
Math 7502

Homework 3: solutions

Due: January 31, 2008

1. ∗ Consider the region defined by the following constraints:

−x1 + x2 ≤ 2

−x1 + 2x2 ≤ 6

x1, x2 ≥ 0.

(i) Maximize −4x1 + x2 subject to the constraints above.

(ii) Minimize 3x1 − 4x2 subject to the constraints above.

(iii) Maximize −x1 + 3x2 subject to the constraints above. You should find the
maximal solution value is unbounded. Explain this carefully by (a) exhibiting feasible
points with objective value increasing to infinity (b) showing the situation on the
graph of the feasible region in the x1, x2-plane.

We write the program in canonical form by introducing slack variables x3, x4:

−x1 + x2+ x3 = 2
−x1 + 2x2+ x4 = 6

(i) We write the program with the objective function −4x1 + x2 in tableau format

-1 1 1 0 2
-1 2 0 1 6
-4 1 0 0 0

The basic variables are x3, x4 and the nonbasic x1, x2. The basic feasible solution is
(0, 0, 2, 6) and the current value of f is 0. This is not optimal, since 1 > 0 in the last
row. So we include x2 in our basic variables. We have to choose which row to use.
The first row allows for an increase of 2 and the second an increase of 3 for x2. We
choose the first row, so we pivot on the 1 in the first row and second column. We
multiply the first row by 2 and subtract from the second row and we also subtract it
from the third row. We get the new tableau

-1 1 1 0 2
0 0 -2 1 2

-3 0 -1 0 -2
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Now the basic variables are x2, x4 and the nonbasic are x1 and x3. The basic feasible
solution is (0, 2, 0, 2) and the value of f is 2. This solution is optimal, since the
coefficients −3 and −1 on the last row are negative.

(ii) We want to minimize 3x1 − 4x2. We maximize first instead −3x1 + 4x2 and for
this we introduce the simplex tableau

-1 1 1 0 2
-1 2 0 1 6
-3 4 0 0 0

The basic solution we start with here is (0, 0, 2, 6) with value of the objective function
0. Since the entry 4 on the last row is positive this is not an optimal solution. We
include x2 in the basic variables. The first row allows an increase of 2 and the second
an increase of 3 for x2. We choose the minimum, i.e. we pivot on the first row-second
column entry. We subtract twice the first row from the second row and we subtract
4 times the first row from the third row to get the tableau

-1 1 1 0 2
1 0 -2 1 2
1 0 -4 0 -8

Now the basic variables are x2, x4 and the basic solution is (0, 2, 0, 2). The value of
the objective function is 8. The solution is not optimal, since we have the positive
coefficient 1 on the last row. So we want to include x1 in the basic variables. The first
equation has negative coefficient for x1, so it does not block (restrict) the increase
of the variable x1. However, the second equation only allows an increase of 2. We
pivot on the second row-first column entry. We add the second row to the first and
subtract it from the third. This gives the new tableau

0 1 -1 1 4
1 0 -2 1 2
0 0 -2 -1 -10

The basic variables are x1 and x2. The basic feasible solution is (2, 4, 0, 0) and the
value of the objective function is 10. Since the coefficients −2 and −1 are negative on
the last row, this solution is optimal. This means that the maximum of −3x1 + 4x2

is 10 and the minimum of the objective 3x1 − 4x2 is −10.

(iii) We introduce the simplex tableau

-1 1 1 0 2
-1 2 0 1 6
-1 3 0 0 0
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The basic solution we start with here is (0, 0, 2, 6) with value of the objective function
0. Since the entry 3 on the last row is positive this is not an optimal solution. We
include x2 in the basic variables. The first row allows an increase of 2 and the second
an increase of 3 for x2. We choose the minimum, i.e. we pivot on the first row-second
column entry. We subtract twice the first row from the second row and we subtract
3 times the first row from the third row to get the tableau

-1 1 1 0 2
1 0 -2 1 2
2 0 -3 0 -6

Now the basic variables are x2, x4 and the basic solution is (0, 2, 0, 2). The value of
the objective function is 6. The solution is not optimal, since we have the positive
coefficient 2 on the last row. So we want to include x1 in the basic variables. The first
equation has negative coefficient for x1, so it does not block (restrict) the increase
of the variable x1. However, the second equation only allows an increase of 2. We
pivot on the second row-first column entry. We add the second row to the first and
subtract twice the second row from the third. This gives the new tableau

0 1 -1 1 4
1 0 -2 1 2
0 0 1 -2 -10

The new basic solution is (2, 4, 0, 0). It is not optimal because of the entry 1 in the
last row. However, we have above 1 two negatives entries −1 and −2. This should
mean that there is no maximum for the objective function. Explanations:

(a) We rewrite the objective function out of the last row as

f = 10 + x3 − 2x4.

