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Abstract

The main of focus of this thesis is the study of cohomological symmetries. Namely, given

an algebraic variety, we study the symmetries of its derived category, which are also known

as autoequivalences.

The thesis is split into five chapters. In § 1, we give an introduction to the material

presented in the thesis, as well as a motivation as to why one might be interested in

studying these topics. We encourage the reader to have a look, so as to know what is

coming.

In § 2, we set up the preliminary notions we will need throughout the whole thesis.

The arguments touched in this chapter comprise triangulated categories, dg-categories,

and spherical functors.

In § 3, we begin to present the novel mathematics developed in this thesis. The focus of

this chapter is on how to compose spherical twists around spherical functors. We describe

a general recipe that takes as input two spherical functors and outputs a new spherical

functor whose twist is the composition of the twists around the functors we started with,

and whose cotwist is a gluing of the cotwists. We conclude the chapter by specialising

the theory to the case of spherical objects and P-objects.

In § 4, we study autoequivalences arising from geometric correspondences. We prove

that such autoequivalences have a natural representation as the inverse of the spherical

twist around a spherical functor, and that in some examples this geometric spherical

functor agrees with the construction described in § 3.

We conclude the thesis with § 5, in which we present some possible future applications

of this work. In doing so, we hope to stimulate further mathematical discussion around

topics that the author of this thesis finds really exciting.
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Chapter 1

Introduction

In this thesis, we study non-commutative geometry in the incarnation provided by (en-

hanced) triangulated categories. To understand why we might want to delve into such

topics, we take a step back, motivate their introduction, and showcase their features.

Broadly speaking, algebraic geometry is concerned with the study of algebraic varieties:

objects X that are locally modelled as the zero loci of polynomial functions in An for

some n ∈ N. As such, and as their name suggests, geometric properties of X are algebraic

in nature, and algebraic geometers seek to understand these properties using algebraic

techniques.

When studying properties of X, algebraic geometers typically focus on some subsidiary

object that is easier manage and still embodies the relevant features of X. For example,

symmetries of X encapsulate many information about X, where by symmetry we mean

an invertible map f : X → X that preserves the structure we have on X. Symmetries

of X are also called automorphisms, and one of their nicest features is that they can be

packaged into a group: Aut(X). Then, instead of studying X, we can study Aut(X), and

obtain information about X as a byproduct.

The study of automorphisms1 has proved to be extremely fruitful [Can01], [BC16],

[HMX13], but its usefulness is sometimes hampered by the rigidity of X. Namely, X

might have very few symmetries because the constraint of preserving its structure is too

restrictive. For this reason, the study of cohomological symmetries has gained more and

more attention over the years.

In their seminal work [Ver96], Grothendieck and Verdier introduced the notion of a tri-

angulated category, and to any algebraic variety X they attached a triangulated category

called the bounded derived category of coherent sheaves: Db(X). Since its introduction,

the bounded derived category has been object of intense mathematical research, proving

to be a tool to understand X and an object worth studying in itself at the same time.

1The papers we refer to study birational automorphisms, but they nevertheless showcase the strength
of the study of symmetries.
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Flop-flop autoequivalences and compositions of spherical twists

The symmetries of Db(X), which we think of as cohomological symmetries, are tri-

angulated endofunctors α : Db(X) → Db(X) that are equivalences of categories. They

go under the name of autoequivalences and can once again be packaged into a group:

Aut(Db(X)).

The group of automorphisms of X injects into the group of autoequivalences of Db(X),

and therefore we enlarged the number of symmetries at our disposal, as we wanted.

Unfortunately, sometimes the new symmetries are just a byproduct of the structure that

Db(X) carries, see [BO02]. However, in some cases there exist genuinely new symmetries

of Db(X) that we were not able to see from X and that provide us with interesting

information.

This is one of the reasons why the author of this thesis studies derived categories,

and more generally triangulated categories: they are flexible and have a rich theory of

symmetries.

1.1 Autoequivalences and geometry

In the previous paragraphs, we said that sometimes considering cohomological symmetries

does not add anything relevant to the array of symmetries at our disposal. Let us explain

what we mean in more detail.

To any automorphism f ∈ Aut(X) we can associate an autoequivalence of the derived

category by taking the pushforward functor f∗ ∈ Aut(Db(X)), and we obtain an injection

Aut(X) ↪→ Aut(Db(X)), f 7→ f∗. Notice that in general we would have to take the right

derived functor Rf∗, but as f is an automorphism this is not needed. In the following, to

ease the notation, all the functors will be implicitly derived.

We can construct autoequivalences also starting with line bundles. Indeed, given any

line bundle L ∈ Pic(X) the functor L⊗OX − is an autoequivalence with inverse given by

L∨ ⊗OX −, where L∨ = HomX(L,OX).

Finally, as part of the triangulated structure of Db(X), we have the shift functor [1],

which is an autoequivalence. Hence, inside the autoequivalence group Aut(Db(X)) we

always find the subgroup

Autstd(Db(X)) = Z× (Aut(X) n Pic(X)) ⊂ Aut(Db(X))

that is called the subgroup of standard autoequivalences. Above, the copy of Z is generated

by [1], while the semidirect product comes from the fact that automorphisms of X and

tensor products with line bundles do not commute, but we have f∗(L⊗OX−) ' f∗(L)⊗OX
f∗(−) for any f ∈ Aut(X) and L ∈ Pic(X).

The reason why we call the elements of Autstd(Db(X)) standard autoequivalences is

14



Flop-flop autoequivalences and compositions of spherical twists

that they share a particular property, that is they preserve the subcategory Coh(X) ⊂
Db(X) (which is given by those complexes whose cohomology is concentrated in degree

zero) up to a shift. Even more, they preserve (up to a shift) the standard t-structure on

Db(X), of which Coh(X) is the heart.

From our point of view, standard autoequivalences are not that interesting because

they do not enlarge the array of available symmetries in a meaningful way. This is

because standard autoequivalences are given by compositions of symmetries that were

either available since the very beginning, e.g. elements of Aut(X), or that came to be

because of the framework we placed ourselves in: the shift functor is part of the definition

of a triangulated category, and line bundles appear because we consider coherent sheaves.

For this reason, we turn our attention to the following question: in which cases are

there more symmetries, i.e., when is true that Autstd(Db(X)) ( Aut(Db(X))?

In the remarkable paper [BO01], Bondal and Orlov prove that all autoequivalences

of Db(X) are standard when X is a smooth projective variety with ample or antiample

canonical bundle. Thus, in this case there is nothing interesting going on.

At this point, we could shoot in the dark, pick a random algebraic variety X, and try to

construct a non-standard autoequivalence, i.e., an autoequivalence that does not belong

to Autstd(Db(X)). However, there is a more meaningful way to pinpoint which algebraic

varieties should possess non-standard autoequivalences that also shows how beautifully

cohomological symmetries pair up with geometric transformations.

The Minimal Model Programme is a topic of intense mathematical research. Birational

geometers’ seek to classify algebraic varieties by identifying a minimal model in their

birational class. What minimal means is beyond the scope of this introduction and of this

thesis. It is enough to say that while this minimal model is unique for surfaces, already

when we consider threefolds uniqueness does not hold anymore. The reason is that there

are certain birational transformations (beware: they are not necessarily isomorphisms!)

called flops that allow us to pass from a minimal model to another.

Conjecturally [BO95], the cohomological interpretation of the non-uniqueness of a

minimal model is that, while we can change the geometric object, the derived category

stays the same. Namely, the minimal model is not unique, but its derived category is.

Hence, whenever two varieties are related by a flop, we expect their derived categories to

be equivalent.

This conjecture, which has been generalised to the Bondal–Orlov–Kawamata con-

jecture [BO95], [Kaw02], is extremely interesting because it prescribes which geometric

transformations should induce derived equivalences.2 On top of this, it comes in handy

in our search for non-standard autoequivalences.

Let us consider X− and X+ two smooth, projective varieties, and assume that they are

2Namely, flops and, more generally, K-equivalences, see [Kaw02] for the definition of the latter notion.
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Calabi–Yau: ωX− ' OX− , ωX+ ' OX+ . One of the requirements a (birational) map must

satisfy in order to be a flop is that it must “preserve” the canonical bundle. When X− and

X+ are Calabi–Yau, this requirement is trivially fulfilled. Therefore, any birational map

between two Calabi–Yau varieties is a flop,3 and, given the above discussion, we expect

birational Calabi–Yau varieties to have equivalent derived categories:

Φ− : Db(X+)
'−→ Db(X−).

However, the definition of a flop is symmetric, and applying the same reasoning we can

infer the existence of another equivalence

Φ+ : Db(X−)
'−→ Db(X+).

The point is that there is no reason to expect Φ− and Φ+ to be inverse to each other, and

therefore if we compose them we obtain a non-trivial autoequivalence of Db(X+):

Φ+Φ− ∈ Aut(Db(X+)). (1.1)

The expectation is that (1.1), as it comes from a geometric transformation that is not an

isomorphism, should be a non-standard autoequivalence.

This is often, if not almost always, true, and we will see examples of such autoequiv-

alences in § 4. However, before turning to the mathematical advances presented in this

thesis, we still have to introduce and motivate an important piece of theory that will be

the main player of § 3: spherical functors.

1.2 How to: spherical functors

In the previous section we explained why, given two birational Calabi–Yau varieties, we

expect them to have equivalent derived categories. However, we did not say how the

equivalence should be constructed, or where it should come from.

This is actually one of the key problems in approaching the Bondal–Orlov–Kawamata

conjecture: how does one come up with a suitable candidate for the equivalence between

two birational Calabi–Yau varieties?

For the purpose of this introduction, we will focus on a question that is at the same

time a generalisation and a modification of the previous one: how does one construct

autoequivalences of Db(X) for X an algebraic variety? To answer this question, we will

make use of another beautiful example of how seemingly unrelated areas of mathematics

3Birational geometers might disagree, but we are using this geometric picture as a motivation, and we
will skip over some technicalities.
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actually have strong links between them.

Let X be a Calabi–Yau, smooth, projective variety over a field k. In his ICM address in

1994 [Kon95], Kontsevich introduced the basis of what developed into Homological Mirror

Symmetry. Loosely speaking, drawing inspiration from physics, Kontsevich predicted that

algebraic properties of X should correspond to symplectic properties of some symplectic

manifold X̌, which is called the mirror of X. While Homological Mirror Symmetry is still

more an idea than a precise conjecture, it has permitted the mathematical community to

postulate an incredible amount of predictions that turned out to be true.

From our perspective, Homological Mirror Symmetry serves its purpose as follows:

if symplectic properties of X̌ correspond to algebraic properties of X, then symplectic

symmetries of X̌ should correspond to algebraic symmetries of X.

The flow of information between X and X̌, at least conjecturally, is realised by an

equivalence of triangulated categories. On one side we have Db(X), while on the other we

have the Fukaya category of X̌: Fuk(X̌). Therefore, a symplectic symmetry of X̌ should

induce a symmetry of Fuk(X̌), and thus a symmetry of Db(X). The question now is: can

we interpret this autoequivalence directly on the algebraic side without the need to know

that it comes from the symplectic side of Homological Mirror Symmetry?

In their remarkable paper [ST01], Seidel and Thomas answer this question for a par-

ticular type of symplectic automorphisms: Dehn twists. These automorphisms arise by

twisting around a Lagrangian sphere L ⊂ X̌, namely, a Lagrangian subvariety of X̌ that

is isomorphic to a sphere.

Lagrangian spheres have the property that their complex of morphisms in the Fukaya

category HomFuk(X̌)(L,L) has cohomology isomorphic (as a graded algebra) to the coho-

mology ring of the sphere of the corresponding dimension. Therefore, there is a natural

class of objects in Db(X) that have the same cohomological properties as Lagrangian

spheres: they are the objects E ∈ Db(X) such that

Hom•Db(X)(E,E) =
⊕
n∈Z

HomDb(X)(E,E[n])[−n] ' H•(SdimX , k)

as graded algebras. These objects are the ones that Seidel and Thomas call spherical

objects, and they are the key to construct autoequivalences of Db(X) corresponding to

Dehn twists.

We will defer for a moment how one formally constructs an autoequivalence from a

spherical object,4 and consider the final result: the spherical twist around the spherical

4Notice that the formula (1.5) does not provide a formal definition because the cone construction is
not functorial for triangulated categories. For more details on this point, see the next page.
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object E is an autoequivalence TE ∈ Aut(Db(X)) that acts on F ∈ Db(X) as

TE(F ) = cone(ev : Hom•Db(X)(E,F )⊗k E → F ) (1.2)

where ev is the evaluation map, see [ST01]. The formula (1.2) is our point of entrance to

the theory of spherical functors.

Soon after Seidel and Thomas introduced spherical objects, it became clear that it

should be possible to parametrise spherical objects in families, thus obtaining the notion

of a spherical functor. Spherical functors developed thanks to the work of many peo-

ple. Special cases of this general notion appeared in [Hor05], [Rou04], [Sze04], [Tod07],

[KT07]. The first general treatment was attempted in [Ann07], but the strength of the

ideas presented was hampered by the octhaedral axiom, which does not provide as much

control as it is needed over the cone of the composition of two morphisms. The theory of

spherical functors reached its final and most general form in [AL17], where the formalism

of triangulated categories used in [Ann07] was replaced with that of dg-categories.

We will introduce spherical functors in § 2.5. For the moment, it will be enough to

say that such a functor should induce for us an autoequivalence, as spherical objects did.

However, a priori it is not clear how to build an autoequivalence out of a functor α : A→ C

between two triangulated categories A and C.

To understand how to do this, let us turn our attention back to (1.2) and consider

the functor α : Db(k) → Db(X) sending k to E. Then, α has a right adjoint given by

αR(F ) = Hom•Db(X)(E,F ) and (1.2) can be rewritten as

TE(F ) = cone(ev : ααR(F )→ F ).

Now notice that ev is the counit of the adjunction α a αR, and therefore we see that from

the functor α we can construct an autoequivalence of Db(X) that acts on F ∈ Db(X) by

taking the cone of the counit of the adjunction α a αR.

We will see in § 3 that a functor α : A→ C is called spherical if the endofunctors

Tα = cone(ααR → idC) and Cα = cone(idA → αRα)[−1],

which are called the twist and cotwist around α, respectively, are autoequivalences.

Spherical functors provide an extremely fruitful way to construct autoequivalences,

and we will study their behaviour extensively in § 3. For the moment, let just point out

one thing: in the previous paragraph we took cones of natural transformations between

functors, but this is not possible when working with plain triangulated categories. We

need a stronger framework, and thus we need to consider some type of enhancement. We

will deal with the question of enhancing triangulated categories in § 2.1, and we refer the
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interested reader to that section.

1.3 What is in this thesis?

In the previous sections we introduced the two main players of this thesis: autoequiva-

lences and spherical functors. We now move on to explain which questions about autoe-

quivalences and spherical functors are addressed in the thesis, and what are the mathe-

matical advances presented in this work.

In § 1.2, we said that starting from a spherical functor we can construct two autoe-

quivalences: the twist and the cotwist. Actually, much more is true. Namely, it is a result

due to Segal that any autoequivalence of a triangulated category can be realised as a

spherical twist around a spherical functor [Seg18]. A word of caution: once again this

result does not hold for plain triangulated categories, and we need to work with enhanced

triangulated categories and functors. However, to make the language more fluent, we will

drop the adjective enhanced. Hence, all triangulated categories and functors from now

on are implicitly assumed to be enhanced.

Knowing that any autoequivalence can be realised as a spherical twist prompts us

with an array of questions, we propose three of them. Fix C a triangulated category and

ΦA,ΦB ∈ Aut(C). Then,

(i) is there a preferred5 way to write ΦA = TαA
for some spherical functor αA?

(ii) what is the information about αA contained in ΦA, and viceversa?

(iii) if ΦA = TαA
and ΦB = TαB

for two spherical functors αA and αB, what can we say

about ΦBΦA?

Arguably, question (i) is not well posed because it is not clear what “preferred” should

mean. Actually, we will see in § 5 that the results of § 3 hint to the fact that having differ-

ent representations as a spherical twist can be an advantage, rather than a disadvantage.

Question (ii) can be approached in different ways. For example, rather than looking at

the functor αA : A→ C, we could consider the source category A. Then, it was shown in

[HLS16] that if A has a semiorthogonal decomposition A = 〈S2, S1〉 (see Definition 2.3.1)

that satisfies some properties, then Φ = TαA
= TαA|S2TαA|S1 , and we obtain a factorisation

of Φ.6

5We do not wonder about the uniqueness of αA because it can be easily shown that a representation
as a spherical twist is not unique (not even if we require the functor to be conservative, i.e., without
kernel, see [Chr20, § 4.1].)

6The converse is not true: given a 2 spherical object E, in [Seg18] Segal proves that T 2
E can be

realised at the twist around a spherical functor whose source category is D(k[ε]/ε2)c, deg(ε) = −1,
see Definition 2.3.8 for the definition of compact objects. While T 2

E has a factorisation, the category
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Question (iii) is the one in which we are most interested, and it is the first problem we

solve in this thesis. The reason why we are interested in answering this question is that it

helps us to shed light on the structure of the autoequivalence group of C: understanding

how spherical twists around spherical functors compose might allow us to see relations

that would have otherwise remain hidden, see § 5.

Let us fix αA : A→ C and αB : B→ C two spherical functors. Our aim is to represent

the autoequivalence TαB
TαA

as the spherical twist around a spherical functor. The follow-

ing theorem, which is Theorem 3.1.4, tells us how to do this. A precise statement would

require us to introduce too much notation and would derail this introduction. Thus, we

refer the interested reader to § 3 for the formal statement, further details, and pointers

to the relevant parts in the thesis.

Theorem 1.3.1. Let αA : A→ C and αB : B→ C be two spherical functors. Then, there

exists a category B tϕ A, ϕ = αRBαA, and a spherical functor β : B tϕ A→ C such that

(i) Tβ = TαB
TαA

(ii) the cotwist around β can be described in terms of the cotwists around αB and αA.

The author of this thesis would like to remark that he published the above theorem,

in a different form, in [Bar22].

Let us now explain why we think of the above theorem as a gluing procedure, and

why we call functors such as β above glued spherical functors.

The category B tϕ A was introduced by Tabuada [Tab07] and is a way to glue two

categories along a functor. Indeed, B tϕ A is called the gluing of B and A along ϕ.

Thanks to [KL15, Proposition 4.6], we know that B tϕ A has an SOD B tϕ A = 〈B,A〉
with right gluing functor7 given by ϕ, and it is a simple computation to show that the

restriction of β to B and A is given by αB and αA, respectively.8

Therefore, both the category B tϕ A and the functor β are constructed via a gluing

procedure, and it is for this reason that we think of Theorem 1.3.1 as a recipe to glue two

spherical functors into a single one.

After proving theorem Theorem 1.3.1, we provide examples of its application to spher-

ical objects § 3.4 and P-objects § 3.5. In § 5, we explain some possible future uses of

Theorem 1.3.1.

Although the above theorem is remarkably interesting in itself, it has an aura of

formality about it. It answers an interesting question, but we might wonder whether such

construction appears naturally in geometric situations.

D(k[ε]/ε2)c cannot have a semiorthogonal decomposition because its Serre duality functor is the shift by
1.

7See Definition 2.3.5.
8More abstractly, the fact that β|B ' αB and β|A ' αA follows from the adjunction of [Efi20,

Proposition 4.5].
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The search for geometric examples of glued spherical functors as those constructed in

Theorem 1.3.1 kicked off our second research project, whose results are presented in this

thesis.

In § 1.1, we explained that flops are a source of non-standard autoequivalences. It

turns out that spherical twists around spherical objects almost always give examples of

non-standard autoequivalences. For this reason, if one wants to find examples of glued

spherical functors as in Theorem 1.3.1, they might as well start from autoequivalences

induced by flops.

This random guess is not really random, as there is evidence that backs it. Namely, it

has been shown in various papers, e.g. [ADM19], [HLS16], [DS14], that autoequivalences

coming from flops factorise as compositions of inverses of spherical twists around spherical

functors, and these factorisations have a geometric meaning.9

Given this evidence, we started to investigate derived equivalences coming from flops

in the hope to find geometric examples of Theorem 1.3.1. In order to be able to explain

the results of this research project, we have to take a step back. First of all, we have to

clarify what it means that two Calabi–Yau varieties X− and X+ are related by a flop.

This means that there exists a (possibly singular) variety Y and proper, birational maps10

X− X+

Y
f− f+

such that for any divisor on D− ⊂ X− with the property that −D− is f−-nef, the proper

transform of D− is an f+-nef divisor on X+.

From this picture emerges a natural candidate for the equivalence Db(X−) ' Db(X+)

predicted by the Bondal–Orlov–Kawamata conjecture. Namely, we take the fibre product

X− ×Y X+

X− X+

Y

p− p+

f− f+

(1.3)

9We hope the reader will forgive us for our lack of formality. In the previous phrase, and in the
following, when we say “geometric meaning” we mean that the factorisation is not abstractly constructed,
but that it appears from an in-depth study of the geometric picture.

10More precisely, the maps f± have to be small contractions.
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and we consider the functors11

Φ− = (p−)∗p
∗
+ : Dqc(X+)→ Dqc(X−) and Φ+ = (p+)∗p

∗
− : Dqc(X−)→ Dqc(X+).

(1.4)

Then, if Φ− and Φ+ are equivalences, they induce equivalences12 between the respective

bounded derived categories of coherent sheaves, as we wanted.

This approach works in many, but not all, cases (there are only two known families of

counterexamples [Nam04], [Kaw06], [Cau12a]) and it provides us with two equivalences

that one can easily see are not inverse to each other. Therefore, we obtain a non-trivial

autoequivalence Φ+Φ− ∈ Aut(Db(X+)).

It is this autoequivalence that, in some examples, was shown to have a factorisa-

tion in terms of inverses of spherical twists around spherical functors, and it is on this

autoequivalence that we focus our attention.

At this point, we have an autoequivalence Φ+Φ− that is known to have a factorisation

as a composition of inverses of spherical twists around spherical functors, and we would

like to show that this autoequivalence gives an example of a glued spherical functor as

constructed in Theorem 1.3.1. However, to match these two pictures, we lack a key player:

a spherical functor whose spherical twist has inverse isomorphic to the autoequivalence

Φ+Φ−.

If we managed to find such a functor in a “geometric” way, then it would be natural

to expect that this functor is an example of the construction of Theorem 1.3.1.

For this reason, the first question we turn our attention to is: given a diagram as (1.3)

such that the functors (1.4) are equivalences, can we find a spherical functor whose twist

has inverse isomorphic to the autoequivalence Φ+Φ−?

To answer this question, recall that the autoequivalence Φ+Φ− is given by Φ+Φ− =

(p+)∗p
∗
−(p−)∗p

∗
+. Even though we have not specified this, we will always assume to be

in the situation where (p−)∗OX−×YX+ ' OX− , and similarly for p+.13 Therefore, the

pull-up functors p∗− and p∗+ are fully faithful and never land in the common kernel K :=

ker(p−)∗∩ker(p+)∗, and this subcategory of Dqc(X−×Y X+) does not play any role in the

action of Φ+Φ−. Thus, it seems reasonable to investigate the Verdier quotient

Dqc(X− ×Y X+)/K

11Here Dqc(−) is the unbounded derived category of quasi-coherent sheaves; strictly speaking, when
X− and X+ are smooth we could work directly with Db(−), however, we will need to pass to Dqc(−) to
be able to harness all the strengths of cocomplete triangulated categories, see § 4.

