
Math 7502

Homework 4

Due: February 7, 2008

1. ∗ Use the two phase simplex algorithm to solve the linear program

maximize
subject to

x1 + x2 + x3

−x1 − x2 + x3 ≤ −2
x1 + 2x2 + x3 ≤ 5

3x1 + x2 + x3 ≤ 8
x1 , x2 , x3 ≥ 0.

We introduce slack variables x4, x5, x6 to write the program in canonical form:

maximize
subject to

x1 + x2 + x3

−x1 − x2 + x3 +x4 = −2
x1 + 2x2 + x3 +x5 = 5

3x1 + x2 + x3 +x6 = 8
x1 , x2 , x3 x4, x5, x6 ≥ 0.

Although we identify the identity matrix in the last three columns of the system, we
do not get automatically a basic feasible solution, as we have a negative coefficient
−2 in the first equation. We rewrite the first equation as

x1 + x2 − x3 − x4 = +2.

Now we realize that we need to add an artificial variable x7 and first minimize x7.
This leads to the first phase of the program to be

minimize
subject to

x7

x1 + x2 − x3 −x4 +x7 = +2
x1 + 2x2 + x3 +x5 = 5

3x1 + x2 + x3 +x6 = 8
x1 , x2 , x3 x4, x5, x6, x7 ≥ 0.

In tableau format we get

1 1 -1 -1 0 0 1 2
1 2 1 0 1 0 0 5
3 1 1 0 0 1 0 8
0 0 0 0 0 0 -1 0
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This is not a valid simplex tableau, because there is a nonzero number below the
identity matrix. We add the first row to the last row to get

1 1 -1 -1 0 0 1 2
1 2 1 0 1 0 0 5
3 1 1 0 0 1 0 8
1 1 -1 -1 0 0 0 2

The basic feasible solution is now (0, 0, 0, 0, 5, 8, 2) and is not optimal (for the min-
imum of x7) as we have two positive entries on the last row. We include x1 in the
basic variables and check that the smallest quotient is 2/1, which is < 8/3 < 5/1. So
we pivot on the a11 entry. We subtract the first row from the second and the fourth,
and we subtract three times the first row from the third row to get

1 1 -1 -1 0 0 1 2
0 1 2 1 1 0 -1 3
0 -2 4 3 0 1 -3 2
0 0 0 0 0 0 -1 0

The basic feasible solution is now (2, 0, 0, 0, 3, 2, 0) and is optimal, since the entries
on the last row are nonpositive. In fact the last row says that the minimum x7 is
0, so there exists a feasible solution to the original system (2, 0, 0, 0, 3, 2). We ignore
the artificial variable and the seventh column and go back to the maximization of
x1 + x2 + x3. This gives the tableau

1 1 -1 -1 0 0 2
0 1 2 1 1 0 3
0 -2 4 3 0 1 2
1 1 1 0 0 0 0

This is not a valid simplex tableau, as below the first column i.e. the vector e1 we
have a nonzero number. We subtract the first row from the last to get the simplex
tableau

1 1 -1 -1 0 0 2
0 1 2 1 1 0 3
0 -2 4 3 0 1 2
0 0 2 1 0 0 -2

The basic feasible solution (2, 0, 0, 0, 3, 2) is not optimal (for x1 +x2 +x3), as we have
positive entries on the last row. We include x3 in the basic variables. We check that
2/4 < 3/2, so we pivot on the entry a33 = 4. We first divide the third row by 4 to get
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1 1 -1 -1 0 0 2
0 1 2 1 1 0 3
0 -1/2 1 3/4 0 1/4 1/2
0 0 2 1 0 0 -2

We add the third row to the first and subtract twice the third row from the second
and fourth rows to get

1 1/2 0 -1/4 0 1/4 5/2
0 2 0 -1/2 1 -1/2 2
0 -1/2 1 3/4 0 1/4 1/2
0 1 0 -1/2 0 -1/2 -3

