Math 7502

Homework 7

Due: March 6, 2008

1. * Solve the games with payoff matrices

(1) w (1)

row min
: 1 4 . 114 1
(a) The matrix ( 7 9 ) has no saddle point as =13 5

14| < max
and minimax = 1 # maximin = 2. We look for mixed (randomized) strategies.
Assume that Player I plays row 1 with probability p and row 2 with probability 1 —p,
where 0 < p < 1. If Player II plays column 1, Player I expects a payoff

1L-p+7(1—p)=7-—6p.
If Player II plays column 2, Player I expects a payoff
dp+2(1—p) =2+ 2p.

Player I wants to guarantee wins of at least min(7—6p, 2+ 2p). And he wants to make
sure this is as large as possible. So his strategy is to maximize (over p € [0,1]) the
min(7—6p, 2+ 2p). The figure shows the minimum and we see that this is maximized
at the intersection of the two lines v = 7 — 6p and v = 2 + 2p (v represents the value
of the game). We solve

5
7—6p:2+2p:>p:§.

Then the value of the game is 2+2-5/8 = 13/4. Player I plays row 1 with probability
5/8 and row 2 with probability 1 — 5/8 = 3/8. If Player II plays column 1 with
probability ¢ and column 2 with probability 1 — ¢, the his expected payoff, assuming
Player I plays row 1, is

1-g+4(1—q)=4-3q.

The slack variable corresponding to this constraint has to be 0, as p # 0. So 4 —3q =
13/4 = ¢ = 1/4. Player II will play column 1 with probability 1/4 and column 2
with probability 3/4.
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Figure 1: Player I's viewpoint
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Figure 2: Player II's viewpoint



Second method: If Player I plays row 1, the expected payoff for Player II is
1-g+4(1—q)=4-3q.

If Player I plays row 2, the expected payoff for Player II is
7q+2(1—q) =5q+2.

Player II can make sure that Player I wins at most max(4 — 3¢,5¢ + 2). And he
wants to make sure this is as small as possible. So his strategy is to minimize (over
q € [0,1]) the max(4 — 3¢q,5¢ + 2). The figure shows the maximum and we see that
this is minimized at the intersection of the two lines v = 4 — 3¢ and v = 5g + 2 (v
represents the value of the game). We solve

1
4—3q:5q+2:>q:1.

(b) The matrix has a saddle point a;; = 3. So the players will settle for

3 6
2 4
strategy (row) 1 for Player I and strategy (column) 1 for Player II. They will play
pure strategies.

Second method: Assume that Player I plays row 1 with probability p and row 2 with
probability 1 — p, where 0 < p < 1. If Player II plays column 1, Player I expects a
payoff

3p+2(1—p)=p+2.

If Player II plays column 2, Player I expects a payoff
6p +4(1 —p) =2p+ 4.

Player I wants to guarantee wins of at least min(p+2,2p+4). And he wants to make
sure this is as large as possible. So his strategy is to maximize (over p € [0, 1]) the
min(p+2,2p+4). For all p € [0, 1] we have p+ 2 < 2p+ 4. So he wants to maximize
p + 2. This is achieved for p = 1. So he will play row 1 all the time. His expected
payoff is p+ 2 =3 = ay;.

Assume that Player II plays column 1 with probability ¢ and column 2 with proba-
bility 1 — ¢, where 0 < g < 1. If Player I plays row 1, Player II expects a payoff

3¢ +6(1—q)=—3q+6.
If Player I plays row 2, Player II expects a payoff
2q+4(1—q) =4 —2q.

Player II can make sure that Player I does not win more than max(—3¢q + 6,4 — 2q).
And he wants to make sure this is as small as possible. So his strategy is to minimize
(over ¢q € [0, 1]) the max(—3q + 6,4 — 2q). For all ¢ € [0, 1] we have 6 — 3¢ > 4 — 2q.
So he wants to minimize 6 — 3q. This is achieved for ¢ = 1. So he will play column 1
all the time. His expected payoff (loss) is 6 —3 -1 =3 = ay;.
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2. What happens if you solve a linear program to find the equilibrium for Paper- Scissors-
Rock using the payoff matrix

0 1 -1
A= -1 0 1
1 -1 0

without adding a number to make all entries positive.

If we set up the program

maximize Yy + y2 + Y3

subject to Ay < (1,1,1)* (1)
y =0,
we get the simplex tableau
0 1 -1 1 0 0f1
-1 0 1 0 1 0]1
1 -1 0 0 0 1]1
11 1 0 0 010
We pivot on ag; =1 to get
0O 1 -1 1 0 01
0O -1 1.0 1 1] 2
1 -1 0 0 0 1|1
0 2 1 0 0 -1]-1

We now pivot on a;o = 1 as the largest element in the last row is 2. This gives

01 -1 1 0 01
00 0 1 1 1|3
10 -1 1 0 1] 2
00 3 -2 0 -1{-3

Now we have a positive entry (as3 = 3) on the last row but the entries above it (in
the same column) are negative or zero. This means that the program is unbounded.

3. x Let A be the payoff matrix for a two person zero-sum game. Show that, if A = — A,
then the value of the game is 0.