12X− and X+ being smooth, the claim follows by restricting to compact objects, see Definition 2.3.8
and Remark 4.2.5

13Notice that this is a requirement about the higher cohomology sheaves of the structure sheaves of
the fibres of p− and p+, respectively. Indeed, by Zariski’s Main Theorem the underived pushfoward of
the structure sheaf of X− ×Y X+ via p− and p+ is the structure sheaf of X− and X+, respectively.
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rather than the whole category Dqc(X−×Y X+). It turns out that this is the only passage

required to realise Φ+Φ− as the inverse of a spherical twist. Indeed, we can prove

Theorem 1.3.2. Consider a diagram as (1.3) such that

1. the functors (1.4) are equivalences

2. we have isomorphisms (p−)∗OX−×YX+ ' OX− and (p+)∗OX−×YX+ ' OX+

and write

(p−)∗ : Dqc(X− ×Y X+)/K→ Dqc(X−) and (p+)∗ : Dqc(X− ×Y X+)/K→ Dqc(X+)

for the functors induced by (p−)∗ and (p+)∗ on the Verdier quotient of Dqc(X−×Y X+) by

K = ker(p−)∗ ∩ ker(p+)∗.

Then, the functors

Ψ− : ker(p+)∗ ↪→ Dqc(X− ×Y X+)/K
(p−)∗−−−→ Dqc(X−)

and

Ψ+ : ker(p−)∗ ↪→ Dqc(X− ×Y X+)/K
(p+)∗−−−→ Dqc(X+)

(1.5)

are spherical and the inverse of their spherical twists are given Φ−Φ+ and Φ+Φ−, respec-

tively.

The above theorem is Corollary 4.1.7 in the main body of the thesis. In § 4, we are

actually able to prove a stronger and more general statement about cocomplete triangu-

lated categories, namely Theorem 4.1.3. However, presenting the complete statement of

Theorem 4.1.3 here would divert our discussion into technical digressions we do not want

to address at the moment.

For the time being, let us just notice two things. First, that Theorem 1.3.2 is cat-

egorical in nature, and thus it is not surprising that it can be proved for more general

categories than derived categories of algebraic varieties.14 Second, that Theorem 1.3.2 as

stated has a big drawback: it involves taking a Verdier quotient, which is well known to

be a bad-behaved operation. The great advantage of Theorem 4.1.3 is that it replaces the

Verdier quotient Dqc(X−×Y X+)/K with a subcategory of Dqc(X−×Y X+), which is much

easier to work with. This exchange is possible because we are working with cocomplete

triangulated categories, and therefore (almost) any Verdier quotient can also be realised

as a subcategory of the parent category.

14The possibility of such a generalisation was pointed out to the author by an anonymous referee whom
the author would like to thank.
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Having proved Theorem 1.3.2, we now have a candidate to be our glued spherical func-

tor. Namely, our guess is that the functor Ψ+ in (1.5) gives an example of a glued spherical

functor every time Φ+Φ− factorises as a composition of inverses of spherical twists around

spherical functors in a geometric way, such as in the cases treated in [ADM19], [HLS16],

and [DS14].

However, before attempting to match Theorem 1.3.1 and Theorem 1.3.2, we briefly

turn our attention to another question. Namely, to prove Theorem 1.3.2 we passed from

Db(−) to Dqc(−), and we would like to understand to what extent we are able to obtain

information about the bounded derived category from Theorem 1.3.2.

As we explained before, if X− and X+ are smooth, then the passage to Dqc(−) is

not restrictive. However, we could wonder what happens if the smoothness assumption

is dropped, and this is the next question we provide an answer to. The answer is that,

regardless of the smoothness properties of X− and X+, if we assume that Φ− and Φ+ are

equivalences and that they preserve boundedness, then we can prove an analogue of The-

orem 1.3.2 by replacing Dqc(X−×Y X+) with Db(X−×Y X+). We do so in Theorem 4.2.2.

The drawback of Theorem 4.2.2 is that it does not have an analogue to Theorem 4.1.3.

Namely, we are forced to work with a Verdier quotient, and this is often problematic. See

also Remark 4.2.3 and Remark 4.2.5.

Having completed this small digression, we can open another short one. Namely,

Bodzenta and Bondal were the first authors to consider the quotient category Dqc(X−×Y
X+)/K, and they did so in their paper [BB15], where they assumed p− and p+ to have

fibres of dimension at most one. In ibidem, they proved, among other things, results

similar to Theorem 4.2.2, and we would like to understand what is the relationship between

their results and ours. We do so in § 4.3.

Once these loose ends have been tied up, we can move on to pursue our initial goal:

to prove that Ψ+ is, in some cases, an example of a glued spherical functor as constructed

in Theorem 1.3.1. We consider two families of examples: standard flops § 4.4.1 and

Mukai flops § 4.4.2. In both cases we prove that Ψ+ does indeed provide an example of a

glued spherical functor. The relevant statements are Theorem 4.4.1 and Theorem 4.4.13,

respectively. We do not present them here because it would require the introduction of

too much notation, and we refer the reader to the relevant sections in the thesis.

We conclude § 4 by considering some examples where we were not able to match Theo-

rem 1.3.2 with Theorem 1.3.1 even though we know that Φ+Φ− does factorise. We provide

some heuristic explanation as to why the situation in these examples is more complicated,

and a guess as to what could be a possible solution to the hurdles we encountered.

Finally, in § 5 we provide some possible future applications of the mathematics pre-

sented in this thesis, with the hope that they will foster further mathematical research.

The author hopes that this introduction, albeit long, provided a comprehensive glimpse
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of the material presented in this thesis, and that it will encourage the reader to continue

reading after the current page.
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Chapter 2

Preliminaries

In this first chapter, we set up the scene for presenting the main mathematical advances

developed in this thesis. Given the amount of material we need to introduce, we favour

narrative flow over definition boxes, and we give a number only to the definitions that

will play an important role in the following chapters.

On top of recalling well known mathematical notions, in this chapter we also prove

some technical lemmas and propositions that will be useful in § 3 and § 4, see for example

§ 2.3.2.

Some of the arguments presented in this chapter have been presented in a similar but

different form in the author’s published work [Bar22].

2.1 The art of enhancing categories and functors

It is now common knowledge that triangulated categories lack the functorial properties

needed to allow their study in families. Namely, given two triangulated categories A and

B, the category of triangulated functors from A to B is not a triangulated category.

This is a gigantic drawback because as soon as one wants to study autoequivalences

of triangulated categories, it is obvious that we need to be able to take cones of natural

transformations.

Presently, there are three ways to overcome this issue. They are dg-categories, A∞-

categories, and (∞, 1)-categories.

When working over a commutative ring k, these formalisms are equivalent, see [Coh13].

However, this is not true anymore when we consider more general setups, e.g. when we

take categories linear over the sphere spectrum.

The reasons why one might want to choose any of the above formalisms over the others

are mostly of personal taste. However, it is fair to say that these different formalisms

incarnate different beliefs and allow the use of different techniques. Namely, dg-categories
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and A∞-categories provide stricter models that allow to carry out explicit computations,

but sometimes they hide the universal reason why some statements are true. On the other

hand, (∞, 1)-categories render explicit computations more complicated, but highlight

universal properties.

In the course of this thesis, and in particular in § 2 and § 3, we will use the formalism

of dg-categories. However, when possible, we will also point the reader to the relevant

references in the formalism of (∞, 1)-categories.

2.2 Conventions

Throughout the thesis, k will be a fixed field. In § 4.4, it will be an algebraically closed

field of characteristic zero.

Given a triangulated category A and two objects A1, A2 ∈ A, we will write

Hom•A(A1, A2) =
⊕
n∈Z

HomA(A1, A2[n])[−n]

for the standard graded enhancement of any triangulated category, see e.g. [RVdB20].

Furthermore, we will employ the following conventions:

• Triangulated categories will be denoted by the letters A,B,C, . . .

• Dg-categories will be denoted by the letters A,B, C, . . .

• Objects of triangulated categories will be denoted by capital latin letters A,B,C, . . .

• Objects of dg-categories will be denoted by lowercase latin letters a, b, c, . . .

• Functors between triangulated categories will be denoted by lowercase Greek letters

α, β, . . . , with the exception of the inclusion of a subcategory S ⊂ A for which we

write iS

• Functors between dg-categories will be denoted by capital latin letters. This clash

of notation with objects of triangulated categories is justified by the fact that dg-

functors are essentially quasi-isomorphism classes of dg-bimodules, which in turn

are elements of a triangulated category

• Spherical functors between triangulated categories will be denoted by the letter Ψ.

The only exception is when the spherical functor is induced by a dg-bimodule M ,

in which case we write αM for the spherical functor

• We write TΨ and CΨ, respectively, for the twist and cotwist around a spherical

functor Ψ
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• Autoequivalences of triangulated categories will be denoted by the letter Φ

• Morphisms between objects in a triangulated category will be denoted by lowercase

English letters f, g, h, . . . , with the exception of the connecting morphism in the

distinguished triangle defining the cotwist around a spherical functor for which we

write σ

• All the functors appearing are implicitly derived, with the exception of tensor prod-

ucts over dg-algebras and dg-categories, which we derive explicitly.

• All the subcategories appearing are assumed to be full unless otherwise stated.

We want to reassure the reader that the possible clash of notation between objects of

dg-categories and morphisms between objects in a triangulated category will not happen

because we will never have more than three dg-categories at once at any point in the

thesis, and we always start to name morphisms from the letter f .

Finally, throughout the whole thesis we will adopt the following convention when

defining a dg-algebra: if we do not mention the differential, it means that it is identically

zero.

2.3 Triangulated categories

2.3.1 Semiorthogonal decompositions

In this first section we introduce semiorthogonal decompositions of triangulated categories.

This notion is now quite classical and it was introduced by Bondal and Kapranov in

[BK89].

Definition 2.3.1 ([BK89]). Let A be a triangulated category. Let S1, S2, . . . , Sr ⊂ A be

triangulated subcategories of A, and write iSk : Sk ↪→ A for their inclusions. We say that

S1, S2, . . . , Sr give a semiorthogonal decomposition (SOD) of A if

1. HomA(iSk(Sk), iSj(Sj)) = 0 for any Sk ∈ Sk, Sj ∈ Sj and k > j

2. for any A ∈ A there exist objects Ei ∈ A, i = 1, . . . , r, and maps

0 = Er → Er−1 → · · · → E1 → E0 = A

such that cone(Ei → Ei−1) ∈ Si for any i = 1, . . . , r

In this case, we write A = 〈S1, S2, . . . , Sr〉.
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Definition 2.3.2. Given an SOD A = 〈S1, S2, . . . , Sr〉 we define its projection functors as

πSi : A→ Si A 7→ cone(Ei → Ei−1)

where A ∈ A and the Ei’s are defined in Definition 2.3.1 (2).

Remark 2.3.3. The semiorthogonality property Definition 2.3.1 (1) implies that the fil-

tration of Definition 2.3.1 (2) is functorial, by which we mean that the Ei’s, the maps

Ei → Ei−1, and the Ai’s are uniquely defined up to unique isomorphism. Thus, the pro-

jection functors are well defined. Moreover, it is easy to see that π1 is the left adjoint to

the inclusion iS1 : S1 ↪→ A, and that πr is the right adjoint to the inclusion iSr : Sr ↪→ A,

see [Bon89, Lemma 3.1].

For the convenience of the reader, and because it will be the main case of interest in

most of the thesis, we spell out the definition in the case r = 2.

Let us consider two triangulated subcategories S1, S2 ⊂ A. Then, according to the

above definition, they give an SOD of A if HomA(iS2(S2), iS1(S1)) = 0 for any Si ∈ Si,

i = 1, 2, and for any A ∈ A there exists a distinguished triangle (which is unique up to

unique isomorphism, see Remark 2.3.3)

iS2(AS2)→ A→ iS1(AS1) (2.1)

where AS1 ∈ S1, AS2 ∈ S2.

Notice that, when A = 〈S1, S2〉, by Remark 2.3.3 the inclusions iS1 : S1 ↪→ A and

iS2 : S2 ↪→ A have a left and right adjoint given by the projection functors πS1 and πS2 ,

respectively. In this case, we write

iLS1 = πS1 and iRS2 = πS2 .

Remark 2.3.4. By what we explained above, in (2.1) we have AS2 = πS2(A) = iRS2(A) and

AS1 = πS1(A) = iLS1(A). Thus, when A = 〈S1, S2〉 we have the distinguished triangle

iS2i
R
S2
→ idA → iS1i

L
S1
. (2.2)

Let us now turn back our attention to the general case. By definition, when we have

an SOD A = 〈S1, . . . , Sr〉 morphisms from objects of Sk to objects of Sj are zero for

k > j. On the other hand, morphisms from objects of Sj to objects of Sk can be rather

mysterious. Gluing functors help us to shed some light on these morphisms.

To the knowledge of the author, the first appearance of gluing functors in the literature

was [KL15, Definition 2.4].
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Definition 2.3.5. Let A be a triangulated category with an SOD A = 〈S1, S2, . . . , Sr〉.
We say that the pair (Sj, Sk), k > j, has a left gluing functor if there exists a functor

φjk : Sj → Sk and bifunctorial isomorphisms

HomA(iSj(Sj)[−1], iSk(Sk)) ' HomSk(φjk(Sj), Sk)

for any Sj ∈ Sj, Sk ∈ Sk.

Similarly, we say that the pair (Sj, Sk), k > j, has a right gluing functor if there exists

a functor φkj : Sk → Sj and bifunctorial isomorphisms

HomA(iSj(Sj)[−1], iSk(Sk)) ' HomSj(Sj, φkj(Sk))

for any Sj ∈ Sj, Sk ∈ Sk.

Remark 2.3.6. If we have an SOD A = 〈S1, S2, . . . , Sr〉 and for some k ∈ {1, . . . , r} the

functor iSk has a left adjoint iLSk , then φjk = iLSkiSj [−1] is a left gluing functor for the pair

(Sj, Sk) for any k > j. Similarly, if iSj has a right adjoint iRSj , then φkj = iRSj iSk [1] is a right

gluing functor for the pair (Sj, Sk) for any k > j.

Remark 2.3.7. Notice that, by the Yoneda lemma, if a left gluing functor for the couple

(Sj, Sk) exists, then it is unique up to isomorphism. Similarly, if a right gluing functor

exists, it is unique up to isomorphism.

Gluing functors will play a prominent role in § 3. For some examples of gluing functors,

the reader can have a look at § 2.4.7.

2.3.2 Inducing SODs and compactness

Among all triangulated categories we will be interested in those containing arbitrary small

direct sums. This is because having all small direct sums allows us to use theorems such

as Brown representability and the adjoint functor theorem [Nee96], which tell us when a

functor has a right adjoint, see Remark 2.3.29.

Definition 2.3.8. Let A be a triangulated category.

i) A is called cocomplete if it is closed under arbitrary small direct sums.

ii) An object A ∈ A is called compact if for every family of objects Bi ∈ A the canonical

morphism

⊕HomA(A,Bi)→ HomA(A,⊕Bi)

is an isomorphism. The subcategory of compact objects is denoted by Ac.
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iii) A subcategory S ⊂ A is called localising if it is closed under small direct sums in A.

iv) If B is another cocomplete triangulated category, we say that a functor α : A→ B

a) is cocontinuous if for every family of objects Ai ∈ A the canonical morphism

⊕α(Ai)→ α(⊕Ai),

obtained by applying α to the morphisms Aj → ⊕Ai, is an isomorphism

b) preserves compactness if α(Ac) ⊂ Bc

Remark 2.3.9. Requiring A to be cocomplete is almost always not restrictive because one

can formally add direct sums by passing to the ind-completion Ind(A) and then recover

A by taking the compact objects of Ind(A), see e.g. [KS06, Exercise 6.1 (iii)] or [Lur09,

Proposition 5.3.5.11] for a more recent account in the framework of (∞, 1)-categories.

Notice that this argument works only if A is idempotent complete1 because otherwise

A ( Ind(A)c.

Remark 2.3.10. Notice that if S ⊂ A is localising, then iS : S ↪→ A is cocontinuous.

Remark 2.3.11. If α : A→ B is a cocontinuous functor, then its essential image imα ⊂ B

is a localising subcategory of B.

Remark 2.3.12. Notice that, by definition, if we have a distinguished triangle of functors

α1 → α2 → α3 and two of the three functors are cocontinuous, so is the third.

Remark 2.3.13. Not all abstractly cocomplete subcategories of a cocomplete category are

localising. For example, consider f : X → Y a map of Noetherian schemes over a field

k of characteristic zero such that f∗ does not preserve compactness and f∗OX ' OY ,

e.g. a resolution of rational singularities. Then, f× = (f∗)
R is a fully faithful functor

by [Nee18a, Remark 6.1.1]. In particular, f×Dqc(Y ) ⊂ Dqc(X) is abstractly cocomplete,

but the inclusion functor is not cocontinuous because its left adjoint is f∗, which does not

preserve compactness.

Example 2.3.14. If X is a separated scheme of finite type over a field k, and Dqc(X)

is the derived category of quasi-coherent sheaves on X, then Dqc(X) is cocomplete and

Dqc(X)c = Dperf(X), i.e., the compact objects in Dqc(X) are the perfect complexes:

complexes which are locally quasi-isomorphic to a complex of locally free sheaves of finite

rank, see [Nee96].

The next notion we concern ourselves with answers the following question: when is it

true that subcategories of categories possessing an SOD inherit an SOD?

1A category A is called idempotent complete if given any A ∈ A and any p : A→ A such that p2 = p
there exists E ∈ A and morphisms i : E → A, r : A→ E, such that ri = idA and ir = p.
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Definition 2.3.15 ([Kuz11, § 3]). Let S ⊂ A be a triangulated subcategory and assume

that we have an SOD A = 〈S1, S2, . . . , Sr〉 with projection functors πSi , i = 1, . . . , r. We

say that the SOD of A induces an SOD of S if for any i = 1, . . . , r we have πSi(S) ⊂ S.

Remark 2.3.16. If S ⊂ A = 〈S1, S2, . . . , Sr〉 and the SOD of A induces an SOD of S, then

we have S = 〈S1 ∩ S, S2 ∩ S, . . . , Sr ∩ S〉.

The following lemma explains when an SOD of a cocomplete triangulated category A

induces an SOD of Ac.

Lemma 2.3.17. Let A = 〈S1, . . . , Sr〉 be an SOD of a cocomplete triangulated category.

Assume that the Si’s are localising subcategories, and that there exist left gluing functors

φij : Si → Sj for any i < j. If φij preserves compactness for any i < j, then the SOD

of A induces an SOD of Ac. Furthermore, the inclusion functors Si ↪→ A, i = 1, . . . , r,

preserve compactness and we have Ac = 〈Sc
1, . . . , S

c
r〉.

Remark 2.3.18. If A = 〈S1, . . . , Sr〉 is an SOD and the Si are localising subcategories, then

the projection functors πSi are cocontinuous. Even more is true, namely if Ej, j ∈ J , is

a family of objects in A, then the filtration in Definition 2.3.1 (2) for ⊕jEj is the direct

sum of the filtrations for the objects Ej. This property follows from the uniqueness of

the filtration, see Remark 2.3.3, and by the fact that the categories Si are localising.

Proof of Lemma 2.3.17. We prove the case r = 2 for simplicity, the general case can be

proved with similar arguments.

Notice that an object A ∈ A is compact if and only if the functor Hom•A(A,−) is

cocontinuous. We will use this equivalent characterisation in the course of the proof

because it will allow us to speak of distinguished triangles rather than of long exact

sequences. Moreover, to ease the notation, we write φ = φ12.

First, we prove that

S1 ∩Ac = Sc
1 and S2 ∩Ac = Sc

2. (2.3)

The inclusions S1∩Ac ⊂ Sc
1 and S2∩Ac ⊂ Sc

2 are obvious, therefore we only have to prove

the reverse inclusions. The functor iS2 has a cocontinuous right adjoint by Remark 2.3.18,

thus it preserves compactness, and we get S2∩Ac ⊃ Sc
2. Now take S1 ∈ Sc

1 and A ∈ A, and

apply Hom•A(iS1(S1),−) to the distinguished triangle (2.1) for A. We get the distinguished

triangle

Hom•A(iS1(S1), iS1i
L
S1

(A))→ Hom•A(iS1(S1), A)→ Hom•A(iS1(S1), iS2i
R
S2

(A)).

Let us consider the previous triangle as a triangle of functors in the variable A ∈ A. Then,

the functor Hom•A(iS1(S1), iS1i
L
S1

(A)) ' Hom•S1(S1, i
L
S1

(A)) is cocontinuous in A because S1
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is compact and iLS1 is cocontinuous by Remark 2.3.18. Moreover, the functor

Hom•A(iS1(S1), iS2i
R
S2

(A))) ' Hom•S2(φ(S1)[1], iRS2(A))

is cocontinuous in A because S1 is compact, φ preserves compactness, and iRS2 is cocontin-

uous by Remark 2.3.18. Hence, the functor Hom•A(iS1(S1), A) is cocontinuous in A, i.e.,

iS1(S1) is compact and Sc
1 ⊂ S1 ∩Ac. Thus, (2.3) is proved.

Now that we have established (2.3), to conclude we only have to prove that the SOD of

A induces an SOD of Ac. Indeed, then it will follow that Ac = 〈S1∩Ac, S2∩Ac〉 = 〈Sc
1, S

c
2〉.

By Definition 2.3.15, to prove that the SOD of A induces an SOD of Ac we have

to prove that iLS1 and iRS2 send Ac to S1 ∩ Ac and S2 ∩ Ac, respectively. However, by

(2.3) this is equivalent to say that iLS1 and iRS2 preserve compactness. We prove the latter

claim. The functor iLS1 preserves compactness because its right adjoint is cocontinuous by

Remark 2.3.10. To prove that iRS2 preserves compactness we take S2 ∈ S2 and A ∈ Ac, we

apply Hom•A(−, iS2(S2)) to the distinguished triangle (2.1) for A, and we proceed as we

did above to show that Hom•S2(i
R
S2

(A), S2) is cocontinuous in the variable S2 ∈ S2.

Similarly, one can prove

Lemma 2.3.19. Let A = 〈S1, . . . , Sr〉 be an SOD of a cocomplete triangulated category.

Assume that the Si’s are localising subcategories, and that there exist right gluing functors

φji : Sj → Si for any i < j. If φji preserves compactness for any i < j, then the SOD

of A induces an SOD of Ac. Furthermore, the inclusion functors Si ↪→ A, i = 1, . . . , r,

preserve compactness and we have Ac = 〈Sc
1, . . . , S

c
r〉.

Remark 2.3.20. In general, it is not true that SODs of A induce SODs of Ac. For a

counterexample, see Example 2.4.31.

Before concluding this subsection, we focus on a particular type of SOD that will play

a fundamental role in § 4.

Definition 2.3.21. Let S1, S2, S3, S4 ⊂ A be four triangulated subcategories. We say

that they give a four periodic SOD of A if we have the following SODs

A = 〈S1, S2〉 = 〈S2, S3〉 = 〈S3, S4〉 = 〈S4, S1〉.