If we can increase x3 without bound, the objective function also increases to infinity.
The other two equations are

x2 − x3 + x4 = 4 x1 − 2x3 + x4 = 2

If we keep x4 = 0, we solve to get x2 = 4 + x3, x1 = 2x3 + 2. So, as we increase x3 we
remain in the feasible region. The feasible points are (2x3 + 2, 4 + x3, x3, 0), x3 ≥ 0
and the objective values for these is f = 10 + x3.

(b) We plot the feasible region and the family of lines −x1 + 3x2 = k, with increasing
k. We get the figures

2. ∗ A nut packager has on hand 150 kg of peanuts, 100 kg of cashews, and 50 kg
of almonds. The packager can sell three kinds of mixtures of these nuts: a cheap
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Figure 1: The constraints for problem 1 and the unbounded feasible region
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Figure 2: The objective functions gives us parallel lines −x1 + 3x2 = k that meet the
feasible region in further away points with unbounded k

mix consisting of 80% peanuts and 20% cashews; a party mix with 50% peanuts,
30% cashews, and 20% almonds; and a deluxe mix with 20% percent peanuts, 50%
cashews, and 30% almonds. If the 1 kg can of the cheap mix, the party mix and
the deluxe mix can be sold for 0.9, 1.1 and 1.3 pounds respectively, how many cans
of each type would the packager produce in order to maximize the return? Use the
simplex method in tableau format and a hand-held calculator for the computations.

Let x1, x2, and x3 be the number of packages of cheap/party/deluxe mix produced.
The constraints are x1, x2, x3 ≥ 0 and we must not use from each kind of nut more
than the available amount. This gives for the peanuts

0.8x1 + 0.5x2 + 0.2x3 ≤ 150,

for the cashews
0.2x1 + 0.3x2 + 0.5x3 ≤ 100

and for the almonds
0x1 + 0.2x2 + 0.3x3 ≤ 50.

The objective function to maximize is the return and is

f = 0.9x1 + 1.1x2 + 1.3x3.
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We add slack variables x4, x5, x6 to turn the program into canonical form

0.8x1 + 0.5x2 + 0.2x3 + x4 = 150
0.2x1 + 0.3x2 + 0.5x3 +x5 = 100
0.0x1 + 0.2x2 + 0.3x3 +x6 = 50

with x1, x2, x3, x4, x5, x6 ≥ 0. We write it in simplex tableau.

0.8 0.5 0.2 1 0 0 150
0.2 0.3 0.5 0 1 0 100
0.0 0.2 0.3 0 0 1 50
0.9 1.1 1.3 0 0 0 0

The basic variables are x4, x5, x6 and the nonbasic are x1, x2, x3. The basic feasible
solution is (0, 0, 0, 150, 100, 50) and the current value of the return function is f = 0.
Since the coefficients of f in the last row for the nonbasic variables are positive (f is
expressed in terms of the nonbasic variables), we conclude that the current solution
is not optimal.

To decide which nonbasic variable to include and which basic to exclude, we compute
the quotients of the constants in the right column with the entries in each of the first
three rows and choose the miminum for for each nonbasic variable:

150
0.8

= 187.5 100
0.2

= 500 50
0

= undefined =⇒ ∆x1 = 187.5 out of row 1.
150
0.5

= 300 100
0.3

= 3331
3

50
0.2

= 250 =⇒ ∆x2 = 250 out of row 3.
150
0.2

= 750 100
0.5

= 200 50
0.3

= 1662
3

=⇒ ∆x3 = 1662
3

out of row 3.

We have

∆x1 = 187.5 ∆f = 168.75
∆x2 = 250 ∆f = 275

∆x3 = 1662
3

∆f = 2162
3

It is advantageous to include x2 out of row 3, and exclude x6. We perform the row
operations with pivot the entry 0.2 in the third row second column. First we divide
the third row by 0.2, then we subtract 0.5 multiples of it from the first row and 0.3
multiples of it from the second. We also do the same with the last row: multiple the
third row with 1.1 and subtract from the last row.