Set

v = min max p' Aq
a P



the value of the game. Here p,q € R" are probability vectors, i.e. p,q > 0, and
>.;iPi =>_;¢; = 1. The dimensions of of the vectors are the same, as the matrix A
is antisymmetric, i.e. a square matrix.

Then
v = min, max,(p'Aq)" asitisalx 1 matrix-number

= min,max,¢'A'p  as (BC)' =C'B!

= min, max,(—¢'Ap) as A'=-A

= min,(—min, ¢Ap) as max(—S) = —min S for any set S

= —max,min,¢"Ap as min(—S) = —max S for any set S

= —max,min,p'Ag we relabel p into ¢ and vice versa

= —v by the von Neumann minimax theorem
The result is v = —vie v =0.

. % Solve using the simplex algorithm the undercut game with payoff matrix

o -1 2 2

1 0 -1 2

A= -2 1 0 -1
-2 -2 1 0

Let V' be the value of the game and p;, ¢; i = 1, 2, 3, 4 the probabilities of the strategies
of the two players. We first add 3 to all the entries of A, so that we get a payoff
matrix with positive entries. This gives

— e W
— R W N
= W N Ot
W DN Ot Ot

Let v > 0 be the value of the game with payoff B. We transform it into a standard
linear programming by setting

yi=2  i=1,234
v
The original program was:  minimize v subject to
1
1
<
Bqg<w 1
1



Since ¢; + ¢2 + g3 + g2 = 1, we have that y; + y» + y3 + y4 = 1/v, so that we try to
4
maximize Z y; subject to

Jj=1

By <

—_ = = =

y=>0

We add slack variables z1, 25, 23, 24 to get the system

maximize > y;

subject to 1

1

By +z= 1

1

y>0,22>0.

This gives the simplex tableau

325 5 100 0]1
4 3 2 5 0 1 0 0]1
14 3 2 0 0 1 01
114 3 00 0 1|1
11110 0 0 0]0

The basic feasible solution (0,0,0,0,1,1,1,1) is not optimal. We pivot on as; = 4.
This gives

32 5 51 00 0] 1
1 3/4 1/2 5/4 0 1/4 0 0|1/4
1 4 3 20 010 1
1 1 4 30 00 1| 1
1 1 1 10 000 0
0 -1/4 7/2 5/4 1 -=3/4 0 0] 1/4
1 3/4 1/2 5/4 0 1/4 0 0] 1/4
0 13/4 5/2 3/4 0 -1/4 1 0| 3/4
0 1/4 7/2 7/4 0 -1/4 0 1| 3/4
0 1/4 1/2 -1/4 0 -1/4 0 0|-1/4

The basic feasible solution (1/4,0,0,0,1/4,0,3/4,3/4) is not optimal. we decide to
include y3 in the basic variables and pivot on a3 = 7/2. We get
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0 -1/14 1 5/14 2/7 -3/14 0 0] 1/14
1 3/4 1/2 5/4 0 1/4 0 0| 1/4
0 13/4 5/2 3/4 0 -1/4 1 0| 3/4
0 1/4 7/2 7/4 0 -1/4 0 1| 3/4
0 1/4 1/2 -1/4 0 -1/4 0 0] -1/4
0 -1/14 1 5/14 2/7 -3/14 0 0]1/14
1 11/14 0 15/14 -1/7 5/14 0 0 |3/14
0 24/7 0 -1/7 -5)7 2/T 1 0| 4/7
o 1/2 0 1/2 -1 1/2 0 1] 1/2
0 2/7 0 -3/7 -1/7 -1/T 0 0] 2/7

The basic feasible solution (3/14,0,1/14,0,0,0,4/7,1/2) is not optimal. We pivot on
ase = 24/7. We get

0 -1/14 1 5/14 2/7 -3/14 0 0]1/14
1 11/14 0 15/14 -1/7 5/14 0 0|3/14
0 1 0 -1/24 -5/24 1/12 7/24 0| 1/6
o 1/2 0 1/2 -1 1/2 0 1| 1/2
0 2/7 0 -3/7 -1/7 -1/T 0 0] -2/7
0 0 1 17/48 13/48 -5/24 1/48 0] 1/12
1 0 0 53/48 1/48 7/24 -11/48 0| 1/12
0 1 0 -1/24 -5/24 1/12 7/24 0| 1/6
0 0 0 25/48 -43/48 11/24 -7/48 1|5/12
0 0 0 -5/12 -1/12 -1/6 -1/12 0] -1/3

The basic feasible solution is (1/12,1/6,1/12,0,0,0,0,5/12) and is optimal, as all the
4

1
entries on the last row are < 0. The maximum of E Yj = 1/3=—. Sov =3. The
v
=1
probabilities ¢; are

(Q17 q2, 43, Q4) =vV-y= 3(1/127 1/67 1/127 O) = (1/47 1/27 1/47 O)

To find the actual value of the game we take off the 3 added to the entries of the matrix
A to get V =wv—3 = 0. This is naturally expected, since A = —A*. The probabilities
for player I are (p1,p2, ps, pa) = (1/4,1/2,1/4,0) as the game is symmetric.