The following lemma shows that four periodic SODs always induce SODs of compact

objects.

Lemma 2.3.22. Assume we have a four periodic SOD

A = 〈S1, S2〉 = 〈S2, S3〉 = 〈S3, S4〉 = 〈S4, S1〉 (2.4)
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where Sj is a localising subcategory for every j. Then, the SODs in (2.4) induce SODs of

Ac. Furthermore, Sc
j = Sj ∩Ac for every j, and we have a four periodic SOD

Ac = 〈Sc
1, S

c
2〉 = 〈Sc

2, S
c
3〉 = 〈Sc

3, S
c
4〉 = 〈Sc

4, S
c
1〉.

Proof. By the symmetry of the situation, it is enough to prove that A = 〈S1, S2〉 induces

an SOD of Ac, that Sc
j = Sj ∩Ac for j = 1, 2, and that we have Ac = 〈Sc

1, S
c
2〉. We prove

this statement.

From the fourth SOD in (2.4) and Remark 2.3.3, we see that iS1 has a right adjoint iRS1 .

Moreover, as S1 and S4 are localising, by Remark 2.3.18 the functor iRS1 is cocontinuous.

Hence, by Remark 2.3.6 the SOD A = 〈S1, S2〉 has a right gluing functor φ21 = iRS1iS2 [1]

that is cocontinuous, and therefore the statement follows from Lemma 2.3.19.

2.3.3 Admissibility

A notion that is strictly related to that of an SOD is that of admissibility.

Definition 2.3.23. Let A be a triangulated category and S ⊂ A be a triangulated

subcategory. We say that S is left admissible if the inclusion functor iS : S ↪→ A has a

left adjoint. Similarly, S is right admissible if iS has a right adjoint. We say that S is

admissible if it is both left and right admissible.

By Remark 2.3.3, we know that if we have an SOD A = 〈S1, . . . , Sr〉, then S1 is left

admissible and Sr is right admissible. There is a converse statement due to Bondal that

we now recall.

Given S ⊂ A, we define its right orthogonal as

S⊥ = {A ∈ A : Hom•A(S,A) = 0 ∀S ∈ S}.

Similarly we define its left orthogonal ⊥S.

Lemma 2.3.24 ([Bon89]). Let A be a triangulated category and S ⊂ A be a triangulated

subcategory. Then, S is left admissible if and only if we have an SOD A = 〈S, ⊥S〉.
Similarly, S is right admissible if and only if we have an SOD A = 〈S⊥, S〉.

2.3.4 Generation

We conclude this section by dealing with the notion of generation in the world of trian-

gulated categories. Furthermore, we prove Lemma 2.3.31, which helps us in constructing

SODs.
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Definition 2.3.25. Let A be a triangulated category and S ⊂ A be a triangulated

subcategory. The subcategory S is called thick if it closed under taking direct summands,

i.e., if for any A1, A2 ∈ A the condition A1 ⊕ A2 ∈ S implies A1, A2 ∈ S.

Example 2.3.26. For a cocomplete triangulated category A, the subcategory of compact

objects Ac is thick.

Definition 2.3.27. Let A be a cocomplete triangulated category and {Ai} be a family

of objects in A. We define 〈{Ai}〉thick as the smallest thick triangulated subcategory of A

containing the Ai’s. Similarly, we define 〈{Ai}〉⊕ as the smallest cocomplete triangulated

subcategory of A containing the Ai’s.

We say that A is compactly generated if there exists a family of objects {Ai} ⊂ Ac

such that A = 〈{Ai}〉⊕.

Remark 2.3.28. If A is a cocomplete triangulated category such that A = 〈{Ai}〉⊕ for

some {Ai} ⊂ Ac, then Ac = 〈{Ai}〉thick. See e.g. [Sta18, Tag 09SR].

Remark 2.3.29. Now that we have defined what it means for a cocomplete triangulated

category A to be compactly generated, we can explain our interest in cocomplete trian-

gulated categories.

If α : A → B is a functor between cocomplete triangulated categories with a right

adjoint αR : A → B, then α is a cocontinuos functor. The converse is true if we assume

that A is compactly generated. Namely, [Nee96, Theorem 4.1], also known as the adjoint

functor theorem, proves that if A is compactly generated and α is cocontinuous, then α

has a right adjoint.

Example 2.3.30. If X is a separated scheme of finite type over a field k, then Dqc(X) is

compactly generated by Dqc(X)c = Dperf(X), see [Nee96].

Lemma 2.3.31. Let A be a triangulated category and S ⊂ A be a localising subcategory.

Assume that S is generated by a family of objects which are compact in A, namely S =

〈{Si}〉⊕ for some {Si} ⊂ Ac. Then, we have A = 〈S⊥, S〉.

Proof. By [Nee96, Theorem 4.1] iS has a right adjoint, i.e., S is right admissible. Then,

the result follows from Lemma 2.3.24.

2.4 Differential graded categories

As we explained in § 2.1, we will need to work in a richer framework than the one of

triangulated categories. For this reason, in this section we introduce dg-categories, their

derived categories, and functors between them. There is almost no novel mathematics in
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this chapter, and the reader well acquainted with dg-categories can safely move on to § 3.

Our main reference for the material on dg-categories is [AL17].

Let k be a fixed field. The category Mod-k is the category of differential graded

modules (dg-modules) over k, i.e., graded k-modules V =
⊕

n∈Z V
n equipped with a k-

linear endomorphism dV , called the differential, such that dV (V i) ⊂ V i+1 and d2
V = 0.

For any two dg k-modules (V, dV ), (W,dW ), we define the hom space between them as

HomMod-k((V, dV ), (W,dW )) =
⊕
n∈Z

Homn((V, dV ), (W,dW )),

where f ∈ Homn((V, dV ), (W,dW )) is a homomorphism of k-vector spaces f : V → W

such that f(V p) ⊂ W p+n. We endow this graded k-module with the differential given by

d ({fn}) = {dW ◦ fn − (−1)nfn ◦ dV }.

The tensor product of (V, dV ) and (W,dW ) is defined as (V ⊗k W )n = ⊕i+j=nV i ⊗k W j

with differential dV ⊗ id + id⊗ dW .

Definition 2.4.1. A dg-category A is a category enriched over Mod-k, i.e., for any

a1, a2 ∈ A the hom space HomA(a1, a2) is an object in Mod-k, and the composition maps

HomA(a2, a3)⊗k HomA(a1, a2)→ HomA(a1, a3)

are closed, degree zero morphism of dg-k-modules for any a1, a2, a3 ∈ A.

Remark 2.4.2. All the dg-categories considered in this thesis are assumed to be small,

i.e., the collection of objects and the collection of morphisms are sets. In the rest of the

thesis, we will drop the adjective small most of the times.

Remark 2.4.3. In the literature, there are two different definitions of dg-categories. One

requires A to be additive, the other does not. The drawback of requiring A to be additive

is that then we cannot consider a dg-algebra as a dg-category with one object. For this

reason, we do not require our dg-categories to be additive.

A dg-functor F : A → C between two dg-categories is a functor such that for any

a1, a2 ∈ A the map HomA(a1, a2)
F−→ HomC(F (a1), F (a2)) is a closed, degree zero mor-

phism in Mod-k.

Remark 2.4.4. The reader might be worried that ifA and C are additive, one should require

dg-functors to be additive, i.e., F (a1⊕ a2) ' F (a1)⊕F (a2) for any a1, a2 ∈ A. However,

every dg-functor between additive dg-categories is automatically additive because it is

k-linear.
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A right dg-module over A is a dg-functor Aop → Mod-k. The category of right dg-

modules over A is denoted by Mod-A, and for M ∈Mod-A we write Ma for the image

of a ∈ A. An example of a right dg-module is given for any a ∈ A by ha(−) = HomA(−, a).

We then get a dg-functor a 7→ ha that turns out to be fully faithful and that is called the

Yoneda embedding. In view of this embedding, it makes sense to write HomMod-A(−,−) =

HomA(−,−).

We now define the derived category of A. The aim is to invert quasi-isomorphisms,

i.e., morphisms f : M →M ′ in Mod-A such that fa is a quasi-isomorphism in Mod-k for

every a ∈ A. To achieve this goal, we quotient by acyclic modules: a module S ∈Mod-A
is called acyclic if for every a ∈ A the complex Sa is acyclic. We write Acycl(A) for the

full subcategory of acyclic modules. Then, we define the derived category of A as the

Verdier quotient

D(A) = H0(Mod-A)
/

H0(Acycl(A))

where, given a dg-category C, the category H0(C) is the category with the same objects

as C and with morphisms

HomH0(C)(c1, c2) = H0(HomC(c1, c2)) ∀ c1, c2 ∈ H0(C).

The category D(A) is a triangulated category with shift functor given by M 7→ M [1],

(M [1])a = Ma[1].

Rather than A, our main object of interest will be D(A). In particular, we are inter-

ested in constructing functors D(A)→ D(C). The way we do this is using bimodules.

Given two dg-categoriesA and C, anA-C-bimodule is a dg-functorA⊗kCop →Mod-k,

where A ⊗k Cop is the dg-category whose objects are couples (a, c) ∈ A × C and whose

morphisms are given by

HomA⊗kCop((a1, c1), (a2, c2)) = HomA(a1, a2)⊗k HomC(c2, c1).

For M an A-C-bimodule we write aMc for the image of (a, c) ∈ A ⊗k Cop. The category

of A-C-bimodules is denoted by A-Mod-C and its derived category by D(A-C).

Example 2.4.5. For a dg-category A, the diagonal bimodule is denoted by A ∈ A-Mod-A
and it is given by

a1Aa2 = HomA(a2, a1) ∀a1, a2 ∈ A.

Given a third dg-category B, one can define a tensor product functor

−⊗B − : A-Mod-B ⊗k B-Mod-C → A-Mod-C.

This functor does not induce a functor between derived categories on the nose because
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−⊗B− does not preserve acyclicity. To produce a functor between derived categories, we

need to use h-projective bimodules.

Definition 2.4.6. A module P ∈Mod-A is called h-projective if for any S ∈ Acycl(A)

we have HomH0(Mod-A)(P, S) = 0. The subcategory of h-projective modules is denoted by

P(A).

A bimodule P ∈ A-Mod-C is called A-h-projective if for any c ∈ C the module Pc is

h-projective. Similarly, we define C-h-projectivity.

For any A-h-projective bimodule P ∈ A-Mod-C the functor − ⊗A P : Mod-A →
Mod-C preserves acyclicity, and therefore descends to a functor αP (−) = −⊗AP : D(A)→
D(C). To generalise this to any bimodule M ∈ A-Mod-C we use h-projective resolutions.

Given M ∈ A-Mod-C, an h-projective bimodule P ∈ A-Mod-C is called an h-

projective resolution of M if there exists a quasi-isomorphism f : P → M . Similarly,

we define A-h-projective and C-h-projective resolutions.

As h-projective resolutions exist, see e.g. [AL17, Corollary 2.6], any bimodule M ∈
A-Mod-C induces a functor at the level of derived categories by choosing an h-projective

resolution. This functor does not depend on the resolution, and it is denoted by

αM(−) = −
L
⊗A M : D(A)→ D(C).

We now want to describe the adjoint functor to tensor product. Given M ∈Mod-A,

the A-dual of M is defined as the Aop-module that assigns to any a ∈ A the complex

HomA(M, aA) and it is denoted by MA. Thus, we get the dualising functor (Mod-A)op →
Mod-Aop, M 7→ MA. Using an h-projective resolution of M , we can derive the functor

(−)A and obtain the derived dualising functor D(A)op → D(Aop), M 7→M Ã.

These constructions can also be performed with A-C-bimodules, resulting in bimodules

rather than modules, e.g. for M ∈ A-Mod-C, we have MA ∈ C-Mod-A. Moreover,

they can be extended to functors HomC(M,−) and HomAop(M,−), of which MA is the

particular case HomAop(M,A), see [AL17, § 2.1.5].

Given M ∈ A-Mod-C, exactly as in the standard theory of modules over rings, we

have adjunctions

−⊗AM a HomC(M,−) and M ⊗C − a HomAop(M,−) (2.5)

which can be derived (using an h-projective resolution of M) to adjunctions

−
L
⊗A M a RHomC(M,−) and M

L
⊗C − a RHomAop(M,−).
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Definition 2.4.7. The unit and counit of the adjoint pair (−⊗AM,HomC(M,−)) eval-

uated at the diagonal bimodules are called trace map and action map

tr : MC ⊗AM
ξ⊗m 7→ξ(m)−−−−−−→ C act : A a7→(m7→am)−−−−−−−→ HomC(M,M)

The unit and counit of the adjoint pair (−
L
⊗A M,RHomC(M,−)) evaluated at the diag-

onal bimodules are called derived trace map and derived action map

tr : M C̃ L
⊗A M → C act : A → RHomC(M,M)

Similarly, we define the trace and action maps, and their derived counterparts, for the

adjoint pair (M ⊗C −,HomAop(M,−)).

The next question we want to tackle is: for which bimodules M are the functors

RHomC(M,−) and RHomAop(M,−) isomorphic to the tensor product with some bimod-

ule? To answer this question, we introduce the notion of perfect module.

Definition 2.4.8. A module M ∈ Mod-A is called perfect if M is a compact object in

D(A).

A bimodule M ∈ A-Mod-C is called A-perfect if for any c ∈ C the module Mc is

A-perfect. Similarly, we define C-perfectness.

Theorem 2.4.9 ([AL21, Theorem 4.1]). Take M ∈ A-Mod-C and consider the induced

functor αM : D(A)→ D(C). Then, the following are equivalent:

1. The right adjoint of αM is cocontinuous (resp. the left adjoint exists).

2. The right (resp. left) adjoint functor of αM is given by −
L
⊗C M C̃ (resp. −

L
⊗C M Ã).

3. M is C- (resp. A-) perfect.

4. αM (resp. M
L
⊗C −) preserves compactness.

Proof. In [AL21, Theorem 4.1] the equivalence between (1), (2) and (3) is proved. Thus,

we only have to show that (3) is equivalent to (4).

In [AL21, Theorem 4.1] Anno and Logvinenko also prove that M is C-perfect if and

only if αM preserves compactness. Thus, we only have to prove that M is A-perfect if and

only if M
L
⊗C − preserves compactness. This statement is proved in [AL17, § 2.1.6].

We conclude this section by defining a map that will be ubiquitous in § 3.

Definition 2.4.10. Given M ∈Mod-A and N ∈Mod-A, we define the evaluation map

as

ev : N ⊗AMA n⊗ξ 7→(m 7→nξ(m))−−−−−−−−−−→ HomA(M,N).
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Remark 2.4.11. As it is explained in [AL17, § 2], if M is A-h-projective and A-perfect,

then the evaluation map is a quasi-isomorphism for every N ∈Mod-A.

2.4.1 Restriction and induction

We now introduce induction and restriction functors, and we prove Proposition 2.4.14

(that will be useful in § 2.4.7), which tells us when the adjoint to a restriction functor is

still a restriction functor.

Definition 2.4.12. Given a dg-functor F : A → C, we define

IndF : Mod-A →Mod-C M 7→M ⊗A FC

ResF : Mod-C →Mod-A M 7→
(
a 7→MF (a)

)
where a(FC)c = HomC(c, F (a)).

The tensor-hom adjunction (2.5) tells us that we have IndF a ResF . Moreover, an

explicit computation shows IndF (ha) ' hF (a) for any a ∈ A.

The functor ResF clearly maps acyclic modules to acyclic modules, and therefore de-

scends to a functor between derived categories. The functor IndF is given by tensor prod-

uct with the bimodule FC, and thus descends to the derived category using h-projective

resolutions. We will write LIndF for the derived functor of IndF , and MF = ResF (M).

We have2

Proposition 2.4.13 ([KL15, Proposition 3.9]). The functor LIndF is left adjoint to the

functor ResF and both functors commute with arbitrary direct sums. Moreover, we have

LIndF (ha) ' hF (a).

If F induces a fully faithful functor H0(F ) : H0(A) → H0(C), then LIndF is fully

faithful. Finally, if H0(F ) is an equivalence, so is LIndF .

Proposition 2.4.14. The functor ResF has a right adjoint given by the functor

HomA(CF ,−) : Mod-A →Mod-C.

Moreover, if F has right adjoint FR, then HomA(CF ,−) ' ResFR.

Proof. Notice that the functor ResF is given by tensor product with the bimodule CF ,

that is ResF (M) = M ⊗C CF for any M ∈Mod-C. Therefore, by tensor-hom adjunction

we get the adjunction ResF a HomA(CF ,−), as we claimed.

2In [KL15] Kuznetsov and Lunts work with additive dg-categories, but Proposition 2.4.13 holds for
any small dg-category.
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Now assume that F has a right adjoint FR, that is there exists a dg-functor FR : C → A
together with natural isomorphisms of chain complexes

HomC(F (a), c) ' HomA(a, FR(c)) ∀a ∈ A, c ∈ C (2.6)

Then, for any c ∈ C and any M ∈ Mod-A we have the following chain of functorial

isomorphisms

HomA(cCF ,M) = HomA(HomC(F (−), c),M)

' HomA(HomA(−, FR(c)),M)

= HomA(h
FR(c)
(−) ,M)

'MFR(c)

= ResFR(M)c

where the isomorphism from the first to the second line follows from (2.6), and the one from

the third to the fourth line is the dg-version of the Yoneda embedding. As the above chain

of isomorphisms is functorial in c ∈ C and M ∈Mod-A, we get HomA(CF ,−) ' ResFR ,

as we wanted.

Remark 2.4.15. Notice that both ResF and ResFR preserve acyclity. Therefore, if F has

a right adjoint functor FR, then the adjunction ResF a ResFR descends to an adjunction

at the level of derived categories, and in particular we have LIndFR ' ResF .

2.4.2 Convolution of dg-modules

We now explain how to convolve morphisms of dg-modules. This operation is a lift to

Mod-A of the cone construction in D(A), and it allows us to get rid of the functoriality

issues that arise when using plain triangulated categories.

Take M,N ∈ Mod-A together with f : M → N a closed, degree 0 morphism in

Mod-A. Then, we define the convolution of f , and we denote it by {M f−→ N}, as the

dg-module that sends a ∈ A to Ma[1]⊕Na with differential given by(
dMa[1] 0

fa dNa

)

We have four obvious maps of degree zero

N
i−→ {M f−→ N} p−→M [1] and M [1]

j−→ {M f−→ N} q−→ N
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such that3

pj = idM [1] qi = idN jp+ iq = id
{M

f−→N}

d(i) = d(p) = 0 d(j) = if d(q) = −fp.

Notice that by construction {M f−→ N} ' cone(f) in D(A), and that to define a closed,

degree 0 morphism g : {M f−→ N} → G it is enough to give a closed, degree 0 morphism

h : N → G and a degree −1 morphism4 l : M → G such that hf = d(l). Then, g = lp+hq.

2.4.3 Twisted complexes

In this subsection we recall the formalism of twisted complexes of dg-modules, which we

will use in § 3.3.

Twisted complexes of dg-modules were introduced in [BK89]. The treatment presented

here is based on [AL17, § 3.1].

Let A be a dg-category, a twisted complex of A-dg-modules is a collection {Mi, αij},
i, j ∈ Z, of A-dg-modules Mi such that Mi = 0 for all but finitely many i’s, and of

morphisms of A-dg-modules αij : Mi →Mj such that

deg(αij) = i− j + 1 and (−1)jd(αij) +
∑
k

αkjαik = 0

A twisted complex is called one-sided if αij = 0 for i ≥ j.

The collection of twisted complexes of A-dg-modules can be turned into a dg-category.

For the general definition of a morphism of twisted complexes and of its differential, we

refer the reader to [AL17, § 3.1].

Here, we simply notice that, given two one-sided twisted complexes {Mi, αij} and

{Ni, βij} such that αij = 0 and βij = 0 for |i− j| ≥ 2, a collection of closed, degree zero

morphisms fi : Mi → Ni of A-dg-modules such that

βijfi − fjαij = 0 ∀ i, j ∈ Z

induces a closed, degree zero morphism of twisted complexes that we denote by

f = {fi} : {Mi, αij} → {Ni, βij} (2.7)

To any twisted complex {Mi, αij} we can associate an A-dg-module, which we call its

convolution, as follows: the underlying k-module is M = ⊕iMi[−i], while the differential

3In the above equations we make use the following shorthand notation: when we write d(q) = −fp,
we mean that d(q) is equal to minus the composition {M f−→ N} p−→M [1]

f [1]−−→ N [1].
4Notice that a degree −1 morphisms l : M → G is the same thing as a degree zero morphism l : M [1]→

G.
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is given by

d =
⊕
i

di ⊕
⊕
i,j

αij

where di is the differential of Mi[−i].
It is easy to check that in the situation we described above the morphism ⊕ifi induces

a morphism of A-dg-modules M → N , where we write N for the convolution of the

twisted complex {Ni, βij}. We call ⊕ifi : M → N the convolution of the morphism (2.7).

Remark 2.4.16. Notice that the convolution of a morphism of dg-modules f : M → N we

defined in § 2.4.2 can be interpreted as the convolution of the twisted complex {Gi, αij}
where G−1 = M , G0 = N , Gi = 0 for i 6= −1, 0, and α−10 = f , αij = 0 for i 6= −1, j 6= 0.

In the rest of this PhD thesis, we will be concerned with twisted complexes concentrated

in degree 0 and −1, that is twisted complexes {Mi, αij} such that Mi = 0 for i 6= −1, 0.

For this reason, we spend a few moments setting up notational conventions that will make

the text more reader-friendly.

Given a twisted complex {Mi, αij} concentrated in degree 0 and −1, we will denote it

by

M−1
α−10−−−→M0.

Given another twisted complex {Ni, βij} concentrated in degree 0 and −1 together with

two closed, degree zero morphism fi : Mi → Ni, i = 0,−1, we write

M−1 M0

N−1 N0

α−10

f−1 f0

β−10

(2.8)

for the morphism of twisted complexes f : {Mi, αij} → {Ni, βij} induced by the fi.

Remark 2.4.17. Starting from the morphism (2.8), we can first convolve the twisted com-

plexes to obtain a morphism of A-dg-modules, and then convolve the morphism of A-dg-

modules. The result of these operations is equal to the convolution of the twisted complex

{Gi, γij} where

G−2 = M−1 G−1 = M0 ⊕N−1 G0 = N0

and

γ−2−1 = (−α−10, f−1) γ−10 = f0 + β−10.

2.4.4 Bar categories

Dealing with morphisms in the derived category is rather complicated because they are

formally defined as roofs. For this reason, we now recall the formalism of bar categories as
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defined in [AL21]. From our perspective, the use of the bar category of modules is that it

gives a dg-enhancement of the derived category, and therefore it turns roofs of morphisms

into morphisms of modules.

Let us stress that there is no new result in this subsection, its only purpose is to

recall definitions and theorems. We define the bar category of (bi)modules and extend

the constructions of § 2.4 (tensor products, homs, duals) to this new category. The

main theorem is Theorem 2.4.19, which tells us that the bar category transforms quasi-

isomorphisms of A-modules into homotopy equivalences.

For the convenience of the reader, we recall that an homotopy equivalence in a dg-

category C between two objects c1, c2 ∈ C is a closed, degree zero morphism f : c1 → c2

such that H0(f) is an isomorphism.

