
Math 7502

Homework 7

Due: March 6, 2008

1. ∗ Solve the games with payoff matrices

(a)

(
1 4
7 2

)
, (b)

(
3 6
2 4

)
.

(a) The matrix

(
1 4
7 2

)
has no saddle point as

row min
1 4 1
7 2 2
1 4 ← max

and minimax = 1 6= maximin = 2. We look for mixed (randomized) strategies.
Assume that Player I plays row 1 with probability p and row 2 with probability 1−p,
where 0 ≤ p ≤ 1. If Player II plays column 1, Player I expects a payoff

1 · p + 7(1− p) = 7− 6p.

If Player II plays column 2, Player I expects a payoff

4p + 2(1− p) = 2 + 2p.

Player I wants to guarantee wins of at least min(7−6p, 2+2p). And he wants to make
sure this is as large as possible. So his strategy is to maximize (over p ∈ [0, 1]) the
min(7−6p, 2+2p). The figure shows the minimum and we see that this is maximized
at the intersection of the two lines v = 7− 6p and v = 2 + 2p (v represents the value
of the game). We solve

7− 6p = 2 + 2p =⇒ p =
5

8
.

Then the value of the game is 2+2 ·5/8 = 13/4. Player I plays row 1 with probability
5/8 and row 2 with probability 1 − 5/8 = 3/8. If Player II plays column 1 with
probability q and column 2 with probability 1− q, the his expected payoff, assuming
Player I plays row 1, is

1 · q + 4(1− q) = 4− 3q.

The slack variable corresponding to this constraint has to be 0, as p 6= 0. So 4−3q =
13/4 =⇒ q = 1/4. Player II will play column 1 with probability 1/4 and column 2
with probability 3/4.
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Figure 1: Player I’s viewpoint

Figure 2: Player II’s viewpoint
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Second method: If Player I plays row 1, the expected payoff for Player II is

1 · q + 4(1− q) = 4− 3q.

If Player I plays row 2, the expected payoff for Player II is

7q + 2(1− q) = 5q + 2.

Player II can make sure that Player I wins at most max(4 − 3q, 5q + 2). And he
wants to make sure this is as small as possible. So his strategy is to minimize (over
q ∈ [0, 1]) the max(4 − 3q, 5q + 2). The figure shows the maximum and we see that
this is minimized at the intersection of the two lines v = 4 − 3q and v = 5q + 2 (v
represents the value of the game). We solve

4− 3q = 5q + 2 =⇒ q =
1

4
.

(b) The matrix

(
3 6
2 4

)
has a saddle point a11 = 3. So the players will settle for

strategy (row) 1 for Player I and strategy (column) 1 for Player II. They will play
pure strategies.

Second method: Assume that Player I plays row 1 with probability p and row 2 with
probability 1 − p, where 0 ≤ p ≤ 1. If Player II plays column 1, Player I expects a
payoff

3p + 2(1− p) = p + 2.

If Player II plays column 2, Player I expects a payoff

6p + 4(1− p) = 2p + 4.

Player I wants to guarantee wins of at least min(p+2, 2p+4). And he wants to make
sure this is as large as possible. So his strategy is to maximize (over p ∈ [0, 1]) the
min(p + 2, 2p + 4). For all p ∈ [0, 1] we have p + 2 < 2p + 4. So he wants to maximize
p + 2. This is achieved for p = 1. So he will play row 1 all the time. His expected
payoff is p + 2 = 3 = a11.

Assume that Player II plays column 1 with probability q and column 2 with proba-
bility 1− q, where 0 ≤ q ≤ 1. If Player I plays row 1, Player II expects a payoff

3q + 6(1− q) = −3q + 6.

If Player I plays row 2, Player II expects a payoff

2q + 4(1− q) = 4− 2q.

Player II can make sure that Player I does not win more than max(−3q + 6, 4− 2q).
And he wants to make sure this is as small as possible. So his strategy is to minimize
(over q ∈ [0, 1]) the max(−3q + 6, 4− 2q). For all q ∈ [0, 1] we have 6− 3q > 4− 2q.
So he wants to minimize 6− 3q. This is achieved for q = 1. So he will play column 1
all the time. His expected payoff (loss) is 6− 3 · 1 = 3 = a11.
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2. What happens if you solve a linear program to find the equilibrium for Paper- Scissors-
Rock using the payoff matrix

A =

 0 1 −1
−1 0 1

1 −1 0


without adding a number to make all entries positive.

If we set up the program

maximize
subject to

y1 + y2 + y3

Ay ≤ (1, 1, 1)t

y ≥ 0,
(1)

we get the simplex tableau

0 1 -1 1 0 0 1
-1 0 1 0 1 0 1
1 -1 0 0 0 1 1
1 1 1 0 0 0 0

We pivot on a31 = 1 to get

0 1 -1 1 0 0 1
0 -1 1 0 1 1 2
1 -1 0 0 0 1 1
0 2 1 0 0 -1 -1

We now pivot on a12 = 1 as the largest element in the last row is 2. This gives

0 1 -1 1 0 0 1
0 0 0 1 1 1 3
1 0 -1 1 0 1 2
0 0 3 -2 0 -1 -3

Now we have a positive entry (a43 = 3) on the last row but the entries above it (in
the same column) are negative or zero. This means that the program is unbounded.

3. ∗ Let A be the payoff matrix for a two person zero-sum game. Show that, if A = −At,
then the value of the game is 0.

