ Λ,
and, since the range of Λ is [−1, 1], the choice of the support of ζ(s) can be
made independently of Λ, see (6.4). The result is that

I0(�u, �) =
vol(M(�u))
4π2

�
−3

∫ 1

−1

∫
R2

∫
R

eis(|ξ|
2−Λ)/~χ̌(s; �)ds dξ dΛ +O(�∞) .

We change to polar coordinates and substitute r2 − Λ = �x to get

I0(�u, �) =
vol(M(�u))

4π
�
−3

∫ 1

−1

∫ ∞

−Λ/~

∫
R

ζ̂(x− y)φ(y/�)dy dx dΛ +O(�∞)
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=
vol(M(�u))

4π
�
−3

∫ 1

−1

(∫ ∞

−∞
−

∫ −Λ/~

−∞

)∫
R

ζ̂(x−y)φ(y/�)dy dx dΛ

=
vol(M(�u))

4π

(
2
�2
φ̌(0)− 1

�3

∫ 1

−1

∫ −Λ/~

−∞

∫
R

ζ̂(x− y)φ(y/�)dy dx dΛ
)
.

We analyze the last integral J(�) in the equation above.

J(�) = �
−3

∫ 1

−1

∫
R

( ∫ −Λ/~−y

−Λ/~
−

∫ −Λ/~

−∞

)
ζ̂(v)φ(y/�)dv dy dΛ

= �
−2

∫ 1/~

−1/~

∫
R

∫ −τ−y

−τ
ζ̂(v)φ(y/�)dv dy dτ

+ φ̌(0)�−1
∫ 1/~

−1/~

∫ −τ

−∞
ζ̂(v)dv dτ

= ON

(
�
−2

∫ 1/~

−1/~

∫
R

(1 + |τ |)−N |y|φ(y/�)dy dτ
)

+ φ̌(0)�−1
(∫ −1/~

−∞

∫ 1/~

−1/~
ζ̂(v) dτ dv +

∫ 1/~

−1/~

∫ −v

−1/~
ζ̂(v)dτ dv

)

= O
(

�
−2

∫
R

|y|φ(y/�)dy
)

+ φ̌(0)�−1
(∫ −1/~

−∞
2�−1ζ̂(v)dv +

∫ 1/~

−1/~
(−v + �

−1)ζ̂(v)dv
)

= O(1) + φ̌(0)�−1
(
O(�∞)−

∫ 1/~

−1/~
vζ̂(v)dv + �

−1
∫ 1/~

−1/~
ζ̂(v)dv

)

= O(1) + φ̌(0)�−1
(
O(�∞) + �

−1 − �
−1

∫
R\[−1/~,1/~]

ζ̂(v)dv
)

= O(1) + φ̌(0)�−2 ,

because ζ̂(v) is rapidly decaying, is an even function and
∫
ζ̂(v)dv = 1.
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point theory] Lehrbücher und Monographien aus dem Gebiete der Exak-
ten Wissenschaften (LMW), Mathematische Reihe [Textbooks and Mono-
graphs in the Exact Sciences, Mathematical Series] 73, Birkhäuser Verlag,
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