Let us fix A a small dg-category. Then, to A we can associate its bar complex

A ∈ A-Mod-A as defined in [AL21, Definition 2.24]. The bar complex is an h-projective

bimodule that can be equipped with the structure of a unital coalgebra in the monoidal

category (A-Mod-A,⊗A,A), see [AL21, Proposition 2.33]. The counit and the comulti-

plication are denoted by τ : A → A and ∆: A → A⊗A A, respectively. It is well known

that τ is a quasi-isomorphism, and therefore A gives an h-projective resolution of the

diagonal bimodule, see [Kel94].

Definition 2.4.18 ([AL21, Definition 3.2]). The bar category of modules Mod-A is de-

fined as follows:

• The objects are given by dg-modules over A

• For any E,F ∈Mod-A set

HomA(E,F ) := HomMod-A(E,F ) := HomA(E ⊗A A, F )

• For any E ∈Mod-A we set idE ∈ HomA(E,E) to be

E ⊗A A
id⊗τ−−→ E ⊗A A

'−→ E

• For any E,F,G ∈ Mod-A the composition of E ⊗A A
f−→ F and F ⊗A A

g−→ G is

the element given by

E ⊗A A
id⊗∆−−−→ E ⊗A A⊗A A

f⊗id−−→ F ⊗A A
g−→ G

Theorem 2.4.19 ([AL21, Proposition 3.5], [AL21, Corollary 3.6]). There exist a (non-

full) inclusion

Υ: Mod-A →Mod-A
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which is the identity on objects and that sends a morphism f : M → N to the morphism

M ⊗A A
f⊗τ−−→ N ⊗A A

'−→ N.

Moreover, H0(Υ) factors through D(A) and induces a canonical equivalence

Θ : D(A)
'−→ H0

(
Mod-A

)
giving Mod-A the structure of a dg-enhancement of D(A).

Similarly one can define the bar category of bimodules A-Mod-B for two small dg-

categories A, B. In this case, the morphisms are given by

HomA-B(M,N) = HomA-Mod-B(A⊗AM ⊗B B, N)

and we have D(A-B) ' H0
(
A-Mod-B

)
.

Let us now take three small dg-categories A, B, C. Then, one can define dg-functors

−⊗B− : A-Mod-B ⊗k B-Mod-C → A-Mod-C

HomB(−,−) : A-Mod-B ⊗k
(
C-Mod-B

)op → A-Mod-C

as per [AL21, Definition 3.9, 3.10] by setting

M ⊗BN = M ⊗B B ⊗B N and HomB(N ′,M) = HomB(N ′ ⊗B B,M)

for M ∈ A-Mod-B, N ∈ B-Mod-C, and N ′ ∈ C-Mod-B.

For a fixed M ∈ A-Mod-B the functors (−⊗AM,HomB(M,−)) form an adjoint pair

Mod-A ↔ Mod-B, and similarly for (M ⊗B−,HomAop(M,−)), see [AL21, Proposition

3.14].

We define the dualising functors A-Mod-B →
(
B-Mod-A

)op
as

(−)A := HomAop(−,A) and (−)B := HomB(−,B),

see [AL21, Definition 3.31]. As showed in [AL21, Definition 3.35], one can construct

natural transformations

MA⊗A (−)→ HomAop(M,−) (2.9)

(−)⊗BMB → HomB(M,−) (2.10)

such that (2.9) is an homotopy equivalence if and only if M is A-perfect, and (2.10) is an

homotopy equivalence if and only if M is B-perfect, see [AL21, Lemma 3.36]. Here, by
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homotopy equivalence we mean that for any dg-category C the natural transformations

(2.9) and (2.10) become homotopy equivalences when evaluated at any object ofA-Mod-C
and C-Mod-B, respectively.

2.4.5 Adjunctions

In this subsection, we describe some homotopy adjoint pairs of functors. We refer to

[AL21] for a thorough treatment of this notion. In a nutshell, an homotopy adjoint pair

is a pair of functors together with a unit and a counit that satisfy the usual relations but

only up to homotopy.

One can construct natural trasformations id→ (−)AA and id→ (−)BB that are homo-

topy equivalences when evaluated at A- and B-perfect bimodules, respectively, see [AL21,

Lemma 3.32]. Using these natural transformations together with (2.9) and (2.10) we get

that for M ∈ A-Mod-B an A- and B-perfect bimodule the following form homotopy

adjoint pair of functors(
−⊗AM,−⊗BMB

)
,

(
−⊗BMA,−⊗AM

)
. (2.11)

Definition 2.4.20 ([AL21, Definition 4.2]). Fix M ∈ A-Mod-B an A- and B-perfect

bimodule. Then, the homotopy trace maps

tr : M ⊗BMA → A and tr : MB⊗AM → B

are the counit of the adjunctions (2.11) evaluated at the diagonal bimodules.

Remark 2.4.21. The reader might wonder why we do not define the homotopy action

map, whose definition can be found in [AL21, § 4.2]. The reason is that we never need

to use it as our functors will be defined using bimodules which are either h-projective,

or h-projective on the right (and thus their action map induces the derived action map).

The only thing we need to know is that the image of the homotopy action map in the

derived category gives the derived action map as defined in Definition 2.4.7, which is true

by construction, see [AL21, § 4.2].

2.4.6 Gluing of dg-categories

In this subsection, we describe the notion of gluing of dg-categories. There are two

definitions of gluing in the literature: one for general dg-categories [Tab05], and one that

works best when the dg-categories are additive [KL15].

As we are interested in the derived category of the gluing, we will see in § 2.4.6 that

choosing either model does not make a difference for us. However, we have to balance
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two facts: that we want our results to hold for general dg-categories, and that working

with additive dg-categories is sometimes easier.

The first gluing

Let us take A and B two small dg-categories, and let ϕ ∈ A-Mod-B be a bimodule.5

Following [Tab07], we define the upper triangular dg-category associated to this datum

as the dg-category B tϕ A whose objects are

Obj(B tϕ A) = Obj(B) tObj(A),

and with complexes of morphisms

HomBtϕA(x, y) =


HomB(x, y) x, y ∈ B
HomA(x, y) x, y ∈ A
yϕx y ∈ A, x ∈ B
0 x ∈ A, y ∈ B

The grading, the differential, and the composition are defined in the obvious way.

In the following, we write

iB : B ↪→ B tϕ A and iA : A ↪→ B tϕ A (2.12)

for the embedding functors.

Example 2.4.22. Let A and B two dg-algebras and V an A-B-bimodule. Then, the upper

triangular dg-algebra associated to this datum is the dg-algebra

R =

(
A V

0 B

)

with componentwise grading and differential, and composition law given by(
a1 v1

0 b1

)
·

(
a2 v2

0 b2

)
=

(
a1a2 a1v2 + v1b2

0 b1b2

)
.

If we think of A and B as dg-categories ?A and ?B with one object and endomorphism

dg-algebra A and B, respectively, then V is a ?A-?B-bimodule, and we can form the gluing

?B tV ?A. Unfortunately, the dg-categories ?R and ?B tV ?A are not equivalent: the latter

dg-category has two objects, while the former has one. However, we can notice that R

5We will reserve the letter ϕ for the bimodule we use to glue two dg-categories.
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has two idempotents

eA =

(
1A 0

0 0

)
and eB =

(
0 0

0 1B

)

such that eA + eB = 1R. Thus, R has the structure of a bimodule over the ring k ⊕ k,

and we can associate to it a dg-category with two objects and morphisms dictated by the

relations

eAReA = A eB ReB = B eAReB = V eB ReA = 0.

In other words, taking into account the (k ⊕ k)-bimodule structure, from R we recover

the gluing ?B tV ?A.

The pre-triangulated gluing

Let us now take two small dg-categories A and B, and an A-B-bimodule ϕ. Following

[KL15, § 4] we define the gluing of A and B along ϕ, and we denote it by B ×ϕ A, as

follows: its objects are given by triples (b, a, µ) where

b ∈ B a ∈ A and µ ∈ aϕb is a closed, degree 0 element,

and the morphisms are given by (here we set r1 = (b1, a1, µ1), r2 = (b2, a2, µ2))

HomB×ϕA(r1, r2) = HomB(b1, b2)⊕ HomA(a1, a2)⊕ a2ϕb1 [−1],

with a suitable choice of differential and composition law described in [KL15, § 4.1].

When A and B are additive, we write6

iB : B → R, b 7→ (b, 0, 0) and iA : A → R, a 7→ (0, a, 0) (2.13)

for the embedding functors, and

iLB : R −→ B, (b, a, µ) 7→ b and iRA : R −→ A, (b, a, µ) 7→ a (2.14)

for their left and right adjoint, respectively.

6If A and B were not addivite, we would not necessarily have a zero object.
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Relationship between the two definitions

One might wonder what is the relationship between the two definitions of gluing we gave

above. This relationship was described in [Efi20, Proposition 4.5] in terms of adjoint

functors. More precisely, one can define the dg-category of upper triangular dg-categories

and a natural functor from the category of dg-categories to the dg-category of upper

triangular dg-categories. Then, − tϕ − and − ×ϕ − are the left and right adjoint to

this functor, respectively. Moreover, B tϕ A and B ×ϕ A always have equivalent derived

categories [Efi20, Proposition 4.2], and if A and B are pre-triangulated, see e.g. [AL17, §
3.2] for the definition of this notion, so is B ×ϕ A [KL15, Lemma 4.3].

The author was not aware of the results of [Efi20] when he wrote this chapter of the

thesis. For this reason, we keep § 2.4.6 and the proof of § 2.4.7, but we will reference the

reader to the relevant papers where these results first appeared.

When B and A are additive, the relationship between the two gluings that we outlined

above can be reinterpreted as follows: the category B tϕA can be identified with the full

subcategory of B ×ϕ[1] A of objects of the form (b, 0, 0) or (0, a, 0). Moreover, the fully

faithful functor F : B tϕ A ↪→ B ×ϕ[1] A induces an equivalence of derived categories

LIndF : D(B tϕ A)
'−→ D(B ×ϕ[1] A). Indeed, we obtain fully faithfulness from Proposi-

tion 2.4.13, and then we get essential surjectivity by the fact that the essential image of

LIndF is localising, see Remark 2.3.11, and contains the set of compact generators given

by modules of the form h(b,0,0), h(0,a,0).

When the dg-categories are not additive

Consider A a small dg-category, we give the following

Definition 2.4.23. We define the additive envelope of A as the dg-category Aadd whose

objects are formal expressions

a1 ⊕ · · · ⊕ an ai ∈ A,

and whose morphisms are given by

HomAadd

(
n⊕
i=1

ai,
m⊕
j=1

bj

)
=


HomA(a1, b1) . . . HomA(an, b1)

...
...

HomA(a1, bm) . . . HomA(an, bm)


with degreewise graded decomposition, termwise differential, and composition given by

matrix multiplication.

Remark 2.4.24. Notice that the additive envelope of A can be also equivalently defined as
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the smallest additive subcategory of Mod-A containing the image of A via the Yoneda

embedding.

The category Aadd is an additive dg-category, and we have a fully faithful embedding

A ↪→ Aadd. By Remark 2.4.4, restriction along the previous embedding gives an equiv-

alence Mod-A ' Mod-Aadd whose inverse is the induction, sending M ∈ Mod-A to

Madd := M ⊗A Aadd.

Now consider A, B, and ϕ ∈ A-Mod-B, and write ϕadd = Aadd ⊗A ϕ⊗B Badd. Then,

we have a fully faithful functor of dg-categories

B tϕ A ↪→ Badd tϕadd Aadd ↪→ Badd ×ϕadd[1] Aadd (2.15)

that, as in § 2.4.6, induces inverse equivalences (recall the adjunction of Proposition 2.4.13)

LInd(2.15) : D(B tϕ A) D(Badd ×ϕadd[1] Aadd) : Res(2.15) (2.16)

2.4.7 Semiorthogonal decompositions for glued dg-categories

Let A and B be two small dg-categories, and ϕ ∈ A-Mod-B. We now wish to describe

two SODs of the category D(R), where either R = B tϕ A or R = B ×ϕ[1] A. We will

write

α1 = LIndiB , α2 = LIndiA and αR1 = ResiB , αR2 = ResiA

where iA and iB are defined in (2.12) and (2.13) in the respective cases.

By Proposition 2.4.13, the functors α1 and α2 are fully faithful. We use them to embed

the categories D(B) and D(A) in D(R). We have

Proposition 2.4.25 ([Efi20, Lemma 5.10], [KL15, Proposition 4.6]). LetR be either Btϕ
A or B ×ϕ[1] A. Then, there exists an SOD

D(R) = 〈α1(D(B)), α2(D(A))〉 (2.17)

with right gluing functor given by −
L
⊗A ϕ[1] : D(A) → D(B). Moreover, for any F ∈

D(R) there is a distinguished triangle

αR1 (F )→ αL1 (F )→ αR2 (F )
L
⊗A ϕ[1], (2.18)

where αL1 is the left adjoint of α1.

Proof. When R = B ×ϕ[1] A, this is [Efi20, Lemma 5.10] for two general dg-categories,

and [KL15, Proposition 4.6] when the dg-categories are additive. We now deduce from

the additive case the non-additive one.
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Thus, from now on A and B are just small dg-categories. Write S = Badd×ϕadd[1]Aadd.

Then, by (2.16) we have

D(B tϕ A) ' Res(2.15) (D(S)) ' 〈Res(2.15)(D(Badd)⊗LBadd S),Res(2.15)(D(Aadd)⊗LAadd S)〉

Recall that induction along the inclusions A ↪→ Aadd and B ↪→ Badd gives equivalences

between the respective categories of modules. Thus, we obtain

D(Badd)⊗LBadd S ' D(B)⊗LB Badd ⊗LBadd S ' D(B)⊗LB S

and therefore

Res(2.15)(D(Badd)⊗LBadd S) ' D(B)⊗LB Res(2.15)(S) ' D(B)⊗LB (B tϕ A).

Similarly, one proves

Res(2.15)(D(Aadd)⊗LAadd S) ' D(A)⊗LA (B tϕ A)

and therefore we get

D(B tϕ A) = 〈D(B)⊗LB (B tϕ A),D(A)⊗LA (B tϕ A)〉

which is (2.17) when A and B are not additive. To prove the statements about the gluing

functor and the distinguished triangle (2.18), one can proceed as in [KL15, Proposition

4.6].

Remark 2.4.26. Notice that, as the functor −
L
⊗A ϕ is cocontinuous, the hypotheses of

Lemma 2.3.19 are satisfied, and therefore we get D(R)c = 〈α1(D(B)c), α2(D(A)c)〉.

The second SOD of D(R) we want to construct is a mutation of the SOD (2.17).

Namely, we will move α1(D(B)) to the right and we will identify the left piece of the

SOD. The following lemma is the key step in doing so

Lemma 2.4.27. The functor αR2 has a right adjoint αRR2 : D(A)→ D(R) that is described

as follows.

1. If R = B ×ϕ[1] A for two additive dg-categories A and B, then αRR2 = ResiRA, where

iRA is defined in (2.14).

2. If R = B tϕ A, then αRR2 sends M ∈ D(A) to the module αRR2 (M) ∈ D(R) such

that

αRR2 (M)iA(a) = Ma and αRR2 (M)iB(b) = 0
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for any a ∈ A and b ∈ B.

Proof. Case (1) follows from Proposition 2.4.14 applied to F = iA and FR = iRA.

Case (2) is proved as follows. The functor αR2 commutes with arbitrary direct sums,

thus it has a right adjoint by Brown representability [Nee96]. Then, for a ∈ A we have7

αRR2 (N)iA(a) ' HomD(R)(h
iA(a), αRR2 (N))

' HomD(A)(α
R
2 (hiA(a)), N)

' HomD(A)(h
a, N) ' Na

and for b ∈ B

αRR2 (N)iB(b) ' HomD(R)(h
iB(b), αRR2 (N)) ' HomD(A)(α

R
2 (hiB(b)), N) ' 0.

Proposition 2.4.28 ([Efi20, Lemma 5.1]). Let R be either B tϕ A or B ×ϕ[1] A. Then,

there exists an SOD

D(R) = 〈αRR2 (D(A)), α1(D(B))〉 (2.19)

with left gluing functor given by −
L
⊗A ϕ : D(A)→ D(B).

Proof. We give a proof that works both for R = B ×ϕ[1] A (where A and B are additive)

and for R = B tϕ A.

By Lemma 2.4.27 we have the adjunction αR2 a αRR2 . Moreover, the descriptions of

αRR2 given in the lemma imply

αR2 α
RR
2 = idD(A) .

Thus, αRR2 is fully faithful, and by Lemma 2.3.24 we have the SOD

D(R) = 〈αRR2 (D(A)), ⊥(αRR2 (D(A)))〉.

However, ⊥(αRR2 (D(A))) = kerαR2 , and by (2.17) we know that kerαR2 = α2(D(A))⊥ =

α1(D(B)). Thus, (2.19) follows.

We are left to prove the claim for the left gluing functor. Take F ∈ D(A) and consider

the distinguished triangle (2.18) for the module αRR2 (F ). The relations αR2 α
RR
2 = idD(A)

and αR1 α
RR
2 = 0 show

αL1α
RR
2 (F ) = F

L
⊗A ϕ[1]

which proves the claim for the left gluing functor by Remark 2.3.6.

7Recall that for any dg-category C and any c1 ∈ C the module hc1 is defined as hc1c2 = HomC(c2, c1)
for any c2 ∈ C.
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Remark 2.4.29. If the bimodule ϕ is B-perfect, Theorem 2.4.9 implies that the left gluing

functor of the SOD constructed in Proposition 2.4.28 preserves compactness, and therefore

we can apply Lemma 2.3.17 to get, from (2.19), an SOD of compact objects D(R)c =

〈αRR2 (D(A)c), α2(D(B)c)〉.

Example 2.4.30. Let us consider an upper triangular dg-algebra R as in Example 2.4.22

with A = B = k and V a vector space concentrated in degree 0 such that dimk V <∞.

Such (trivial) dg-algebra can be obtained as the path algebra of a quiver with two

vertices and morphisms from the second to the first vertex indexed by elements of V :

2 1.V (2.20)

Therefore, modules over R correspond to representations of the quiver.

In this setup, Proposition 2.4.25 and Proposition 2.4.28 recover the well known full

exceptional collections given by the projective and simple modules, respectively.

More precisely, the constant paths at the two vertices of the quiver (2.20) give rise

to two simple modules S1, S2, while paths out of the vertices give rise to two projective

modules P1, P2 such that R = P1 ⊕ P2 as a right R-module. Then, the SOD (2.19) reads

D(R) = 〈S2, S1〉, while the SOD (2.17) reads D(R) = 〈P1, P2〉.
Notice that to match the SOD D(R) = 〈P1, P2〉 with the SOD (2.17) we perform tensor

products along non-unital maps of rings. Namely, if we write ei for the constant path at

the vertex i = 1, 2 of the quiver (2.20), then we have a non-unital map of rings fi : k → R

sending 1 to ei, and we have Pi = k ⊗k R, where k acts on R via fi.

Example 2.4.31. We now show that the hypotheses of Lemma 2.3.17 are not redundant.

Consider the upper triangular dg-algebra

R =

(
k V

0 k

)

where V = ⊕n≥0k is concentrated in degree 0. To make things clear, we will denote the

top left k as k1, and the bottom right k as k2. From Proposition 2.4.28 and Example 2.4.22

we know that there exists an SOD8 D(R) = 〈D(k1),D(k2)〉 with left gluing functor given

by −
L
⊗k V : D(k1) → D(k2). As V is not perfect, Remark 2.4.29 does not apply and

we cannot deduce an SOD for compact objects. Indeed, such a decomposition cannot

exist because the inclusion of D(k1) does not preserve compactness. To see this, consider

the module k1[−1] ∈ D(k1) as a module over R via the projection map R → k1. As a

module over k1, this module is compact. Let us consider the module
⊕

n≥0 k2 ∈ D(k2) as

8Notice that we necessarily need to use this SOD, as by Remark 2.4.26 the one of Proposition 2.4.25
always induces an SOD of compact objects.
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a module over R. Then, we have

HomD(R)(k1[−1],
⊕
n≥0

k2) ' HomD(k2)(
⊕
n≥0

k2,
⊕
n≥0

k2) '
∏
n≥0

(⊕
n≥0

k2

)
,

whereas

⊕
n≥0

HomD(R)(k1[−1], k2) '
⊕
n≥0

HomD(k2)(
⊕
n≥0

k2, k2) '
⊕
n≥0

(∏
n≥0

k2

)
,

proving that k1[−1] is not compact in D(R).

Remark 2.4.32. The existence of the SOD in Proposition 2.4.28 is motivated by [HLS16,

Theorem 3.15] and the discussion preceding it. Let us explain the difference between

(2.17) and (2.19). This is best understood by looking at modules over rings. Assume we

have two rings R and A, and two morphisms i : A → R, g : R → A such that gi = idA.

Starting from an A-module NA we can produce two different R-modules. Namely, we can

either consider NA with the structure of R-module given by g, i.e. we restrict the action,

or we can consider the R-module NA⊗AR (in this case we are inducing the action via i).

The first construction corresponds to the functor Resg, while the second one corresponds

to Indi. Hence, in (2.17) we are inducing the R-module structure, whereas in (2.19) we

are restricting it.

We conclude this subsection by showing that SODs similar to (2.17) and (2.19) exists

for left modules, i.e., for D(Rop). Indeed, it is clear that (B tϕ A)op ' Aop tϕ Bop, where

ϕ ∈ A-Mod-B = Bop-Mod-Aop, and by [KL15, Lemma A.1] we have (B ×ϕ[1] A)op '
Aop ×ϕ[1] Bop.

Therefore, if we write

β1 = LIndiopA , β2 = LIndiBop and βR1 = ResiopA , βR2 = ResiopB

and βRR2 for the right adjoint to βR2 , we have

Proposition 2.4.33. Let R be either B tϕ A or B ×ϕ[1] A. Then, there exists an SOD

D(Rop) = 〈β1(D(Aop)), β2(D(Bop))〉

with right gluing functor given by ϕ[1]
L
⊗B − : D(Bop) → D(Aop). Moreover, we have an

SOD

D(Rop) = 〈βRR2 (D(Bop)), β1(D(Aop))〉

with left gluing functor given by ϕ
L
⊗B − : D(Bop)→ D(Aop).
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2.4.8 Modules and bimodules on glued categories

Let A, B be two small dg-categories and consider ϕ ∈ A-Mod-B a bimodule. For the

rest of this section, R will denote either B tϕ A or B ×ϕ[1] A.

We now describe the notation we will use to work with modules over R. We follow

[AL19, § 7.2].

A module F ∈Mod-R can be described as a couple(
FA FB

)
of an A-module FA and a B-module FB together with a closed, degree 0 morphism ρF ∈
HomB(FA ⊗A ϕ, FB) that we call the structure morphism. A morphism f : F → G of

degree i is given by a couple of degree i morphisms (fA : FA → GA, fB : FB → GB) such

that the following diagram commutes

FA ⊗A ϕ FB

GA ⊗A ϕ GB

fA⊗id

ρF

fB

ρG

(2.21)

Differential and composition are computed componentwise. Notice that this description

of the category Mod-R mirrors the SOD of Proposition 2.4.28.