The basic feasible solution is now (5/2, 0, 1/2, 0, 2, 0) and is not optimal, as we still
have positive coefficients in the last row. We include x2 in the basic variables. We
check that 2/2 < (5/2)/(1/2), so we pivot on the a22 = 2 entry. We divide the second
row by 2 to get

1 1/2 0 -1/4 0 1/4 5/2
0 1 0 -1/4 1/2 -1/4 1
0 -1/2 1 3/4 0 1/4 1/2
0 1 0 -1/2 0 -1/2 -3

We now subtract the second row from the fourth, subtract half the second row from
the first and add half the second row to the third to get

1 0 0 -1/8 -1/4 3/8 2
0 1 0 -1/4 1/2 -1/4 1
0 0 1 5/8 1/4 1/8 1
0 0 0 -1/4 -1/2 -1/4 -4

The basic feasible solution is now (2, 1, 1, 0, 0, 0) and is optimal, as the coefficients on
the last row are nonpositive. The maximum of x1 + x2 + x3 is achieved at this basic
feasible solution and is 4.

Graphing in this problem is difficult, as we have 3 variables and the equations repre-
sent planes in R3. So we avoid a graphical approach.

2. ∗ (a) Use the two phase simplex algorithm to solve the linear program

minimize
subject to

x1 + x2

4x1 + x2 ≥ 4
x1 + 6x2 ≥ 6

6x1 + 10x2 ≥ 23
x1 , x2 ≥ 0.
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We use slack variables to write the system in canonical form

minimize
subject to

x1 + x2

4x1 + x2 −x3 = 4
x1 + 6x2 −x4 = 6

6x1 + 10x2 −x5 = 23
x1 , x2, x3, x4, x5 ≥ 0.

In tableau format we have

4 1 -1 0 0 4
1 6 0 -1 0 6
6 10 0 0 -1 23

-1 -1 0 0 0 0

As we do not have at the same time the identity matrix and positive constants on
the right column we introduce artificial variables x6, x7, x8. The first phase of the
two-phase simplex is

minimize
subject to

x6 +x7 +x8

4x1 + x2 −x3 +x6 = 4
x1 + 6x2 −x4 +x7 = 6

6x1 + 10x2 −x5 +x8 = 23
x1 , x2, x3, x4, x5, x6, x7, x8 ≥ 0.

In tableau format we have

4 1 -1 0 0 1 0 0 4
1 6 0 -1 0 0 1 0 6
6 10 0 0 -1 0 0 1 23
0 0 0 0 0 -1 -1 -1 0

This is not a valid simplex tableau, as we have nonzero entries below the identity
matrix. We add the first three rows to the last one.

4 1 -1 0 0 1 0 0 4
1 6 0 -1 0 0 1 0 6
6 10 0 0 -1 0 0 1 23

11 17 -1 -1 -1 0 0 0 33

The basic feasible solution is (0, 0, 0, 0, 0, 4, 6, 23) and is not optimal, due to the
positive entries on the last row. We decide to include x2 in the basic variables, since
17 > 11 (Dantzig’s rule). Since 6/6 < 23/10 < 4/1 we pivot on the a22 = 6 entry.
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4 1 -1 0 0 1 0 0 4
1/6 1 0 -1/6 0 0 1/6 0 1

6 10 0 0 -1 0 0 1 23
11 17 -1 -1 -1 0 0 0 33

23/6 0 -1 1/6 0 1 -1/6 0 3
1/6 1 0 -1/6 0 0 1/6 0 1

13/3 0 0 5/3 -1 0 -5/3 1 13
49/6 0 -1 11/6 -1 0 -17/6 0 16

The basic feasible solution is (0, 1, 0, 0, 0, 4, 0, 23) and is not optimal (for the minimum
of x6 + x7 + x8), since we have positive entries on the last row. Because 49/6 > 11/6
we choose to include x1 in the basic variables (Dantzig’s rule). Since

3

23/6
<

13

13/3
<

1

1/6

we pivot on the a11 = 23/6 entry.