0.8 0.5 0.2 1 0 0 150
0.2 0.3 0.5 0 1 0 100
0.0 1 1.5 0 0 5 250
0.9 1.1 1.3 0 0 0 0

0.8 0 -0.55 1 0 -2.5 25
0.2 0 0.05 0 1 -1.5 25
0.0 1 1.5 0 0 5 250
0.9 0 -0.35 0 0 -5.5 -275
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The bsic variables now are x2, x4, x5 and the nonbasic are x1, x3, x6. The current
basic solution is (0, 250, 0, 25, 25, 0). The current return is f = +275 and this is not
optimal, since on the last row we have the positive entry 0.9 for the nonbasic variable
x1. We compute

Row ∆x1 ∆f
1 25/0.8=31.25 28.125
2 25/0.2=125 112.5
3 250/0 undef

We have to choose the minimum of ∆x1 so we work with the first row and pivot
on the entry in first row and first column. First we divide by 0.8 the first row and
then subtract multiples of the new first row from the other rows. More precisely we
multiply it with 0.2 and subtract from the second, with 0 and subtract from the third
and with 0.9 and subtract your the last. This gives:

1 0 -0.6875 1.25 0 -3.125 31.25
0.2 0.3 0.5 0 1 0 100
0.0 1 1.5 0 0 5 250
0.9 1.1 1.3 0 0 0 0

1 0 -0.6875 1.25 0 -3.125 31.25
0 0 0.1875 -0.25 1 -0.875 18.75
0 1 1.5 0 0 5 250
0 0 0.26875 -1.125 0 -2.6875 -303.125

The current basic solution is (31.25, 250, 0, 0, 18.75, 0) and is not optimal since we
have a positive entry 0.26875 in the last row. We can increase x3 and increase the
objective function. Since the first entry in the third column is negative −0.6875 the
first row does not restrict or block how much we can increase x3. The second row
gives ∆x3 = 18.75/0.1875 = 100 and the third row 250/1.5 = 166.66666. We choose
the minimum 100 and pivot along the 0.1875. We first divide the second row with
0.1875, then subtract multiples of it from the other rows. More precisely, we subtract
−0.6875 of it from the first row, 1.5 times it from the third and 0.26875 from the
fourth. We get

1 0 -0.6875 1.25 0 -3.125 31.25
0 0 1 −11

3
51

3
−42

3
100

0 1 1.5 0 0 5 250
0 0 0.26875 -1.125 0 -2.6875 -303.125
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1 0 0 1
3

32
3

−61
3

100
0 0 1 −11

3
51

3
−42

3
100

0 1 0 2 -8 12 100
0 0 0 -0.766666 -1.43333 -1.43333 -330

Since the coefficients of the nonbasic variables x4, x5, x6 are negative, the current
basic solution is optimal. It is (100, 100, 100, 0, 0, 0) and the corresponding return is
+330. The nut packager should produce 100 cans from each of the three types of
mixes for a profit of 330 pounds.

3. (Only for maths students) In analysis you saw the notion of a convex function. A
function f : [a, b] → R is called convex if its graph is below the secant segment
between any two points of the graph (x, f(x)) and (y, f(y)), i.e. for all t ∈ [0, 1] we
have

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y).

Consider the set
S = {(x, y)|y ≥ f(x), x ∈ [a, b]}.

Show that f is convex function if and only if S is a convex set in R2.

=⇒: Assume that f is convex. Let P and Q be two points in S, i.e. P (x1, y1) and
Q(x2, y2) such that

y1 ≥ f(x1), y2 ≥ f(x2), (1)

because P is in S and because Q is in S. The line segment between P and Q consists
of points R(x, y) with

x = (1− t)x1 + tx2, y = (1− t)y1 + ty2, t ∈ [0, 1].

To show that R ∈ S, we need to show that y ≥ f(x). But

f(x) = f((1−t)x1+tx2) ≤ (1−t)f(x1)+tf(x2) ≤ (1−t)f(x1)+tf(x2) ≤ (1−t)y1+ty2 = y,

where in the first inequality we used the fact that f is convex, while in the second we
used (??). This proves that S is convex.

⇐=: Assume that S is a convex set in R2. Let x1, x2 ∈ [a, b] and t ∈ [0, 1]. To prove
that f is convex, we need to prove that

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2).

The points P (x1, f(x1)) is in S, as its y-coordinate is ≥ f(x1). Similarly the points
Q(x2, f(x2)) is in S, as its y-coordinate is ≥ f(x2). Then the line segment between
P and Q is in S, i.e. for t ∈ [0, 1] we have

(1− t)(x1, f(x1)) + t(x2, f(x2)) ∈ S ⇔ ((1− t)x1 + tx2, (1− t)f(x1) + tf(x2)) ∈ S.

The points in S have y-coordinate ≥ the value of their x-coordinate under f . This
means

(1− t)f(x1) + tf(x2) ≥ f((1− t)x1 + tx2)

for t ∈ [0, 1]. This is exactly the definition of convexity for f .
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