The category Mod-Rop admits a similar description: objects are couples9

(
FA FB

)t
together with a structure morphism ρF : ϕ ⊗B FB → FA, and morphisms are couples

making an analogue of (2.21) commute.

The category R-Mod-R can be described as follows: a bimodule is given by a matrix

of bimodules (
AFA AFB

BFA BFB

)
together with a closed, degree 0 structure morphism

ρF ∈HomA-B(AFA ⊗A ϕ,AFB)⊕ HomB-B(BFA ⊗A ϕ, BFB)⊕

⊕ HomA-A(ϕ⊗B (BFA),AFA)⊕ HomA-B(ϕ⊗B (BFB),AFB)

9We think of them as column vectors.
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whose components make the following diagram commute

ϕ⊗B (BFA)⊗A ϕ ϕ⊗B (BFB)

AFA ⊗A ϕ AFB.

Morphisms of degree i are matrices of morphisms of degree i that commute with the com-

ponents of the structure morphism in way similar to (2.21). Differential and composition

are computed componentwise.

The diagonal bimodule R is given by the matrix(
A ϕ

0 B

)

with the obvious structure morphisms, whereas the bar complex R is described10 by the

matrix  A
{
A⊗A ϕ⊗B B

(−id⊗2⊗τ,τ⊗id⊗2)−−−−−−−−−−→ (A⊗A ϕ)⊕ (ϕ⊗B B)

}
0 B

 (2.22)

whose structure morphism components are given in [AL19, (7.16)].

Using (2.22) one can give a description of Mod-R. Objects are the same as before. A

morphism f : F → G of degree i in Mod-R is a triple (fA, fB, fAB) of degree (i, i, i − 1)

morphisms

FA GA FB GB FA⊗A ϕ GB
fA fB fAB

in Mod-A, Mod-B, and Mod-B, respectively. The composition law can be found in

[AL19, § 7.2]. The differential is given by

FA GA FB GB FA⊗A ϕ GB
d(fA) d(fB) d(fAB)−(−1)i(fB◦ρF−ρG◦(fA⊗ id))

(2.23)

2.4.9 Compatibilities: induction, restrictions, and SODs

We now explain how one switches between an R-module and its matrix description, and

how the matrix notation is related to induction and restriction along the functors (2.13)

and the SODs of § 2.4.7. We consider only the case R = B tϕ A because this is what we

10The word described here should be read as homotopy equivalent. Indeed, the bar complex R is
not equal to the bimodule described by the matrix (2.22) but merely homotopy equivalent to it, as
Lemma 3.2.1 shows (notice that both (2.22) and R are h-projective bimodules). The point is that (2.22)
is the bar complex of R when we consider R as a k ⊕ k bimodule, where the two copies of k act via the
identity of A and B.
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will use, but the case R = B ×ϕ[1] A is analogous.

First, let us take F ∈ Mod-R, then FB and FA are given by restricting along the

functors (2.13), i.e., we have

ResiA(F ) = FA ResiB(F ) = FB. (2.24)

The structure morphism is given by the right action of R on FA, namely

ρF : FA ⊗A ϕ ' ResiB(FA ⊗A R)→ FB.

Conversely, given
(
FA FB

)
together with a structure morphism ρF , the associated

R-module sends

A 3 a 7→ (FA)a and B 3 b 7→ (FB)b.

Similarly, if F ∈Mod-Rop, then we have

ResiAop (F ) = FA ResiBop (F ) = FB

and the module associated to
(
FA FB

)t
sends

A 3 a 7→ aFA and B 3 b 7→ bFB. (2.25)

From (2.24) we see that the projection functors of the SOD of Proposition 2.4.28 send

a module F ∈ D(R) to its components FA ∈ D(A) and FB ∈ D(B). The left adjoint to

LIndiB , which is the remaining projection functor of the SOD of Proposition 2.4.25, sends

a module F ∈ D(R) to LIndLiB(F ) ' cone(FA ⊗A ϕ
ρF−→ FB).

Finally, if M ∈Mod-A and N ∈Mod-B, then by (2.24) we have

M ⊗AR =
(
M ⊗AA M ⊗A ϕ

)
N ⊗BR =

(
0 N ⊗B B

)
ResRiA(M) =

(
M 0

) (2.26)

where the structure morphism of M ⊗AR is the identity morphism.

2.4.10 Compatibilities: taking cones and homotopy equivalences

Let R be either B tϕ A or B ×ϕ[1] A. We now want to explain how to take cones and

detect quasi-isomorphisms in R-Mod-R. Everything relies on the following simple
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Lemma 2.4.34. With the notation as above, we have

(1) If we have a distinguished triangle M1 →M2 →M3 in D(R-R), then taking the four

components of M1, M2 and M3 we obtain distinguished triangles in the respective

derived categories.

(2) A bimodule M ∈ R-Mod-R is quasi-isomorphic to zero if and only if its components

are quasi-isomorphic to zero.

Proof. The statement (1) follows from the fact that taking components means applying

a restriction functor, which is a triangulated functor.

Let us prove (2) in the case R = B tϕ A. Notice that we have

Rop ⊗k R ' (Rop ⊗k B) tϕ (Rop ⊗k A)

where ϕ = R⊗k ϕ ∈ (Rop ⊗k A)-Mod-(Rop ⊗k B). Therefore, we get

D(R-R) = D(Rop ⊗k R) ' D((Rop ⊗k B) tϕ (Rop ⊗k A)).

Applying Proposition 2.4.28 to the above equivalence, we obtain the SOD

D(R-R) = 〈ResRjA(D(Rop ⊗k A)), LIndjB(D(Rop ⊗k B))〉

where
jA : Rop ⊗k A ↪→ (Rop ⊗k B) tϕ (Rop ⊗k A)

jB : Rop ⊗k B ↪→ (Rop ⊗k B) tϕ (Rop ⊗k A)

are the embeddings defined in (2.12). Notice that the projection functors of the above

SOD are given by N 7→ NA and N 7→ NB for N ∈ D(R-R). Hence, M ∈ R-Mod-R
is quasi-isomorphic to zero if and only if MA ∈ R-Mod-A and MB ∈ R-Mod-B are

quasi-isomorphic to zero. To conclude, we notice that we have Rop ' Aop tϕ Bop, where

ϕ ∈ A-Mod-B ' Bop-Mod-Aop, and therefore we can apply Proposition 2.4.28 to

D(R-A) = D(Rop ⊗k A) = D(A⊗k Rop) = D((A⊗k Aop) tA⊗kϕ (A⊗k Bop))

to show that MA is quasi-isomorphic to zero if and only if AMA and BMA are. Similarly we

apply Proposition 2.4.28 to D(R-B) = D(B ⊗kRop) to show that MB is quasi-isomorphic

to zero if and only if AMB and BMB are quasi-isomorphic to zero.

The case R = B ×ϕ[1] A can be proven similarly using [KL15, Proposition A.2].

Corollary 2.4.35. A morphism f : M1 → M2 in R-Mod-R is a quasi-isomorphism if

and only if its components are.
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Proof. f is a quasi-isomorphism if and only cone(f) ' 0 in D(R-R). However, statement

(2) of Lemma 2.4.34 shows that this is the same thing as requiring that the components

of cone(f) are zero in the respective derived categories. In turn, by Lemma 2.4.34 (1)

this is equivalent to say that the components of f are isomorphisms in the respective

derived categories, and this is the same as saying that the components of f are quasi-

isomorphisms.

2.5 Spherical functors

In this section we introduce spherical functors, which will be the main player of § 3. We

split this section in two parts.

In the first one, we give the definition of spherical functors in the framework of dg-

categories. This is a personal choice as spherical functors can be defined using different

types of enhancements, see [DKSS21] for the (∞, 1)-categorical setup.

In the second part of this section, we prove some statements about spherical functors

that are independent of the framework one chooses to define them. Let us explain what we

mean more clearly. As being spherical is a property of the functor, it should not matter in

which framework one spells out this property, and any statement about spherical functors

that is true in one framework must be true in any framework one chooses to work with

them. However, there are statements about spherical functors that can be proved without

fixing a framework in the first place. These are the kind of statements that we prove in

§ 2.5.2.

For an introduction to spherical functors and their role in algebraic geometry, the

reader is referred to § 1.

2.5.1 Definitions

Let A and C be two small dg-categories. We begin by giving the following

Definition 2.5.1. Let M ∈ D(A-C) be an A- and C-perfect bimodule. Then, we define

the twist bimodule as the cone of the derived trace map

TM := cone(M C̃ L
⊗A M

tr−→ C) ∈ D(C-C)

and the cotwist bimodule as the shifted cone of the derived action map

CM := cone(A act−→ RHomC(M,M))[−1] ∈ D(A-A).

Let us denote TαM and CαM the endofunctors of D(C) and D(A) induced by TM and
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CM . They are called the twist and cotwist functor, respectively.

The following is the definition of a spherical functor. In this form, it is due to Rina

Anno and Timothy Logvinenko, see [AL17, Definition 5.2].

Definition 2.5.2. Let M ∈ D(A-C) be an A- and C-perfect bimodule. The bimodule

M is called a spherical bimodule, and the induced functor αM(−) = −
L
⊗A M is called a

spherical functor, if all the following hold

(i) TαM is an autoequivalence of D(C)

(ii) CαM is an autoequivalence of D(A)

(iii) The natural morphism αLMTαM [−1]→ αLMαMα
R
M → αRM is an isomorphism

(iv) The natural morphism αRM → αRMαMα
L
M → CαMα

L
M [1] is an isomorphism

Remark 2.5.3. The natural transformations of (iii) and (iv) come from the definition of

the functors TαM and CαM .

Namely, by definition TαM sits in the distinguished triangle αMα
R
M → idD(C) → TαM →

αMα
R
M [1]. Thereofore, we get a morphism αLMTαM [−1] → αLMαMα

R
M , and then we get

to αRM by evaluating on αRM the counit αLMαM → idD(A) coming from the adjunction

αLM a αM . Similarly, one constructs the natural morphism in (iv).

The following is one of the central theorems of the theory of spherical functors11

Theorem 2.5.4 ([AL17, Theorem 5.1]). If any two conditions of Definition 2.5.2 are

satisfied, then all four are satisfied.

Notice that by definition, we have a distinguished triangle12

M
L
⊗C M C̃[−1]→ CM → A

act−→ RHomC(M,M) 'M
L
⊗C M C̃

in D(A-A). The morphism

M
L
⊗C M C̃[−1]→ CM (2.27)

will play an important role in § 3. Let us remark that the couple (CM , (2.27)) is defined

only up to (non-unique) isomorphism in the derived category.

Remark 2.5.5. Notice that under the isomorphism αRM ' CαMα
L
M [1] the counit αLMαM →

idD(A) is identified with the morphism αRMαM → CαM [1] induced by (2.27). Indeed, as

11Theorem 2.5.4 provides a great example of the shortcomings of the theory of triangulated categories.
Indeed, the same result cannot be proved in the realm of triangulated categories, even though it is still
conceptually correct, see also the introduction to [AL17].

12The isomorphism follows from the fact that the evaluation map for M is a quasi-isomorphism, see
Remark 2.4.11.
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the units and counits of the adjunctions αLM a αM a αRM are induced by the derived trace

and action maps, see e.g. [AL17, § 2.3], the morphism

M
id⊗act−−−−→M

L
⊗C M Ã L

⊗A M
tr⊗id−−−→M

is the identity in D(A-A), and therefore the following diagram commutes in D(A-A)

M
L
⊗C M C̃ M

L
⊗C M Ã L

⊗A M
L
⊗C M C̃ M

L
⊗C M Ã L

⊗A CM [1]

M
L
⊗C M C̃ CM [1]

id

id⊗act⊗id id⊗2⊗(2.27)

tr⊗id

(2.27)

2.5.2 Model independent statements

As explained at the beginning of § 2.5, in this subsection we prove statements about

spherical functors that do not require us to fix a framework to work with them. For this

reason, the reader can think of the triangulated categories of this subsection as being

enhanced via either dg-categories or (∞, 1)-categories.

When working with spherical functors in this more relaxed way, Definition 2.5.2 takes

the following equivalent form.

Definition 2.5.6. Let A and C be two (cocomplete) enhanced triangulated categories

and Ψ: A → C be a (cocontinuous) functor. We say that Ψ: A → C is spherical if it is

has (cocontinuous) left and right adjoints ΨL, ΨR, and the functors

TΨ := cone(ΨΨR → idC) and CΨ := cone(idA → ΨRΨ)[−1]

are equivalences. We will call TΨ the twist and CΨ the cotwist around Ψ, respectively.

The following lemma explains the relation between four periodic SODs and spherical

functors.

Lemma 2.5.7 ([BB15],[HLS16]). Let A be a (cocomplete) triangulated category and as-

sume we have a four periodic SOD

A = 〈S1, S2〉 = 〈S2, S3〉 = 〈S3, S4〉 = 〈S4, S1〉

where Sj is a (localising) triangulated subcategory for every j = 1, 2, 3, 4. Then, the functor

Ψ := iRS4iS1 is spherical and we have

T−1
Ψ = iRS4iS2i

R
S2
iS4
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Conversely, any spherical functor arises from a four periodic SOD as above.

Proof. The adjoints to Ψ are constructed in [BB15, Proposition B.3]. Moreover, Bodzenta

and Bondal also prove that the twist and the cotwist around Ψ are equivalences, and the

formula for T−1
Ψ stated above. Therefore, according to Definition 2.5.6, we only have to

show that when A is cocomplete and the subcategories Sj are localising, then the adjoints

to Ψ are cocontinuous.

The left adjoint ΨL is cocontinuous because every left adjoint is cocontinuous. To

show that ΨR is cocontinuous it is enough to show that Ψ = iRS4iS1 preserves compactness.

By Lemma 2.3.22 we know that Sc
1 = S1 ∩ Ac, and therefore iS1 preserves compactness.

Moreover, again by Lemma 2.3.22, we know that the projection functors of the SOD

A = 〈S3, S4〉 preserve compactness. However, by Remark 2.3.3 iRS4 is a projection functor

of this SOD, and thus it preserves compactness. Hence, Ψ = iRS4iS1 preserves compactness

because the functors iRS4 and iS1 do.

The converse statement that any spherical functor arises from a four periodic SOD

is [HLS16, Theorem 3.11] in the framework of dg-categories, and [DKSS21, Proposition

2.5.12] in the framework of (∞, 1)-categories.
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Chapter 3

Composition of spherical twists

While § 2 dealt with preliminaries and definitions, in this chapter we begin to explore the

mathematical advances presented in this thesis.

The focus of this chapter is on spherical functors. We will answer the following ques-

tion, which we stated in § 1: how do we represent the composition of two spherical twists

around two spherical functors as the twist around a single spherical functor?

Let us briefly recall the setup. We have a triangulated category C and two autoequiv-

alences ΦA,ΦB ∈ Aut(C) realised as the spherical twists around the spherical functors

αA : A → C and αB : B → C, respectively, and we ask how can we represent the autoe-

quivalence ΦBΦA ∈ Aut(C) as a spherical twist around a spherical functor.

In a nutshell, the answer is that we glue the source categories and the spherical func-

tors. Let us give an heuristic explanation of why this is the correct answer. Recall that

by definition

TαA
= cone(ηA : αAα

R
A → idC) and TαB

= cone(ηB : αBα
R
B → idC),

where ηA and ηB are the counit of the adjunctions αA a αRA and αB a αRB, respectively.

Then, we have the commutative diagram

αBα
R
BαAα

R
A αAα

R
A

αBα
R
B idC

ηA

ηB

ηA

ηB

(3.1)

whose rows have cones isomorphic to TαB
αAα

R
A and TαB

, respectively, and whose columns

have cones isomorphic to αBα
R
BTαA

and TαA
, respectively.

At this point we would like to apply the octahedral axiom, but if we do so in the

realm of triangulated categories we do not have the control we need to bring our proofs

to conclusion. For this reason, we lift the above commutative square to a diagram of
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dg-bimodules (we always work in an enhanced framework, so we can perfom this lift),

and then we apply [AL17, Lemma 3.6], which is a dg-version of the octahedron axiom.

We will spell out all the details in the rest of this chapter, but to conclude the heuristic

explanation we began, we present the reader with the final outcome. That is, from the

commutative square (3.1) we obtain the commutative diagram

αBα
R
BαAα

R
A αAα

R
A TαB

αAα
R
A

αBα
R
B idC TαB

αBα
R
BTαA

TαA
∗

ηA

ηB

ηA TαB (ηA)

ηB

ηB

(3.2)

whose rows and columns are distinguished triangles.

Therefore, we see that in (3.2) we have ∗ ' TαB
TαA

, and applying once more [AL17,

Lemma 3.6] to the fixed dg-lift of (3.1) we obtain that a double cone1 of the complex

αBα
R
BαAα

R
A αBα

R
B ⊕ αAα

R
A idC

(−ηB,ηA) ηB+ηA (3.3)

is isomorphic to TαB
TαA

.

This conclusion is useful for us because, using Lemma 3.2.1, we recognise that the first

two terms from the left represent the composition ββR, where

β : B tϕ A→ C ϕ = αRBαA

is the functor defined in Theorem 1.3.1, and B tϕ A is the gluing of B and A along ϕ as

defined in § 2.4.6. Therefore, we get the distinguished triangle

ββR → idC → TαB
TαA

that we take as a hint that we are moving in the right direction.

Even though the strategy outlined above is indeed the one we will use to prove the

validity of Theorem 1.3.1, there are many technicalities we skipped over. On top of other

things, such as giving a complete description of the cotwist around β in full generality, and

describing its properties in some examples, we will take care of all the relevant technical

points in the present chapter.

In § 3.4 and § 3.5, we will specialise our results to the case of spherical twists around

spherical objects and and P-twist around P-objects. In the former case, we prove that the

1Notice the article: double cones are not unique.
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cotwist around the glued spherical functor is, up to shift, the Serre duality functor, see

Theorem 3.4.11.

Arguably, Theorem 3.1.4 below, which is the formal version of Theorem 1.3.1, is a very

abstract result. Nevertheless, we will provide plenty of examples that show that gluing of

spherical functors appear naturally in many geometric situations, see e.g. Example 3.4.8,

Example 3.4.10, and § 4.

3.1 The setup and the main result

First of all, let us state Theorem 1.3.1 in a more precise way by making use of the

formalism for spherical functors that we introduced in § 2.5.1.

Let A,B and C be three small dg-categories over a field k, and let M ∈ D(A-C)
and N ∈ D(B-C) be two spherical dg-modules as per Definition 2.5.6. Let us fix Mh ∈
A-Mod-C and Nh ∈ B-Mod-C two h-projective resolutions of M and N , respectively.

Then, we define:

(1) RMh,Nh = B tϕMh,Nh A as the gluing of B and A along the bimodule ϕMh,Nh :=

Mh ⊗C NCh

(2) PMh,Nh as theRMh,Nh-C-bimodule given by the matrix
(
Mh Nh

)t
and the structure

morphism

ρPMh,Nh := id⊗tr : Mh ⊗C NCh ⊗B Nh →Mh

(3) CPMh,Nh as the RMh,Nh-RMh,Nh-bimodule given by the matrix(
{A act−→ HomA(Mh,Mh)}[−1] 0

Nh ⊗C MC
h [−1] {B act−→ HomB(Nh, Nh)}[−1]

)

and the structure morphisms

Nh ⊗C MC
h [−1]⊗AMh ⊗C NCh

iNh◦ev◦(id⊗tr⊗id)
−−−−−−−−−−−→ {B act−→ HomB(Nh, Nh)}[−1]

Mh ⊗C NCh ⊗B Nh ⊗C MC
h [−1]

iMh◦ev◦(id⊗tr⊗id)
−−−−−−−−−−−→ {A act−→ HomA(Mh,Mh)}[−1]

where iMh
and iNh are defined in § 2.4.2.

The following series of lemmas show that RMh,Nh , PMh,Nh and CPMh,Nh only depend

on M and N , and not on the chosen h-projective resolutions.
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Lemma 3.1.1. Let Mh,M
′
h ∈ A-Mod-C be two h-projective resolutions of M , and

Nh, N
′
h ∈ B-Mod-C be two h-projective resolutions of N . Then, RMh,Nh is quasi-equivalent

to RM ′h,N
′
h
.

Proof. Both Mh and M ′
h are h-projective resolutions of M . Thus, there exists morphism

f : M ′
h → Mh in Mod-A that is a quasi-isomorphism . Similarly, there exists a quasi-

isomorphism g : N ′h → Nh.

As the dualisation functor (−)C induces a controvariant quasi-equivalence of the cat-

egory of C-h-projective, C-perfect bimodules, see [AL17, pag. 2591] for an explanation

of this fact, the dual map g : (Nh)
C → (N ′h)

C is a quasi-isomorphism between C-perfect,

C-h-projective bimodules.

Therefore, we have a roof of quasi isomorphisms

Mh ⊗C NCh
f⊗id←−−M ′

h ⊗C (Nh)
C id⊗g−−−→M ′

h ⊗C (N ′h)
C

that induces a roof of quasi-equivalences

RMh,Nh

F←− RM ′h,Nh
G−→ RM ′h,N

′
h
. (3.4)

Thus, the invariance of the category RMh,Nh up to quasi-equivalence is proved.

Now recall that given a quasi-equivalence between two dg-categories, induction and

restriction functors induce equivalences between the respective derived categories of mod-

ules, see § 2.4.1.

We now prove that under the equivalence of derived categories induced by the quasi-

equivalence of Lemma 3.1.1 the bimodules PMh,Nh and PM ′h,N ′h correspond to one another.

Lemma 3.1.2. Under the equivalence D(RMh,Nh-C) ' D(RM ′h,N
′
h
-C) induced by the quasi-

equivalence of Lemma 3.1.1, the bimodule PMh,Nh corresponds to the bimodule PM ′h,N ′h.

Proof. The roof of quasi-equivalences (3.4) induces a roof of equivalences

D(RMh,Nh-C) ResF−−−→ D(RM ′h,Nh
-C) ResG←−−− D(RM ′h,N

′
h
-C)

and therefore we get the equivalence Res−1
G ResF : D(RMh,Nh-C) → D(RM ′h,N

′
h
-C) that is

the induced equivalence we speak of in the statement of the lemma.

Thus, we want to prove that Res−1
G ResF (PMh,Nh) ' PM ′h,N ′h . To do so, we will prove

that ResF (PMh,Nh) ' ResG(PM ′h,N ′h).

We keep employing the notation established in the proof of Lemma 3.1.1.

First of all, notice that restricting a module along the quasi-equivalence F amounts

to send the left RMh,Nh-module with components
(
SA SB

)t
and structure morphism
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ρ : Mh ⊗ NCh ⊗B SB → SA to the RM ′h,Nh
-module with components

(
SA SB

)t
and

structure morphism

ρ ◦ (f ⊗ id⊗2) : M ′
h ⊗C (Nh)

C ⊗B SB →Mh ⊗NCh ⊗B SB → SA.

Let us write S̃ for the RM ′h,Nh
-bimodule with components

(
M ′

h Nh

)t
and structure

morphism id⊗tr : M ′
h⊗C (Nh)

C⊗BNh →M ′
h. We now show that the morphisms f : M ′

h →
Mh and id: Nh → Nh induce a quasi-isomorphism between S̃ and the bimodule ResF (PMh,Nh).