Set
v = min

q
max

p
ptAq
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the value of the game. Here p, q ∈ Rn are probability vectors, i.e. p, q ≥ 0, and∑
j pj =

∑
j qj = 1. The dimensions of of the vectors are the same, as the matrix A

is antisymmetric, i.e. a square matrix.

Then

v = minq maxp(ptAq)t as it is a 1× 1 matrix-number

= minq maxp qtAtp as (BC)t = CtBt

= minq maxp(−qtAp) as At = −A

= minq(−minp qtAp) as max(−S) = −min S for any set S

= −maxq minp qtAp as min(−S) = −max S for any set S

= −maxp minq ptAq we relabel p into q and vice versa

= −v by the von Neumann minimax theorem

The result is v = −v i.e. v = 0.

4. ∗ Solve using the simplex algorithm the undercut game with payoff matrix

A =


0 −1 2 2
1 0 −1 2
−2 1 0 −1
−2 −2 1 0

 .

Let V be the value of the game and pi, qi i = 1, 2, 3, 4 the probabilities of the strategies
of the two players. We first add 3 to all the entries of A, so that we get a payoff
matrix with positive entries. This gives

B =


3 2 5 5
4 3 2 5
1 4 3 2
1 1 4 3

 .

Let v > 0 be the value of the game with payoff B. We transform it into a standard
linear programming by setting

yi =
qi

v
, i = 1, 2, 3, 4.

The original program was: minimize v subject to

Bq ≤ v ·


1
1
1
1


∑4

j=1 qj = 1, q ≥ 0
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Since q1 + q2 + q3 + q4 = 1, we have that y1 + y2 + y3 + y4 = 1/v, so that we try to

maximize
4∑

j=1

yj subject to

By ≤


1
1
1
1


y ≥ 0

We add slack variables z1, z2, z3, z4 to get the system

maximize
subject to

∑4
j=1 yj

By + z =


1
1
1
1


y ≥ 0, z ≥ 0.

This gives the simplex tableau

3 2 5 5 1 0 0 0 1
4 3 2 5 0 1 0 0 1
1 4 3 2 0 0 1 0 1
1 1 4 3 0 0 0 1 1
1 1 1 1 0 0 0 0 0

The basic feasible solution (0, 0, 0, 0, 1, 1, 1, 1) is not optimal. We pivot on a21 = 4.
This gives

3 2 5 5 1 0 0 0 1
1 3/4 1/2 5/4 0 1/4 0 0 1/4
1 4 3 2 0 0 1 0 1
1 1 4 3 0 0 0 1 1
1 1 1 1 0 0 0 0 0

0 -1/4 7/2 5/4 1 -3/4 0 0 1/4
1 3/4 1/2 5/4 0 1/4 0 0 1/4
0 13/4 5/2 3/4 0 -1/4 1 0 3/4
0 1/4 7/2 7/4 0 -1/4 0 1 3/4
0 1/4 1/2 -1/4 0 -1/4 0 0 -1/4

The basic feasible solution (1/4, 0, 0, 0, 1/4, 0, 3/4, 3/4) is not optimal. we decide to
include y3 in the basic variables and pivot on a13 = 7/2. We get
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0 -1/14 1 5/14 2/7 -3/14 0 0 1/14
1 3/4 1/2 5/4 0 1/4 0 0 1/4
0 13/4 5/2 3/4 0 -1/4 1 0 3/4
0 1/4 7/2 7/4 0 -1/4 0 1 3/4
0 1/4 1/2 -1/4 0 -1/4 0 0 -1/4

0 -1/14 1 5/14 2/7 -3/14 0 0 1/14
1 11/14 0 15/14 -1/7 5/14 0 0 3/14
0 24/7 0 -1/7 -5/7 2/7 1 0 4/7
0 1/2 0 1/2 -1 1/2 0 1 1/2
0 2/7 0 -3/7 -1/7 -1/7 0 0 -2/7

The basic feasible solution (3/14, 0, 1/14, 0, 0, 0, 4/7, 1/2) is not optimal. We pivot on
a32 = 24/7. We get

0 -1/14 1 5/14 2/7 -3/14 0 0 1/14
1 11/14 0 15/14 -1/7 5/14 0 0 3/14
0 1 0 -1/24 -5/24 1/12 7/24 0 1/6
0 1/2 0 1/2 -1 1/2 0 1 1/2
0 2/7 0 -3/7 -1/7 -1/7 0 0 -2/7

0 0 1 17/48 13/48 -5/24 1/48 0 1/12
1 0 0 53/48 1/48 7/24 -11/48 0 1/12
0 1 0 -1/24 -5/24 1/12 7/24 0 1/6
0 0 0 25/48 -43/48 11/24 -7/48 1 5/12
0 0 0 -5/12 -1/12 -1/6 -1/12 0 -1/3

The basic feasible solution is (1/12, 1/6, 1/12, 0, 0, 0, 0, 5/12) and is optimal, as all the

entries on the last row are ≤ 0. The maximum of
4∑

j=1

yj = 1/3 =
1

v
. So v = 3. The

probabilities qj are

(q1, q2, q3, q4) = v · y = 3(1/12, 1/6, 1/12, 0) = (1/4, 1/2, 1/4, 0).

To find the actual value of the game we take off the 3 added to the entries of the matrix
A to get V = v−3 = 0. This is naturally expected, since A = −At. The probabilities
for player I are (p1, p2, p3, p4) = (1/4, 1/2, 1/4, 0) as the game is symmetric.
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