1 0 -6/23 1/23 0 6/23 -1/23 0 18/23
1/6 1 0 -1/6 0 0 1/6 0 1

13/3 0 0 5/3 -1 0 -5/3 1 13
49/6 0 -1 11/6 -1 0 -17/6 0 16

1 0 -6/23 1/23 0 6/23 -1/23 0 18/23
0 1 1/23 -4/23 0 -1/23 4/23 0 20/23
0 0 26/23 34/23 -1 -26/23 -34/23 1 221/23
0 0 26/23 34/23 -1 -49/23 -57/23 0 221/23

The basic feasible solution is (18/23, 20/23, 0, 0, 0, 0, 0, 221/23) and is not optimal (for
the minimum of x6 + x7 + x8), since we have positive entries on the last row. Since
34/23 > 26/23, we include x4 in the basic variables (Dantzig’s rule). Since

221/23

34/23
<

20/23

1/23

we pivot on the a34 = 26/23 entry. We get

1 0 -6/23 1/23 0 6/23 -1/23 0 18/23
0 1 1/23 -4/23 0 -1/23 4/23 0 20/23
0 0 13/17 1 -23/34 -13/17 -1 23/34 13/2
0 0 26/23 34/23 -1 -49/23 -57/23 0 221/23
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1 0 -5/17 0 1/34 5/17 0 -1/34 1/2
0 1 3/17 0 -2/17 -3/17 0 2/17 2
0 0 13/17 1 -23/34 -13/17 -1 23/34 13/2
0 0 0 0 0 -1 -1 -1 0

The basic feasible solution is (1/2, 2, 0, 13/2, 0, 0, 0, 0) and is optimal, as the entries on
the last row are nonpositive. The maximum of −x6 − x7 − x8 is 0, i.e. the minimum
of x6 + x7 + x8 is 0. Consequently the original program has a feasible point and we
can proceed to the second phase of the two-phase simplex algorithm by erasing the
columns of the artificial variables. We get

1 0 -5/17 0 1/34 1/2
0 1 3/17 0 -2/17 2
0 0 13/17 1 -23/34 13/2

-1 -1 0 0 0 0

This is not a valid simplex tableau, because we have nonzero entries below the identity
matrix. We add the first two rows to the last one to get

1 0 -5/17 0 1/34 1/2
0 1 3/17 0 -2/17 2
0 0 13/17 1 -23/34 13/2
0 0 -2/17 0 -3/34 5/2

The basic feasible solution is now (1/2, 2, 0, 13/2, 0) and is optimal, since the entries
in the last row are nonpositive. The maximum of −x1−x2 is −5/2, i.e. the minimum
of x1 + x2 is 5/2 = 1/2 + 2.

∗ (b) Solve the same problem graphically and explain what the two phase simplex
algorithm does geometrically (on the graph).

The arrows show that we started at (0, 0) which was NOT feasible for the original
problem. Then we moved to two more non feasible points for the original problem
(0, 1) and (18/23, 20/23). Finally we reached a basic feasible solution for the original
problem at (1/2, 2) at the end of the first phase of the method. This point is now
in the feasible region and is optimal, so we do not need to continue to find a better
basic feasible solution to the original program.

3. Let x1, x2, . . . , xk be points in Rn. We say that y ∈ Rn is a convex combination of
x1, . . . , xk if we can find scalars λ1, λ2, . . . , λk such that

y =
k∑

j=1

λjxj, λj ≥ 0, j = 1, . . . , k,
k∑

j=1

λj = 1.
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Figure 1: The unbounded feasible region for problem 2

Figure 2: Graphical solution for problem 2 and the path of the two phase simplex
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(a) Let S be the set of convex combinations of x1, . . . , xk. Prove that S is a convex
set. The set S is called the convex hull of x1, . . . , xk.