Indeed, it is clear that the following diagram commutes

M ′
h ⊗C (Nh)

C ⊗B Nh M ′
h

M ′
h ⊗C (Nh)

C ⊗B Nh Mh,

id⊗tr

id f

(id⊗tr)◦(f⊗id⊗2)

where the bottom row is the structure morphism for ResF (PMh,Nh), and therefore the mor-

phisms f and id induce a morphism of bimodules S̃ → ResF (PMh,Nh). As the components

of this morphism are quasi-isomorphisms, we obtain S̃ ' ResF (PMh,Nh) in D(RM ′h,Nh
-C).

Similarly, one proves that the maps id : M ′
h → M ′

h and g : N ′h → Nh induce a quasi-

isomorphism between the bimodule ResG(PM ′h,N ′h) and S̃.

Thus, ResF (PMh,Nh) ' ResG(PM ′h,N ′h) in D(RMh,N
′
h
-C), and the proof of the lemma is

complete.

Finally, we also prove that CPMh,Nh and CPM′
h
,N′
h

correspond to one another under the

equivalence D(RMh,Nh-RMh,Nh) ' D(RM ′h,N
′
h
-RM ′h,N

′
h
) induced by the quasi-equivalence of

Lemma 3.1.1.

Lemma 3.1.3. Under the equivalence D(RMh,Nh-RMh,Nh) ' D(RM ′h,N
′
h
-RM ′h,N

′
h
) induced

by the quasi-equivalence of Lemma 3.1.1, the bimodule CPMh,Nh corresponds to the bimodule

CPM′
h
,N′
h

.

Proof. The proof works similarly to that of Lemma 3.1.2. As in that proof, we keep

employing the notation introduced in the proof of Lemma 3.1.1.

Consider f̃ : M ′
h → Mh and g̃ : N ′h → Nh two homotopy inverses to f and g, that is

ff̃ and f̃f are equal to the identity up to homotopy, and similarly for gg̃ and g̃g. Then,

define the morphisms

eA : A act−→ HomA(Mh,Mh)
f̃◦−−−→ HomA(Mh,M

′
h)

eB : B act−→ HomB(Nh, Nh)
g̃◦−−−→ HomB(Nh, N

′
h)
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Notice that as Mh and Nh are h-projective, the morphisms f̃ ◦ − and g̃ ◦ − are quasi-

isomorphisms.

Now consider the RM ′h,Nh
-RM ′h,Nh

bimodule defined by the matrix(
{A eA−→ HomA(Mh,M

′
h)}[−1] 0

N ′h ⊗C MC
h [−1] {B eB−→ HomB(Nh, N

′
h)}[−1]

)
(3.5)

and the structure morphisms

N ′h ⊗C MC
h [−1]⊗AM ′

h ⊗C NCh
id⊗2⊗f⊗id−−−−−−→ N ′h ⊗C MC

h [−1]⊗AMh ⊗C NCh →
ev◦(id⊗tr⊗id)−−−−−−−−→ HomC(Nh, N

′
h)→ {B

eB−→ HomC(Nh, N
′
h)}[−1]

and

M ′
h ⊗C NCh ⊗B N ′h ⊗C MC

h [−1]
id⊗2⊗g⊗id−−−−−−→M ′

h ⊗C NCh ⊗B Nh ⊗C MC
h [−1]→

ev◦(id⊗tr⊗id)−−−−−−−−→ HomA(Mh,M
′
h)→ {A

eA−→ HomC(Mh,M
′
h)}[−1]

Then, we define the following morphisms from the components of ResF (CPMh,Nh ) to the

components of (3.5)

{A act−→ HomA(Mh,Mh)}
(id,f̃)−−−→ {A eA−→ HomA(Mh,M

′
h)}

{B act−→ HomB(Nh, Nh)}
(id,g̃)−−−→ {B eB−→ HomB(Nh, N

′
h)}

Nh ⊗C MC
h

g̃⊗id−−→ N ′h ⊗C MC
h

(3.6)

Above, we wrote (id, f̃) for the morphism induced by the commutative diagram

A HomA(Mh,Mh)

A HomA(Mh,M
′
h)

act

id f̃◦−

eA

between the convolution of the top and bottom row, see also § 2.4.2. A similar remark

applies for (id, g̃).

Notice that if we prove that the morphisms (3.6) induce a morphism of bimod-

ules ResF (CPMh,Nh ) → (3.5), then we have proved that these two bimodules are quasi-

isomorphic by Corollary 2.4.35. Indeed, the first two morphisms in (3.6) are quasi-

isomorphisms because f̃ ◦− and g̃◦− are, and the third morphism is a quasi-isomorphism

because g̃ is so and MC
h is C-h-projective being the C-dual of a C-h-projective, C-perfect

bimodule.
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Unfortunately, the morphisms (3.6) do not induce a morphism of bimodules. Indeed,

let us write ρ and ρ′ for the structure morphisms of CPMh,Nh and (3.5), respectively, and

AρA, BρB, A(ρ′)A and B(ρ′)B for their components. Then, it is easy to see that the diagram

Nh ⊗C MC
h ⊗AM ′

h ⊗C NCh [−1] {B act−→ HomB(Nh, Nh)}

N ′h ⊗C MC
h ⊗AM ′

h ⊗C NCh [−1] {B eB−→ HomB(Nh, N
′
h)}

g̃⊗id⊗3

BρB◦(id⊗2⊗f⊗id)

(id,g̃)

B(ρ′)B

(3.7)

commutes on the nose, but the diagram

M ′
h ⊗C NCh [−1]⊗B Nh ⊗C MC

h {A act−→ HomA(Mh,Mh)}

M ′
h ⊗C NCh [−1]⊗B N ′h ⊗C MC

h {A eA−→ HomA(Mh,M
′
h)}

id⊗2⊗g̃⊗id

BρB◦(f⊗id⊗3)

(id,f̃)

B(ρ′)B

(3.8)

only commutes up to homotopy.

Even though we encounter this unfortunate hurdle, we are able to overcome it be-

cause both ResF (CPMh,Nh ) and (3.5) have A-B component equal to zero. Because of this

property we can apply [AL19, Lemma 7.3] (in its equivalent version for bimodules with

A-B components equal to zero) and we know that to show that ResF (CPMh,Nh ) ' (3.5) in

D(RM ′h,Nh
-RM ′h,Nh

) it is enough to find three quasi-isomorphism for which the diagrams

(3.7) and (3.8) commute up to homotopy. We defined such quasi-isomorphisms in (3.6),

and thus we get ResF (CPMh,Nh ) ' (3.5) in D(RM ′h,Nh
-RM ′h,Nh

).

Similarly, one proves that (3.5) ' ResG(CPM′
h
,N′
h

) in the derived category, and we get

Res−1
G ResF (CPMh,Nh ) ' CPM′

h
,N′
h

in D(RM ′h,N
′
h
-RM ′h,N

′
h
), as we wanted.

In light of Lemma 3.1.1, Lemma 3.1.2, and Lemma 3.1.3, we can drop the letter “h”

from the notation for RMh,Nh , PMh,Nh and CPMh,Nh . Furthermore, as we proved that

the construction of RM,N , PM,N and CPM,N does not depend on the chosen h-projective

resolutions of M and N , from now we can assume that we lifted our spherical bimodules

M and N to two h-projective bimodules.

Let us remark that Lemma 3.1.1, Lemma 3.1.2, and Lemma 3.1.3 are a sign that our

construction is correct. Indeed, the twist around a spherical bimodule only depends on the

equivalence class of the bimodule in the derived category, and thus also our construction

should only depend on M and N as elements of their respective derived categories.

We can now state the precise version of Theorem 1.3.1.

Theorem 3.1.4. Let A, B and C be three small dg-categories over a field k, M ∈ D(A-C),

N ∈ D(B-C) be two spherical bimodules, and RM,N , PM,N and CPM,N be defined as in (1),

(2), and (3), respectively.
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Then, the RM,N -C bimodule PM,N is spherical, the twist around it is given by the

composition TαNTαM , and its cotwist is given by the bimodule CPM,N .

Proof. By Theorem 2.5.4 we know that, if we prove that PM,N is perfect on both sides,

then to show that it is a spherical bimodule it is enough to check any two of the four con-

ditions of Definition 2.5.2. Thus, the result follows from Lemma 3.1.6, Proposition 3.2.3,

Proposition 3.3.1, and Proposition 3.3.9.

Remark 3.1.5. Theorem 3.1.4 appeared in the author’s published work [Bar22, Theorem

3.0.1]. However, it appeared in a different and slightly incorrect form. More precisely,

in ibidem the statement of Theorem 3.1.4 allowed not only to choose lifts of M and N ,

but also to choose a lift of RHomC(N,M), independently of the chosen lifts of M and

N . This last degree of freedom goes one step too far and does not allow to prove that

the dg-category RM,N and the bimodules PM,N and CPM,N are independent of the chosen

lifts of M and N in the sense proved by Lemma 3.1.1, Lemma 3.1.2, and Lemma 3.1.3.

This mistake was pointed out to the author by the examiners of his PhD thesis, whom he

would like to thank.

Once again let us remark that from now on we assume that we fixed two h-projective

resolutions of the bimodules M and N and that we replaced them with these resolutions.

We are able to do so because we proved that our constructions do not depend on the

chosen resolutions up to quasi-equivalences.

Thus, from now on M ∈ A-Mod-C and N ∈ B-Mod-C are two h-projective, spherical

bimodules.

Before dealing with the technical proofs, let us point the attention of the reader to the

following remarks.

• Notice that as M and N are h-projective, their underived trace maps

tr : M ⊗C MC → A and tr : N ⊗C NC → B

induce the derived trace maps in the derived category. Therefore, the structure

morphism for the bimodule PM,N is identified, in the derived category, with the

evaluation morphism

M ⊗C NC ⊗B N ' RHomC(N,M)
L
⊗B N

ev−→M,

where ' denotes an isomorphism in the derived category.

• M and N being h-projective, their actions maps

act : A → HomA(M,M) and act : B → HomB(N,N)
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induce the derived action maps in the derived category. Thus, the A-A and B-B
component of CPM,N are quasi-isomorphic to CM and CN , respectively.

Now that we have set up the scene, we can begin the proof of Theorem 3.1.4. As

we will reserve the letter R and P for the dg-category and the bimodule constructed in

(1) and (2), respectively, from now on we will drop the subscripts M and N from their

notation. Thus, R = RM,N and P = PM,N . Similarly, we write CP = CPM,N for the

bimodule defined in (3).

For future reference, we write

αP : D(R)→ D(C) (3.9)

for the functor induced by P .

To use Theorem 2.5.4, we need to show that the bimodule P of Theorem 3.1.4 is

perfect on both sides, so this is the first thing we prove. On top of this, we also prove

that P is C-h-projective.

Lemma 3.1.6. The R-C-bimodule P of Theorem 3.1.4 is R- and C-perfect. Moreover,

with the choices performed above, P is also C-h-projective.

Proof. By (2.25), the bimodule P sends a ∈ A to aM and b ∈ B to bN . Thus, P is

C-perfect because M and N are. Moreover, M and N are C-h-projective, and thus P is

too.

We now show thatR-perfectness of P follows fromA-perfectness ofM and B-perfectness

of N . Recall that R is defined as the gluing of B and A along M ⊗CNC. Thus, by Propo-

sition 2.4.33 we have the SOD

D(Rop) = 〈ResRiBop (D(Bop)), LIndiAop (D(Aop))〉

and moreover the above SOD has a left gluing functor given by (M⊗CNC)
L
⊗B − : D(Bop)→

D(Aop).

If we assume that the bimodule M⊗CNC is A-perfect, then the gluing bimodule of the

SOD above preserves compactness by Theorem 2.4.9, and therefore Lemma 2.3.17 implies

that P is R-perfect if and only if its projections to D(Bop) and D(Aop) are. In § 2.4.9

we explained that such projections are given by the components of P , i.e., by M and N .

Thus, if M ⊗C NC is A-perfect, then P is R-perfect because its components are.

We now show that M⊗CNC is A-perfect. First, notice that we have M⊗CNC 'M
L
⊗C

NC in D(A-B) because M is h-projective. Then, by Theorem 2.4.9 andA-perfectness of M

to prove that M⊗CNC isA-perfect it is enough to prove that NC is C-perfect. However, NC
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is the dual of a C-h-projective, C-perfect bimodule, and therefore it is still C-h-projective

and C-perfect, see [AL17, pag. 2591] for an explanation of this fact.

We conclude this subsection by explicitly describing the components and structure

morphisms of two bimodules that will be important in the following.

Lemma 3.1.7. The C-R-bimodule P C is given by the matrix
(
MC NC

)
and the struc-

ture morphism

ρPC : MC ⊗AM ⊗C NC
tr⊗id−−−→ NC.

Proof. Direct verification using what we explained in § 2.4.9.

Lemma 3.1.8. The R-R-bimodule HomC(P, P ) is given by the matrix

HomC(P, P ) =

(
HomC(M,M) HomC(N,M)

HomC(M,N) HomC(N,N)

)

with structure morphisms

HomC(M,N)⊗AM ⊗C NC
ev◦(ev⊗id)−−−−−−→ HomC(N,N)

HomC(M,M)⊗AM ⊗C NC
ev◦(ev⊗id)−−−−−−→ HomC(N,M)

M ⊗C NC ⊗B HomC(M,N)
ev◦(id⊗cmp)−−−−−−−→ HomC(M,M)

M ⊗C NC ⊗B HomC(N,N)
ev◦(id⊗cmp)−−−−−−−→ HomC(N,M)

Proof. Direct verification using what we explained in § 2.4.9.

3.2 The twist

We now wish to give a description of the twist around the functor (3.9). First, we prove

the following lemma, which is a lift to the category of bimodules of [KL15, Proposition

4.9].

Lemma 3.2.1. There exist a commutative diagram

R⊗A ϕ⊗BR R⊗AR

R⊗BR R

fB

fA

gA

gB

(3.10)

in R-Mod-R such that the induced map{
R⊗A ϕ⊗BR

(−fA,fB)−−−−−→ R⊗AR⊕R⊗BR
}

gA+gB−−−−→ R (3.11)
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is a quasi-isomorphism in R-Mod-R.

Proof. We define fA as the morphism

R⊗A A⊗A ϕ⊗B B ⊗B R
(id⊗2⊗cmp)◦(id⊗3⊗τ⊗id)−−−−−−−−−−−−−−−→ R⊗A A⊗A R,

where cmp is the composition of morphisms in the dg-categoryR, and gA as the morphism

R⊗A A⊗A R
cmp◦(id⊗τ⊗id)−−−−−−−−−→ R.

Similarly, we define fB and gB.

Then, for any r ⊗ a⊗ v ⊗ b⊗ r′ ∈ R⊗A A⊗A ϕ⊗B B ⊗B R we have

gA(fA(r ⊗ a⊗ v ⊗ b⊗ r′)) = gA(r ⊗ a⊗ v · τ(b) · r′)

= r · τ(a) · v · τ(b) · r′ = gB(r · τ(a) · v ⊗ b⊗ r′) = gB(fB(r ⊗ a⊗ v ⊗ b⊗ r′)).

Thus, we get the commutative diagram (3.10) and the induced morphism (3.11).

To prove that (3.11) is a quasi-isomorphism, we use Corollary 2.4.35. The A-A and

B-B component of (3.11) are given by the maps τ : A → A and τ : B → B, respectively.

Thus, they are quasi-isomorphisms. The B-A component of (3.11) is given by 0 → 0,

and thus it is a quasi-isomorphism. Finally, the A-B component of (3.11) is given by the

morphism

{A ⊗A ϕ⊗B B
(−τ⊗id⊗2,id⊗2⊗τ)−−−−−−−−−−−→ ϕ⊗B B ⊕A⊗A ϕ}

τ⊗id + id⊗τ−−−−−−−→ ϕ

which is a quasi-isomorphim because τ ⊗ id⊗2, id⊗2⊗τ , τ ⊗ id, and id⊗τ are.

Thus, the proof of the lemma is complete.

Remark 3.2.2. Notice that Lemma 3.2.1 applies to any gluing of a dg-category B and

a dg-category A along an A-B bimodule ϕ. Moreover, the bimodules appearing in the

brackets of equation (3.11) are h-projective, and thus the quasi-isomorphism (3.11) gives

an h-projective resolution of the diagonal bimodule of the gluing. Indeed, the bimodules

appearing in the brackets of equation (3.11) are R⊗AA⊗AR and R⊗BB⊗BR, which are

h-projective because A and B are h-projective bimodules, and R⊗A A⊗A ϕ⊗B B ⊗B R,

which is h-projective because A⊗A ϕ⊗B B is h-projective by [AL17, Proposition 2.5].

Proposition 3.2.3. The twist around the functor (3.9) is given by TαNTαM .

Proof. By Definition 2.5.2, to identify the twist around the functor (3.9) we have to

identify the cone of the derived trace map for P , see Definition 2.4.7. To do so, we are

free to choose any lift of the derived trace map to a morphism in Mod-C.
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To lift the derived trace map, we have to to choose an h-projective resolution of P ,

so to fix a lift of the functor (3.9) to a functor P(R)→ P(C) (lift which is unique up to

homotopy).

Let us write R̃ for the h-projective resolution of R constructed in Lemma 3.2.1, that

is for the convolution of the morphism in the brackets of (3.11), and τ̃ : R̃ → R for the

morphism gA+gB in (3.11). As R̃ is h-projective and P is C-h-projective, see Lemma 3.1.6,

the bimodule R̃ ⊗R P is h-projective by [AL17, Proposition 2.5], and we take R̃ ⊗R P as

an h-projective resolution of P .

Given this h-projective resolution, the derived trace map of P is lifted to the morphism

tr : (R̃ ⊗R P )C ⊗R R̃ ⊗R P → C. (3.12)

However, notice that the quasi-isomorphism τ̃ : R̃⊗RP → P remains a quasi-isomorphism

upon dualisation because R̃⊗R P is a C-h-projective, C-perfect bimodule. Therefore, the

convolution of (3.12) is quasi-isomorphic to the convolution of the morphism

tr : P C ⊗R R̃ ⊗R P
(−◦τ̃)⊗id−−−−−→ (R̃ ⊗R P )C ⊗R R̃ ⊗R P

(3.12)−−−→ C, (3.13)

and thus the functor TαP is the functor induced by the bimodule given by the convolution

of (3.13).

Let us now study the convolution of (3.13). First of all, notice that (3.13) is equal to

the morphism

P C ⊗R R̃ ⊗R P
id⊗τ̃⊗id−−−−−→ P C ⊗R P

tr−→ C, (3.14)

and thus we can study (3.14) in place of (3.13).

Then, using the definition of R̃, we see that P C ⊗R R̃ ⊗R P is equal to

{MC ⊗AM ⊗C NC ⊗BN
(− id⊗tr,tr⊗id)−−−−−−−−−→MC ⊗AM ⊕NC ⊗BN} (3.15)

where we write tr : MC ⊗AM → C and tr : NC ⊗BN → C for the maps

MC ⊗A A⊗AM
tr◦(id⊗τ⊗id)−−−−−−−→ C and NC ⊗B B ⊗B N

tr◦(id⊗τ⊗id)−−−−−−−→ C.

Plugging (3.15) into (3.14), the latter takes the form

{MC ⊗AM ⊗C NC ⊗BN
(− id⊗tr,tr⊗id)−−−−−−−−−→MC ⊗AM ⊕NC ⊗BN}

tr+tr−−−→ C. (3.16)

74



Flop-flop autoequivalences and compositions of spherical twists

Indeed, if ψ ⊗ a⊗m ∈MC ⊗A A⊗AM , then its image via (3.14) is

ψ ⊗ a⊗m (3.14)7→ tr((−1)deg(ψ)(ψ · τ(a))⊗m) = (−1)deg(ψ)(ψ · τ(a))(m)

= (−1)deg(ψ)ψ(τ(a) ·m)

= tr(ψ ⊗ a⊗m),

and similarly one shows the statement for elements of NC ⊗BN .

By [AL17, Lemma 3.4], the convolution of (3.16), and thus of (3.14), is equal to{
MC ⊗AM

tr−→ C
}
⊗C
{
NC ⊗BN

tr−→ C
}
.

As M and N are h-projective bimodules, the functor induced by the above tensor product

is the composition TαNTαM , and therefore we get TαP ' TαNTαM , as we wanted.

3.3 The cotwist

We now wish to describe the cotwist around the functor (3.9).

Proposition 3.3.1. The cotwist around the functor (3.9) is described by bimodule CP

defined in (3), that is by the bimodule given by matrix(
{A act−→ HomC(M,M)}[−1] 0

N ⊗C MC[−1] {B act−→ HomC(N,N)}[−1]

)

and the structure morphisms

N ⊗C MC[−1]⊗AM ⊗C NC
iN◦ev◦(id⊗tr⊗id)−−−−−−−−−−→ {B act−→ HomC(N,N)}[−1]

M ⊗C NC ⊗B N ⊗C MC[−1]
iM◦ev◦(id⊗tr⊗id)−−−−−−−−−−→ {A act−→ HomC(M,M)}[−1]

where iM and iN are defined in § 2.4.2.

Proof. Our aim is to give a description of the shifted cone of the derived action map for

P , see Definition 2.4.7. To calculate such cone we are free to choose any map of R-R-

bimodules whose image in D(R-R) is the derived action map. As by Lemma 3.1.6 P is

C-h-projective, we have HomC(P, P ) = RHomC(P, P ), and as a lift of the derived action

map we can take the action map act : R → HomC(P, P ). By Lemma 3.1.8, the matrix
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description of act is given by

(
A M ⊗C NC

0 B

)  act ev

0 act


−−−−−−−−−−→

(
HomC(M,M) HomC(N,M)

HomC(M,N) HomC(N,N)

)
.

Now consider the bimodule2

C ′P [1] :=

(
{A act−→ HomC(M,M)} 0

HomC(M,N) {B act−→ HomC(N,N)}

)

with structure morphisms

HomC(M,N)⊗AM ⊗C NC
ev⊗id−−−→ N ⊗C NC →

ev−→ HomC(N,N)
iN−→ {B act−→ HomC(N,N)}

and

M ⊗C NC ⊗B HomC(M,N)
id⊗cmp−−−−→M ⊗AMC →

ev−→ HomC(M,M)
iM−→ {A act−→ HomC(M,M)}.

Then, we have a morphism of R-R-bimodules

(
HomC(M,M) HomC(N,M)

HomC(M,N) HomC(N,N)

)  iM 0

id iN


−−−−−−−−−→ C ′P [1]

whose composition with act : R → HomC(P, P ) is by construction the differential of the

morphism

(
A M ⊗C NC

0 B

)  jM 0

0 jN


−−−−−−−−−→ C ′P [1].

Thus, we obtain a morphism{
R act−→ HomC(P, P )

}
→ C ′P [1]

that by Lemma 2.4.34 is a quasi-isomorphism. Indeed, theA-A, B-B and B-A components

are quasi-isomorphisms by definition, while the A-B component is given by ev : M ⊗C

2For the notation {−} and the definition of the morphisms i and j, see § 2.4.2.
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NC → HomC(N,M), which is a quasi-isomorphism because N is C-h-projective and C-
perfect, see Remark 2.4.11.

Thus, C ′P is quasi-isomorphic to the cotwist bimodule for P . To conclude the proof of

the proposition, we now consider the morphism of bimodules CP → C ′P induced by the

maps

id : {A act−→ HomC(M,M)} → {A act−→ HomC(M,M)}

id : {B act−→ HomC(N,N)} → {B act−→ HomC(N,N)}

ev : N ⊗C MC[−1]→ HomC(M,N)[−1].

The resulting morphism CP → C ′P is a quasi-isomorphism by Lemma 2.4.34 because its

components are. Indeed, M is C-h-projective and C-perfect, and thus the evaluation map

ev : N ⊗C MC → HomC(M,N) is a quasi-isomorphism, see Remark 2.4.11.

Thus, the proof of the proposition is now complete.

Having proved Proposition 3.3.1, we now wish to describe how the functor CαP inter-

acts with the SOD D(R) = 〈D(B),D(A)〉 of Proposition 2.4.25. To do so, we fix a lift of

CαP to the dg-level. That is, we consider the functor

−⊗RR̃ ⊗R CP : Mod-R →Mod-R (3.17)

where CP is the bimodule described in Proposition 3.3.1, and R̃ is the h-projective reso-

lution of R constructed in Lemma 3.2.1.

During the course of the proofs of the propositions and lemmas below, we will make

use of the following notation; we will write

CM = {A act−→ HomC(M,M)}[−1] and CN = {B act−→ HomC(N,N)}[−1]

for the A-A and B-B component of CP , respectively. Moreover, we will write σM and σN

for the morphisms

M ⊗C MC[−1]
ev−→ HomC(M,M)[−1]

iM−→ CM

and

N ⊗C NC[−1]
ev−→ HomC(N,N)[−1]

iN−→ CN

respectively.

We kindly advise the reader to glance through § 2.4.3 before reading the following

proofs, as in ibidem we set up the necessary vocabulary and notation. Moreover, for the

reader’s convenience, we recall that we write τ : A → A and τ : B → B for the quasi-
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isomorphims between the bar complex and the diagonal bimodule of a dg-category, see

§ 2.4.4.

Proposition 3.3.2. Let F ∈ Mod-R be a right R-dg-module with components FA, FB

and structure morphism ρ : FA ⊗AM ⊗C NC → FB. Write G for the image of F via the

functor (3.17).

Then, GA is given by the convolution of the morphism of twisted complexes

FA⊗AM⊗CNC ⊗BN⊗BMC[−1]
(− id⊗(σM◦(id⊗tr⊗id)),(ρ◦(id⊗τ⊗id))⊗id)−−−−−−−−−−−−−−−−−−−−−−−−−→

FA⊗ACM
⊕

FB⊗BN ⊗C MC[−1]

GB is given by the convolution of the twisted complex

FA⊗AM ⊗C NC ⊗B CN
(ρ◦(id⊗τ⊗id))⊗id−−−−−−−−−−→ FB⊗B CN

and the structure morphism GA ⊗A M ⊗C NC → GB is given by the convolution of the

morphism of twisted complexes induced by the morphisms

FA⊗AM ⊗C NC ⊗BN ⊗CMC[−1]⊗AM ⊗C NC
id⊗(σN◦(id⊗tr⊗id))−−−−−−−−−−−−→ FA⊗AM ⊗C NC ⊗B CN

and
FA⊗ACM ⊗AM ⊗C NC

⊕
FB⊗BN ⊗C MC[−1]⊗AM ⊗B NC

0+id⊗(σN◦(id⊗tr⊗id))−−−−−−−−−−−−−→ FB⊗B CN

Proof. Notice that by Remark 2.4.17 the R-dg-bimodule R̃ is the convolution, shifted by

1, of the morphism of twisted complexes

R⊗AM ⊗C NC ⊗BR R⊗AR

R⊗BR 0

fB

fA

where fA and fB are defined in Lemma 3.2.1.

It follows from the definition of convolution given in § 2.4.3 that tensor product com-

mutes with convolution, and therefore F ⊗R R̃⊗RCP is given by the convolution, shifted

by 1, of the morphism of twisted complexes

F ⊗AM ⊗C NC ⊗B CP F ⊗ACP

F ⊗B CP 0

fB

fA

(3.18)
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Then, the statement of the propositions follows from the description of CP given in

Proposition 3.3.1.

Remark 3.3.3. In Proposition 3.3.2 we did not explain at length how (3.17) acts on mor-

phisms, but it is clear from the proof of the proposition that given a morphism f : F → G

of R-dg-modules with components (fA, fB) the image of f via (3.17) is the morphism that

maps each copy of FA and FB to each copy of GA and GB, respectively, appearing in the

equations of the statement of Proposition 3.3.2.

We now deal with a few special cases of the previous proposition that we will need

during the course of the proof of Proposition 3.3.9.

Lemma 3.3.4. Let GA a A-dg-module, and write

G = GA⊗AR =
(
GA ⊗A A GA⊗AM ⊗C NC

)
.

Then, the image of G via the functor (3.17) is quasi-isomorphic to the R-dg-module(
GA⊗ACM 0

)
.

Proof. By Proposition 3.3.2 and (2.26) we know that the image of G via the functor (3.17)

is the R-dg-module whose A component is given by the convolution of the morphism

GA ⊗A A⊗AM ⊗C NC ⊗BN ⊗BMC[−1]

GA ⊗A A⊗ACM
⊕

GA⊗AM ⊗C NC ⊗BN ⊗C MC[−1]

α

(3.19)

where

α = (− id⊗(σM ◦ (id⊗tr⊗ id)), id⊗τ ⊗ id)

and whose B-component is given by the convolution of the morphism

GA ⊗A A⊗AM ⊗C NC ⊗B CN
id⊗τ⊗id−−−−−→ GA⊗AM ⊗C NC ⊗B CN .

We now want to construct a quasi-isomorphism of R-dg-modules g : G⊗R R̃⊗RCP →(
GA⊗ACM 0

)
. Notice that, as the target R-dg-module has only the A-component,

any morphism of A-dg-modules between the A-component of G ⊗R R̃ ⊗R CP and the

A-component of
(
GA⊗ACM 0

)
induces a morphism of R-dg-modules between G⊗R

R̃ ⊗R CP and
(
GA⊗ACM 0

)
. Moreover, as a morphism of R-dg-modules is a quasi-

isomorphism if and only if its components are,3 to define the quasi-isomorphism g it is

enough to give a quasi-isomorphism between (3.19) and GA⊗ACM .

3Recall that quasi-isomorphism of dg-modules are defined fibrewise.
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We define g as the morphism of R-dg-modules associated to the quasi-isomorphism of

A-dg-modules given by the convolution of the morphism of twisted complexes

GA ⊗A A⊗AM ⊗C NC ⊗BN ⊗BMC[−1]

GA ⊗A A⊗ACM
⊕

GA⊗AM ⊗C NC ⊗BN ⊗C MC[−1]

0 GA⊗ACM

(3.19)

γ

where

γ = (id⊗τ ⊗ id, id⊗(σM ◦ (id⊗tr⊗ id)))

and τ : A → A is the quasi-isomorphism that turns A into an h-projective resolution of

A, see § 2.4.4.

Lemma 3.3.5. Let F =
(

0 FB

)
and G =

(
0 GB

)
be two R-dg-modules and

f : F → G a morphism of in Mod-R given by a morphism fB : FB → GB in Mod-B.

Then, the images of F and G via (3.17) are equal to(
FB⊗BN ⊗C MC[−1] FB⊗B CN

)
and

(
GB⊗BN ⊗C MC[−1] GB⊗B CN

)
respectively, and the image of f is given by the morphism with components

FB ⊗B B ⊗B N ⊗C MC[−1]
fB⊗id−−−→ GB ⊗B B ⊗B N ⊗C MC[−1] (3.20)

and

FB ⊗B B ⊗B CN
fB⊗id−−−→ GB ⊗B B ⊗B CN . (3.21)

Proof. This lemma follows from Proposition 3.3.2 and Remark 3.3.3.

Remark 3.3.6. Notice that the images of (3.20) and (3.21) via the functor Υ of Theo-

rem 2.4.19 are given by

FB⊗BN ⊗C MC[−1]
Υ(fB)⊗ id−−−−−−→ GB⊗BN ⊗C MC[−1]

and

FB⊗B CN
Υ(fB)⊗ id−−−−−−→ GB⊗B CN .

respectively. We show the claim for (3.20).
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By definition Υ(fB)⊗ id is given by the morphism

FB⊗BN ⊗C MC[−1]⊗B B =FB ⊗B B ⊗B N ⊗C MC[−1]⊗B B
id⊗∆⊗∆⊗id−−−−−−−→FB ⊗B B ⊗B B ⊗B B ⊗B N ⊗C MC[−1]⊗B B

Υ(fB)⊗id⊗τ⊗id⊗τ−−−−−−−−−−−→GB ⊗B B ⊗B N ⊗C MC[−1] = GB⊗BN ⊗C MC[−1]

(3.22)

As ∆: B → B ⊗B B and τ : B → B endow B with the structure of a coalgebra, (3.22) is

equal to

FB ⊗B B ⊗B N ⊗C MC[−1]⊗B B
id⊗∆⊗id−−−−−→FB ⊗B B ⊗B B ⊗B N ⊗C MC[−1]⊗B B

Υ(fB)⊗id⊗τ−−−−−−−→GB ⊗B B ⊗B N ⊗C MC[−1]
(3.23)

To conclude, recall that Υ(fB) = fB ⊗ τ , and therefore (3.23) is equal to

FB ⊗B B ⊗B N ⊗C MC[−1] ⊗B B
fB⊗id⊗τ−−−−−→ GB ⊗B B ⊗B N ⊗C MC[−1] (3.24)

which, by definition, is equal to Υ((3.20)), as we wanted to show.

Lemma 3.3.7. Let G = GA⊗AR =
(
GA⊗AA GA⊗AM ⊗C NC

)
, F =

(
0 FB

)
be two R-dg-modules and f : F → G be a morphism in Mod-R given by the morphism

fB : FB → GA⊗AM ⊗C NC in Mod-B.

Then, under the quasi-isomorphism of Lemma 3.3.4, the image of f via the functor

(3.17) is quasi-isomorphic to the morphism(
FB⊗BN ⊗C MC[−1] FB⊗B CN

)
→
(
GA⊗ACM 0

)
in Mod-R given by (gA, 0), where gA is the morphism

FB⊗BN⊗CMC[−1]
fB⊗id−−−→ GA⊗AM⊗CNC ⊗BN⊗CMC[−1]

id⊗(σM◦(id⊗tr⊗id))−−−−−−−−−−−−→ GA⊗ACM .

Proof. As F only has B-component, the only remaining part of the square (3.18) is the

bottom left. The morphism f is then sent via (3.18) to the morphism g : F⊗RR̃⊗RCP →
G ⊗R R̃ ⊗R CP whose only non-zero component is its A-component gA. The morphism

gA is given by

FB⊗BN ⊗C MC[−1]
(0,fB⊗id)−−−−−→ GA⊗AA⊗ACM ⊕GA⊗AM ⊗C NC ⊗BN ⊗C MC[−1]

Postcomposing gA with the quasi-isomorphism of Lemma 3.3.4, gA becomes the morphism

FB⊗BN⊗CMC[−1]
fB⊗id−−−→ GA⊗AM⊗CNC ⊗BN⊗CMC[−1]

id⊗(σM◦(id⊗tr⊗id))−−−−−−−−−−−−→ GA⊗ACM
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which proves the claim of the lemma.

The above series of lemmas tell us that the following diagrams commute4

D(A) D(A)

D(R) D(R)

LIndiA

CαM

ResRiA
CαP

D(B) D(B)

D(R) D(R)

LIndiB

CαN

CαP

ResiB

D(B) D(A)

D(R) D(R)

LIndiB

−
L
⊗BN

L
⊗CM C̃ [−1]

CαP

ResiA

(3.25)

Remark 3.3.8. Combining the top left square in (3.25), Proposition 2.4.28, and the fact

that CαM is an autoequivalence, we obtain the SOD

D(R) = 〈CαP (LIndiA(D(A))), LIndiB(D(B))〉.

Therefore, for the spherical functor induced by the bimodule P the hypotheses of [HLS16,

Theorem 4.14] are satisfied. However, let us remark that we cannot use the theorem from

ibidem to prove Theorem 3.1.4 because in ibidem the authors assume that the functor is

spherical to deduce that the twist around it factorises, whereas we use the description of

the twist to prove that the functor is spherical.

We can now complete the proof of Theorem 3.1.4 by proving the following

Proposition 3.3.9. The cotwist around the functor (3.9) is an autoequivalence of D(R).

Proof. Let us first show that CαP is an autoequivalence if it is fully faithful. By Proposi-

tion 2.4.28, we have the SOD

D(R) = 〈ResRiA(D(A)), LIndiB(D(B))〉.

Therefore, if CαP is fully faithful, to show that it is essentially surjective it is enough

to show that its essential image im(CαP ) contains the subcategories ResRiA(D(A)) and

LIndiB(D(B)).

By (3.25) and the fact that CαM is an autoequivalence, we get ResRiA(D(A)) ⊂ im(CαP ).

Now take GB ∈ D(B). By (3.27) below and the fact that CαN is an autoequivalence, we

know that there exists F ∈ im(CαP ) such that FB ' GB in D(B). Decomposing F with

respect to the SOD of Proposition 2.4.28 and using the description of the projection

functors given in § 2.4.9, we get

LIndiB(GB) ' cone(F → ResRiA(FA))[−1].

4Recall that M is C-h-projective and C-perfect, thus RHomC(M,−) ' −
L
⊗C M C̃ ' − ⊗C MC , and

that we showed that ResiA has a right adjoint in Lemma 2.4.27.
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As F,ResRiA(FA) ∈ im(CαP ) and we are assuming that CαP is fully faithful, we get

LIndiB(GB) ∈ im(CαP ).

Therefore, if CαP is fully faithful it is essentially surjective, and to prove that CαP is

an equivalence it is enough to prove that it is fully faithful.

As by Proposition 2.4.25 we have the SOD D(R) = 〈LIndiB(D(B)), LIndiA(D(A))〉, to

show fully faithfulness of CαP it is enough to show that CαP is fully faithful on the objects

of LIndiB(D(B)) and LIndiA(D(A)).

Let us fix GA ∈ D(A) and FB ∈ D(B). We now describe the action of CαP on the

modules of the form

F = LIndiB(FB)
(2.26)
'
(

0 FB⊗B B
)
'
(

0 FB

)
and

G = LIndiA(GA)
(2.26)
'
(
GA⊗AA GA⊗AM ⊗C NC

)
where the structure morphism of the latter is given by the identity, and the isomorphisms

are in D(R).

By Lemma 3.3.4, we know that

CαP (G) '
(
GA⊗ACM 0

)
∈ D(R). (3.26)

Similarly, by Lemma 3.3.5 we know that

CαP (F ) '
(
FB⊗BN ⊗C MC[−1] FB⊗B CN

)
∈ D(R) (3.27)

with structure morphism

FB ⊗B B ⊗B N ⊗C MC[−1]⊗AM ⊗C NC
(id⊗2⊗σN )◦(id⊗3⊗tr⊗id)−−−−−−−−−−−−−−−→ FB ⊗B B ⊗B CN . (3.28)

For the rest of the proof, when we talk about the modules F and G we refer to the ones

above.

We are now ready to prove that CαP is fully faithful. We will deal with four different

cases, and at the beginning of each new case we put an header in bold text specifying

which case we are dealing with.

Case 1: LIndiA(D(A))→ LIndiA(D(A))

That CαP is fully faithful on morphisms from objects of LIndiA(D(A)) to objects

of LIndiA(D(A)) follows from the left square in (3.25) because CαM is an equivalence

and the vertical functors are fully faithful by Proposition 2.4.25 and Proposition 2.4.28,

respectively.

Case 2: LIndiB(D(B))→ LIndiA(D(A))
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We now consider morphisms from objects of LIndiB(D(B)) to objects of LIndiA(D(A)).

What we want to prove is that the morphism

CαP : HomD(R)(F,G)→ HomD(R)(CαP (F ), CαP (G)) (3.29)

is an isomorphism.

Let us fix a dg-module lifting the isomorphism class of GA in D(A) and an h-projective

dg-module lifting the isomorphism class of FB in D(B), respectively. We will abuse nota-

tion and still write GA and FB for them.

Then, G =
(
GA⊗AA GA⊗AM ⊗C NC

)
is an h-projective R-dg-module because

it is of the form G = GA⊗AR, and F =
(

0 FB

)
is an h-projective R-dg-module

because

HomR(F, S) = HomB(FB, SB)

for any R-dg-module S.5

Hence

HomD(R)(F,G) = H0(HomR(F,G)) = H0(HomB(FB, GA⊗AM ⊗C NC))

and thus, to prove that (3.29) is an isomorphism, it is enough to prove that

CαP : H0(HomB(FB, GA⊗AM ⊗C NC))→ HomD(R)(CαP (F ), CαP (G)) (3.30)

is one.

Let us consider the dg-lift of CαP given by (3.17). Then, by Lemma 3.3.4, Lemma 3.3.5

and Proposition 2.4.14, we have the isomorphisms

HomD(R)(CαP (F ), CαP (G)) ' HomD(R)(CαP (F ),ResRA(GA⊗ACM))

' HomD(A)(FB⊗BN ⊗C MC[−1], GA⊗ACM),

and therefore the morphism (3.30) takes the form

H0(HomB(FB, GA⊗AM ⊗C NC))→ HomD(A)(FB⊗BN ⊗C MC[−1], GA⊗ACM) (3.31)

Thus, we are left to prove that (3.31) is an isomorphism.

We have good control on (3.31) because by Lemma 3.3.7 we know that it sends

5We are implicitly using that acyclicity is defined fibrewise, and therefore S ∈ Mod-R is acyclic if
and only if its components are.
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fB : FB → GA⊗AM ⊗C NC to

FB⊗BN⊗CMC[−1]
gB⊗id−−−→ GA⊗AM⊗CNC ⊗BN⊗CMC[−1]

id⊗(σM◦(id⊗tr⊗id))−−−−−−−−−−−−→ GA⊗ACM .

However, to see why this mapping is an isomorphism, let us rewrite it in the language of

derived categories.

The module FB is h-projective, hence we have an isomorphism

H0(HomB(FB, GA⊗AM ⊗C NC)) ' HomD(B)(FB, GA⊗AM ⊗C NC).

Moreover, in every tensor product appearing in the above displayed equations at least

one of the two bimodules being tensored is h-projective, hence every tensor product is

derived. This means that we can rewrite6 (3.31) as the morphism

HomD(B)(FB, GA
L
⊗A M

L
⊗C N C̃)→ HomD(A)(FB

L
⊗B N

L
⊗C M C̃, GA

L
⊗A CM) (3.32)

that sends fB : FB → GA
L
⊗A M

L
⊗C N C̃ to

gA : FB
L
⊗B N

L
⊗C M C̃[−1]

fB⊗id−−−→ GA
L
⊗A M

L
⊗C N C̃

L
⊗B N

L
⊗C M C̃[−1]→

id⊗(σM◦(id⊗tr⊗id))−−−−−−−−−−−−→ GA
L
⊗A CM . (3.33)

Then, using Remark 2.5.5 we see that postcomposing (3.32) with the functor7 −
L
⊗A

(CM)Ã we obtain the adjunction isomorphism8

HomD(B)(FB, GA
L
⊗A M

L
⊗C N C̃) ' HomD(A)(FB

L
⊗B N

L
⊗C M Ã, GA).

Thus, (3.32) is an isomorphism, as we wanted. Hence, CαP is fully faithful on morphisms

from objects of LIndiB(D(B)) to objects of LIndiA(D(A)).

Case 3: LIndiA(D(A))→ LIndiB(D(B))

We now consider morphisms from objects of LIndiA(D(A)) to objects of LIndiB(D(B)).

By Proposition 2.4.25 we know that there are no such morphisms in D(R). Thus, we

have to prove that any morphism CαP (G)→ CαP (F ) in D(R) is isomorphic to zero. By9

Theorem 2.4.19 and (3.26) and (3.27), it is enough to prove that any closed, degree zero

6Recall that both M and N are h-projective bimodules, hences their duals are their derived duals.
7The dual is taken as a right A-module.
8Here we use that as CαM

is an autoequivalence, (CM )Ã, which induces the right adjoint functor CRαM
,

induces the inverse functor C−1αM
9We put a reference to Theorem 2.4.19 only in this part of the proof, but we will use it implicitly

throughout.
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morphism

g :
(
GA⊗ACM 0

)
→
(
FB⊗BN ⊗C MC[−1] FB⊗B CN

)
in Mod-R is homotopic to zero, and this is what we show.

Such a morphism g is given by a triple (gA, 0, gAB) where gA : GA⊗ACM → FB⊗BN⊗C
MC[−1] and gAB : GA⊗ACM ⊗AM ⊗C NC → FB⊗B CN are two morphisms in Mod-A
and Mod-B, respectively, such that (see (2.23) for the definition of the differential in

Mod-R) d(gA) = 0 and the diagram

GA⊗ACM ⊗AM ⊗C NC 0

FB⊗BN ⊗C MC[−1]⊗AM ⊗C NC[−1] FB⊗B CN

gA⊗ id

(3.28)

(3.34)

commutes in Mod-B up to the homotopy gAB, that is d(gAB) + (3.28) ◦ (gA⊗ id) = 0.

Notice that the diagram (3.34) commutes on the nose in D(B). If we consider (3.34)

as a diagram in D(B) and we tensor it with10 (CαN )B̃, then using that N is spherical,

Remark 2.5.5, and the adjunctions −
L
⊗A M a −

L
⊗C M C̃ and −

L
⊗C N B̃ a −

L
⊗B N , we

obtain that the following diagram11 commutes in D(A)

GA
L
⊗A CM 0

FB
L
⊗B N

L
⊗C MC[−1] FB

L
⊗B N

L
⊗C MC[−1]

gA

id

Thus, we see that (3.34) implies that gA = 0 in D(A), and therefore gA = d(hA) for some

hA : GA⊗ACM → FB⊗BN ⊗C MC[−1] in Mod-A.

At this point, it is enough to prove that the morphism given by the triple

(gA, 0, gAB)− d((hA, 0, , 0)) = (0, 0, gAB + (3.28) ◦ (hA⊗ id))

is homotopic to zero. It is enough to prove that any given triple (0, 0, rAB), where

rAB : : GA⊗ACM ⊗AM ⊗C NC → FB⊗B CN is a closed, degree −1 morphism in Mod-B,

is homotopic to zero in Mod-R, and this is what we show.

10The dual is taken as a right B-module.
11The reason why all the tensor products become derived when we pass to the derived category is that

we are either considering bar tensor products, or tensor product where one of the two sides is given by
M or N , which are h-projective.
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As rAB is a closed morphism, it can be interpreted as a morphism

rAB : GA
L
⊗A CM

L
⊗A M

L
⊗C N C̃ → FB

L
⊗B CN [−1]

in D(B). Tensoring this morphism with (CαN )B̃ and using that N is spherical, from rAB

we obtain a morphism

GA
L
⊗A CM

L
⊗A M

L
⊗C N B̃[1]→ FB[−1].