Let y and z be in S, i.e. are convex combinations of x1, . . . , xk. Then we can find
scalars λ1, λ2, . . . , λk and µ1, µ2, . . . , µk such that

y =
k∑

j=1

λjxj, z =
k∑

j=1

µjxj, λj, µj ≥ 0, j = 1, . . . , k,
k∑

j=1

λj = 1,
k∑

j=1

µj = 1.

Let t ∈ [0, 1]. We need to show that (1− t)y + tz ∈ S. We have

(1− t)y + tz =
k∑

j=1

((1− t)λj + tµj)xj.

The coefficients (1− t)λj + tµj are nonnegative, as linear combinations of nonnegative
numbers. Moreover,

k∑
j=1

(1− t)λj + tµj = (1− t)
k∑

j=1

λj + t
k∑

j=1

µj = (1− t) · 1 + t · 1 = 1− t+ t = 1.

This proves that (1− t)y + tz is a convex combination of x and y.

(b) Let y be a convex combination of a and b ∈ Rn. Assume also that a, b are convex
combinations of x1, . . . , xk. Prove that y is a convex combination of x1, . . . , xk.

We are given that we can find a t ∈ [0, 1] such that

y = (1− t)a+ tb.

Moreover, since a and b are convex combinations of x1, . . . , xk, we can find scalars
λ1, λ2, . . . , λk and µ1, µ2, . . . , µk such that

a =
k∑

j=1

λjxj, b =
k∑

j=1

µjxj, λj, µj ≥ 0, j = 1, . . . , k,
k∑

j=1

λj = 1,
k∑

j=1

µj = 1.

Then

y = (1− t)a+ tb =
k∑

j=1

((1− t)λj + tµj)xj.

The coefficients (1− t)λj + tµj are nonnegative, as linear combinations of nonnegative
numbers. Moreover,

k∑
j=1

(1− t)λj + tµj = (1− t)
k∑

j=1

λj + t
k∑

j=1

µj = (1− t) · 1 + t · 1 = 1− t+ t = 1.
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(c) Show that the convex hull of (0, 0), (1, 0), (0, 1) and (1, 1) is the square [0, 1]×[0, 1].
The difficult part is to show that every point in the square is a convex combination of
the four extreme points of the square. Write (x, y) as a convex combination of (0, y)
and (1, y) first and use (b).

Let y be a convex combination of the four points, i.e. for some scalars λ1, λ2, λ3, λ4

we have

y = λ1(0, 0) + λ2(1, 0) + λ3(0, 1) + λ4(1, 1) = (λ2 + λ4, λ3 + λ4),

λj ≥ 0, j = 1, . . . , 4,
4∑

j=1

λj = 1.

To show that y belongs to the square, we need to show that its coordinates are in the
interval [0, 1]. As λj ≥ 0, we have

λ2 + λ4 ≥ 0, λ3 + λ4 ≥ 0.

On the other hand, the sum of the four coefficients is 1, while they are all nonnegative.
This implies that

λ2 + λ4 ≤
4∑

j=1

λj = 1, λ3 + λ4 ≤
4∑

j=1

λj = 1.

The converse: Let z ∈ [0, 1] × [0, 1]. We need to write z = (x, y) as a convex
combination of the four points. We first notice that, given that x ∈ [0, 1], that

(x, y) = (1− x)(0, y) + x(1, y),

i.e. (x, y) is a convex combination of (0, y) and (1, y). Now these two points are
convex combinations of the vertices:

(0, y) = (1− y)(0, 0) + y(0, 1), (1, y) = (1− y)(1, 0) + y(1, 1),

as y ∈ [0, 1]. Using (b) we conclude that (x, y) is a convex combination of the four
points.

Remark: If one insists, one can write the convex combination more explicitly

(x, y) = (1−x)(0, y)+x(1, y) = (1−x)(1−y)(0, 0)+(1−x)y(0, 1)+x(1−y)(1, 0)+xy(1, 1).
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