Then, using the adjunctions −
L
⊗A M a −

L
⊗C M C̃ and −

L
⊗C N B̃ a −

L
⊗B N , we get a

morphism

GA
L
⊗A CM [1]→ FB

L
⊗B N

L
⊗C M C̃[−1] (3.35)

that can be lifted to a closed, degree zero morphism sA : : GA⊗ACM [1] → FB⊗BN ⊗C
MC[−1] in Mod-A.

The relation between sA and rAB is easily understood thanks to Remark 2.5.5. Namely,

as to pass from rAB to sA we used adjunction, it means that rAB = (3.28) ◦ (sA⊗ id) in

D(B). Hence, we know that there exists a morphism sAB : : GA⊗ACM ⊗AM ⊗C NC →
FB⊗B CN in Mod-B of degree −2 such that d(sAB) = rAB − (3.28) ◦ (sA⊗ id).

Summing up, we proved that

(0, 0, rAB) = (0, 0, (3.28) ◦ (sA⊗ id) + d(sAB)) = d((−sA, 0, sAB)),

and therefore (0, 0, rAB) is homotopic to zero in Mod-R, as we wanted to show. Hence,

CαP is fully faithful on morphisms from objects of LIndiA(D(A)) to objects of LIndiB(D(B)).

Case 4: LIndiB(D(B))→ LIndiB(D(B))

To conclude the proof of the proposition, we now consider morphism from objects of

LIndiB(D(B)) to objects of LIndiB(D(B)). Let us take F ′B ∈ D(B) and consider F ′ =

LIndiB(F ′B).

We fix two lifts of FB and F ′B to h-projective B-dg-modules, and we keep denoting

them by FB and F ′B. Then, a morphism f : F → F ′ in D(B) is given by a triple (0, fB, 0),

where fB : FB → F ′B is a closed, degree 0 morphism in Mod-B. By Lemma 3.3.5, we know

that fB is sent to the morphism

(
FB⊗BN ⊗C MC[−1] FB⊗B CN

)
→

(fB⊗id,fB⊗id,0)−−−−−−−−−→
(
F ′B⊗BN ⊗C MC[−1] F ′B⊗B CN

)
. (3.36)
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It is clear that the morphism f 7→ (3.36) is injective when considered as a morphism

CαP : HomD(B)(FB, F
′
B) ' HomD(R)(F, F

′)→ HomD(R)(CαP (F ), CαP (F ′)).

Indeed, if fB, gB : FB → F ′B are two morphisms in Mod-B with the same image, then

fB ⊗ id and gB ⊗ id are equal in Mod-B as morphisms from FB⊗B CN to F ′B⊗B CN .

Hence, they are equal in D(B). However, CN induces an autoequivalence of D(B), and

therefore fB and gB are equal as morphisms in D(B).

Thus, to conclude that CαP is fully faithful on morphisms from objects of LIndiB(D(B))

to objects of LIndiB(D(B)) we only have to prove that the morphism f 7→ (3.36) is

surjective up to quasi-isomorphism. Instead of proving this statement, we will prove the

equivalent statement that f 7→ Υ((3.36)) is surjective up to homotopy, where Υ is the

functor of Theorem 2.4.19.

Recall that by Remark 3.3.6 the morphism Υ((3.36)) is equal to

(
FB⊗BN ⊗C MC[−1] FB⊗B CN

)
→

(fB ⊗ id,fB ⊗ id,0)−−−−−−−−−−→
(
F ′B⊗BN ⊗C MC[−1] F ′B⊗B CN

)
(3.37)

Let us take a closed, degree 0 morphism g : CαP (F )→ CαP (F ′). Using (3.27), we see

that such g is given by a triple of morphisms (gA, gB, gAB) such that d(gA) = d(gB) = 0

and

d(gAB) = gB ◦ (3.28)− (3.28) ◦ (gA⊗ id)

in Mod-B. These relations imply that the following diagram commutes in D(B)

FB
L
⊗B N

L
⊗C M C̃[−1]

L
⊗A M

L
⊗C N C̃ FB

L
⊗B CN

F ′B
L
⊗B N

L
⊗C M C̃[−1]

L
⊗A M

L
⊗C N C̃ FB

L
⊗B CN

(3.28)

gA⊗id gB

(3.28)

(3.38)

Let us write fB : FB → F ′B for a lift to Mod-B of the morphism C−1
αN

(gB) in D(B).

Then, tensoring the diagram (3.38) with (CαN )B̃, using that N is spherical, Remark 2.5.5,

and the adjuctions −
L
⊗A M a −

L
⊗C M C̃ and −

L
⊗C N B̃ a −

L
⊗B N , we get that the
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following diagram commutes in D(B)

FB
L
⊗B N

L
⊗C M C̃[−1] FB

L
⊗B N

L
⊗C M C̃[−1]

F ′B
L
⊗B N

L
⊗C M C̃[−1] F ′B

L
⊗B N

L
⊗C M C̃[−1]

id

gA fB⊗id

id

(3.39)

The diagram (3.39) implies that gA = fB ⊗ id in D(B), and therefore that

gA − fB⊗ id = d(hA)

for some morphism hA : FB⊗BN ⊗C MC[−1]→ F ′B⊗BN ⊗C MC[−1] in Mod-A.

As by the choice of fB we know that gB − fB⊗ id = d(hB) for some morphism

hB : FB⊗CN → F ′B⊗CN in Mod-B, we get

(gA, gB, gAB)− d((hA, hB, 0)) = (fB⊗ id, fB⊗ id, gAB − (hB ◦ (3.28)− (3.28) ◦ (hA⊗ id)))

and to prove that g is homotopic to an element of the form (3.37) it is enough to prove

that any triple (0, 0, rAB), where rAB : FB⊗BN ⊗C MC[−1]⊗AM ⊗C NC → F ′B⊗B CN is

a closed, degree −1 morphism in Mod-B, is homotopic to zero in Mod-R.

This last claim is proved with a strategy similar to the one we employed in the previous

step of the proof. Namely, as rAB is a closed morphism, we can interpet it as a morphism

rAB : FB
L
⊗B N

L
⊗C M C̃[−1]

L
⊗A M

L
⊗C N C̃ → F ′B

L
⊗B CN [−1]

in D(B). Then, using that CN is spherical, Remark 2.5.5, and the adjunctions −
L
⊗C N B̃ a

−
L
⊗B N and −

L
⊗A M a −

L
⊗C M C̃, we get a morphism

FB
L
⊗B N

L
⊗C M C̃ → F ′B

L
⊗B N

L
⊗C M C̃[−1]

that we can lift to a closed, degree −1 morphism sA : FB⊗BN ⊗CMC → F ′B⊗BN ⊗CMC

in Mod-A with the property that rAB − (3.28) ◦ sA = d(sAB) for some sAB : FB⊗BN ⊗C
MC[−1]⊗AM ⊗C NC → F ′B⊗B CN .

Therefore, we get

(0, 0, rAB) = (0, 0, d(sAB) + (3.28) ◦ sA) = d((−sA, 0, sAB)),

that is (0, 0, rAB) is homotopic to zero in Mod-R, as we wanted. Hence, we proved

that CαP is fully faithful on morphisms from objects of LIndiB(D(B)) to objects of
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LIndiB(D(B)), and the proof of the proposition is complete.

3.4 Spherical objects

Now that we have completed the proof of Theorem 3.1.4, we survey some examples of

glued spherical functors, and we show that these objects arise naturally in geometric

situations. In this subsection, we consider the example of spherical objects.

Recall that spherical objects were defined by Seidel and Thomas in [ST01] as objects

whose endomorphism algebra is isomorphic, as a graded algebra, to the cohomology al-

gebra of a sphere. In the treatment we gave in § 1 we restricted ourselves to the case of

Calabi–Yau varieties, thus hiding one more condition that is needed in the definition of a

spherical object. Namely, spherical objects need to be invariant under the Serre functor.

Let C be a small, proper dg-category, i.e., the complex HomC(c1, c2) is cohomologically

bounded and has finite dimensional cohomology for any c1, c2 ∈ C. Notice that every

module E ∈ D(C) can be considered as a ?k-C-bimodule where ?k is the dg-category with

a single object such that Hom?k(?k, ?k) = k; here k sits in degree 0. For such a bimodule

being ?k-perfect means that, for every c ∈ C, the complex Ec is cohomologically bounded

and has finite dimensional cohomology.

For the rest of this section we will assume that the category D(C)c has a Serre functor

S which is given by tensor product with a bimodule. We fix SC ∈ D(C-C) such that

S(−) = −
L
⊗C SC .

Definition 3.4.1. Let E ∈ D(C). We say that E is a d-spherical object if the following

three conditions are satisfied:

1. E is both ?k- and C-perfect

2. Hom•D(C)(E,E) ' k ⊕ k[−d] as graded vector spaces

3. E
L
⊗C SC ' E[d] in D(C)

Remark 3.4.2. Notice that this notion is slightly more general than the one in [ST01]

because it allows d to be negative and zero. This generalisation has also been considered

in [HKP16].

Notice that when d > 0 there exists a unique structure of graded algebra on the graded

vector space k ⊕ k[−d], and thus we obtain that for a d-spherical object E ∈ D(C) we

have

Hom•D(C)(E,E) ' H•(Sd, k).
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Remark 3.4.3. The reader might be wondering how does the notion of a spherical object

tie up with the notion of a spherical functor. The answer is that giving a spherical object

in D(C) is equivalent to give a conservative spherical functor Ψ: D(?k) → D(C), i.e., a

spherical functor such that ker Ψ = 0.

It is clear that giving an object in D(C) is the same thing as giving a functor Ψ: D(?k)→
D(C). However, it is not obvious that Ψ is spherical if and only if Ψ(k) is a spherical object

in the sense of Definition 3.4.1. We now show how to prove the equivalence of the two

statements.

One direction of the equivalence is proved by Theorem 3.4.6. The converse, namely

that any conservative spherical functor Ψ: D(?k)→ D(C) corresponds to a unique spher-

ical object in D(C), can be easily proved as follows.

Let E = Ψ(k) ∈ D(C) be the image of k considered as a ?k-right-module, which is

non-zero because Ψ is conservative. Then, as Aut(D(k)) = Z is generated by the shift [1],

we must have CΨ = [−d− 1], and therefore (2) holds. Indeed, Hom•D(C)(E,E) sits in the

distinguished triangle

k → Hom•D(C)(E,E)→ CΨ(k)[1] ' k[−d],

and thus Hom•D(C)(E,E) ' k ⊕ k[−d] as graded vector spaces.

Now, as SΨ = ΨRR = ΨC−1
Ψ [−1], we get SΨ(k) = ΨRR(k) = Ψ(k)[d], proving that

E = Ψ(k) is invariant under the Serre functor, and the proof is complete.

Remark 3.4.4. The reason why we require D(C)c to have a Serre functor is to simplify

Definition 3.4.1. If we did not have a Serre functor, instead of (3) above we would have

to require the existence of an isomorphism E C̃ ' E ?̃k [−d] in D(C). While we could get

by with this for the proof of Theorem 3.4.6, we would run into functoriality issues in the

proof of Theorem 3.4.11.

Remark 3.4.5. If D(C) ' Dqc(X) for some smooth, projective variety X of dimension d,

then an object E ∈ D(C) is d-spherical if and only if its image in Dqc(X) is spherical

according to the standard definition given in [ST01].

The following is well known.

Theorem 3.4.6 ([ST01]). For a d-spherical object E the functor −
L
⊗?k E : D(?k)→ D(C)

is spherical.

Let us now consider d-spherical objects E1, . . . , En and assume we replaced them with

h-projective resolutions. To ease the notation, we write TEi for the spherical twist around

the spherical functor

−
L
⊗?k Ei : D(?k)→ D(C)

91



Flop-flop autoequivalences and compositions of spherical twists

of Theorem 3.4.6. Notice that this is not ambiguous by Remark 3.4.3.

Applying Theorem 3.1.4 inductively we obtain that the autoequivalence TEn . . . TE2TE1

can be realised as the twist around the functor

D(R)
−
L
⊗R(En⊕···⊕E1)−−−−−−−−−−→ D(C), (3.40)

where the dg-category R is the dg-category with objects {1, . . . , n} and morphisms12

HomR(i, j) =


0 i < j

k i = j

HomC(Ei, Ej) i > j

.

Therefore, we see that D(R) = D(?R) where

R =
n⊕
i=1

k · idEi ⊕
⊕
i>j

HomC(Ei, Ej) (3.41)

(considered as a sub-dg-algebra of HomC(⊕ni=1Ei,⊕ni=1Ej)), and (3.40) can be rewritten

as

D(?R)
−
L
⊗?R (En⊕···⊕E1)
−−−−−−−−−−−→ D(C). (3.42)

Remark 3.4.7. The description (3.41) gives us an interpretation of the category D(R) as

that of the derived category of modules over the path algebra of a quiver with relations.

Indeed, one can think of a quiver with n-vertices and arrows from i to j labelled by

HomC(Ei, Ej) whenever i > j, 0 if i < j, and by k if i = j. We draw the example n = 4

4 3 2 1

Example 3.4.8. Let us give a first geometric example of the above construction; we thank

Timothy Logvinenko for explaining it to us. Let X be a smooth, projective variety, and

consider two spherical objects E,F ∈ Db(X) such that

Hom•Db(X)(E,F ) = HomDb(X)(E,F [1])[−1] ' C2[−1].

Consider U ∈ Db(P(HomDb(X)(E,F [1]))×X) the universal family that parametrises non-

zero extensions of E by F up to the action of C×. This object has the property that its fibre

over any p ∈ P(HomDb(X)(E,F [1])) gives the corresponding extension of E by F . Consid-

ering U [1] as a Fourier–Mukai kernel, we get a functor Ψ: Db(P(HomDb(X)(E,F [1]))) →
12We think of the object i as the one corresponding to the i-th copy of the category ?k.
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Db(X) which is spherical, and whose twist is the composition TETF . This can be seen

as an example of the above construction considering the spherical objects E and F [1].

Indeed, in this case the algebra (3.41) is k ⊕ k2 ⊕ k, which is the endomorphism algebra

of the object OP1(−2)⊕OP1(−1) in Db(P(HomDb(X)(E,F [1]))), and therefore we have an

equivalence

D(k ⊕ k2 ⊕ k) ' Dqc(P(HomDb(X)(E,F [1])))

under which the spherical functor of Theorem 3.1.4 gets identified with Ψ.

Example 3.4.9. In § 4.4.1, we will construct another geometric example of a glued spherical

functor whose spherical twist is the composition of spherical twists around (families of)

spherical objects. This example arises as the flop-flop autoequivalence for standard flops.

Example 3.4.10. We thank Tobias Dyckerhoff for explaining to us the following symplectic

interpretation of the construction (3.41).

Consider f : E → D a Lefschetz fibration with base the disk D with n marked points

p1, . . . , pn corresponding to the critical points of f . Assume for simplicity that pi 6= 1

for any i, and write X = f−1(1) for the smooth fibre of f . To X we can associate the

Fukaya–Seidel category Fuk(X), which in this case is generated by the vanishing cycles Si’s

associated to the pi’s. The fundamental group π1(D \ {p1, . . . , pn}, 1) acts on Fuk(X) via

a braid group action whose generators are given by the Dehn twists around the spherical

objects S1, . . . , Sn.

We can also define the directed Fukaya–Seidel category Fuk→(f) of f , see [Sei01, §
6]. This category is generated by the vanishing thimbles associated to the pi’s, i.e., the

vanishing cycle together with the choice of a vanishing path. We then get a functor

∂ : Fuk→(f) → Fuk(X) given by sending each vanishing thimble to its boundary (which

is the corresponding vanishing cycle).

The functor ∂ is spherical, and the spherical twist around it is the total monodromy

action. More precisely, T∂ is the composition of the Dehn twists around the Si’s. The

connection with Theorem 3.4.6 is that Fuk→(f) is the category D(R)c for R as defined in

(3.41) with respect to the vanishing cycles Si’s, see ibidem.

The dg-algebra R defined in (3.41) is smooth (being the gluing of smooth dg-algebras

along perfect bimodules) and proper. Therefore, the category D(R)c has a Serre duality

functor given by tensor product with R∗ := RHomk(R, k), see [Shk07]. We now describe

the cotwist around (3.42) in terms of Serre duality for the category D(R)c. We have

Theorem 3.4.11. If d 6= 0 the cotwist around (3.42) is given by tensor product with

R∗[−1− d].

Remark 3.4.12. The reason why we need d 6= 0 is that in the proof below we need Serre

duality to identify idEi with the non-trivial extension Ei → Ei[d], which is not necessarily

the case if d = 0.
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Remark 3.4.13. The above theorem appeared in the author’s published work [Bar22,

Theorem 4.1.9]. Notice however that the statement in ibidem lacks the requirement d 6= 0.

Proof. We give the proof for the case n = 2, the general case being similar.

By Proposition 3.3.1, we know that the cotwist is described by the matrix13

(
HomD(C)(E1, E1[d])[−1− d] 0

Hom•D(C)(E1, E2)[−1] HomD(C)(E2, E2[d])[−1− d]

)

with structure morphisms

Hom•D(C)(E1, E2)[−1]⊗k Hom•D(C)(E2, E1)
pr1+d◦cmp
−−−−−−→ HomD(C)(E2, E2[d])[−1− d]

Hom•D(C)(E2, E1)⊗k Hom•D(C)(E1, E2)[−1]
pr1+d◦cmp
−−−−−−→ HomD(C)(E1, E1[d])[−1− d],

where pr1+d is the projection to the degree 1 + d part and cmp is the composition of

morphisms.

The bimodule R∗[−1− d] is given by the matrix(
HomD(C)(E1, E1)∗[−1− d] 0

Hom•D(C)(E2, E1)∗[−1− d] HomD(C)(E2, E2)∗[−1− d]

)

with structure morphisms

Hom•D(C)(E2, E1)∗[−1− d]⊗k Hom•D(C)(E2, E1)→
ψ⊗f 7→(g 7→ψ(f◦g))−−−−−−−−−−→ Hom•D(C)(E2, E2)∗[−1− d]→

pr1+d−−−→ HomD(C)(E2, E2)∗[−1− d]

and

Hom•D(C)(E2, E1)⊗k Hom•D(C)(E2, E1)∗[−1− d]→
f⊗ψ 7→(g 7→ψ(g◦f))−−−−−−−−−−→ Hom•D(C)(E1, E1)∗[−1− d]→

pr1+d−−−→ HomD(C)(E1, E1)∗[−1− d]

To conclude we now consider the morphism of bimodules induced by the matrix of

morphisms

(
α11 0

α12 α22

)
where αij : Hom•D(C)(Ei, Ej)[−1]→ Hom•D(C)(Ej, Ei)

∗[−1−d] is

the isomorphism given by Serre duality. This matrix of isomorphisms can be lifted14 to

13We can pass from RHomC(E1, E2) to the underlying graded vector space because the category of
k-k-bimodules is semisimple.

14To lift the matrix to a morphism of bimodules we use that the Serre duality isomorphism intertwines
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a morphism in the derived category of bimodules which is itself an isomorphism using an

argument similar to [AL19, Lemma 7.3] for the case in which the top right components

of the bimodules are zero. Thus, the proof is complete.

Remark 3.4.14. The above theorem together with [Shk07, Theorem 4.2, 4.3] prove that

the cotwist around the spherical functor (3.42) is isomorphic to the Serre duality functor

for D(R)c shifted by [−1− d].

An application of this result to compute the categorical entropy of the composition of

two spherical twists around spherical objects can be found in [BK21].

3.5 P-objects

In this subsection we consider the case of P-objects.

P-objects were introduced by Huybrechts and Thomas in [HT06], and their intro-

duction was motivated, as for spherical objects, by Homological Mirror Symmetry. More

precisely, the idea is that in the Fukaya category we can twist not only around Lagrangian

spheres, but also around Lagrangian Pn’s.

Drawing inspiration from this idea, Huybrechts and Thomas defined the notion of a

P-object, and showed that to any such object one can associate an autoequivalence, which

they called the P-twist around the P-object.

The definition of a P-object has been later generalised to that of a split P-functor in

[Add16], [Cau12b], and further to general P-functors in [AL19].

Let us now give the formal definition of a P-object. Let C be a small, proper dg-

category over a field k such that D(C)c has a Serre functor S which is given by tensor

product with a bimodule: S(−) = −
L
⊗C SC.

Definition 3.5.1. An object P ∈ D(C) is said to be a Pn-object if the following conditions

are satisfied:

1. P is both ?k- and C-perfect

2. Hom•D(C)(P, P ) ' k[t]/tn+1, deg(t) = 2, as graded algebras

3. We have an isomorphism P
L
⊗C SC ' P [2n] in D(C)

Remark 3.5.2. If X is a smooth projective variety of dimension 2n such that D(C) '
Dqc(X), then an object P ∈ D(C) is a Pn-object if and only if the corresponding object

in Dqc(X) is a Pn-object in the sense of [HT06].

the structure morphisms we described. This is were we used that d 6= 0 and Remark 3.4.12.
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Once again, the reader might wonder what is the relationship between P-objects and

spherical functors. This relationship will be clarified momentarily, and we devote further

attention to this question in Remark 3.5.5.

In [Seg18] Segal describes two ways to realise the P-twist around a P-object as a

spherical twist. The first one considers P as a dg-module over the dg-algebra k[t], deg(t) =

2, and defines the functor

−
L
⊗?k[t] P : D(?k[t])→ D(C). (3.43)

Here to define the action of k[t] on P we assume that we replaced P with an h-projective

resolution, that we fixed a representative t̃ ∈ HomC(P, P ) for the generator of degree 2,

and we make t act as t̃.

Remark 3.5.3. Notice that ?k-perfectness of P implies ?k[t]-perfectness because k[t] is

smooth, see e.g. [Shk07, pag. 7].

Then, under a technical assumption (which was subsequently shown to be always

satisfied [HK19]), [Seg18, Proposition 4.2] proves that (3.43) is spherical, that its twist is

the P-twist around P , and that its cotwist is [−2n− 2].

The second construction of [Seg18] uses Koszul duality to rewrite (3.43) in a different

way. More precisely, the object k ∈ D(?k[t]) is compact and we have RHomk[t](k, k) '
k[ε]/ε2, with deg(ε) = −1. The ?k[t]-module k[t, e], deg(e) = 1, d(e) = t, is h-projective

and gives a resolution of k as a right k[t]-module. Moreover, k[t, e] carries a left action of

k[ε]/ε2 via the degree −1 map of k[t]-modules k[t, e] → k[t, e] that sends p(t) + eq(t) to

q(t). Hence, we get a functor

−
L
⊗?k[ε]/ε2 P

′ : D(?k[ε]/ε2)→ D(C) (3.44)

where

P ′ := k[t, e]⊗?k[t] P =
{
P [−2]

t̃−→ P
}
.

The twist around (3.44) is the P-twist around P , and its cotwists is given by [−2n− 2].

Remark 3.5.4. Construction (3.44) was generalised to the case of split Pn-functors in

[AL19, Theorem 5.1].

Remark 3.5.5. Let us spend a few more words on the relationship between P-objects and

spherical functors.

Above, we recalled the construction by Segal that shows how to attach to any P-object

two spherical functors, one with source category D(?k[t]), deg(t) = 2, and one with source

category D(?k[ε]/ε2), deg(ε) = −1.

In fact it is possible to prove that any conservative spherical functor Ψ: D(?k[ε]/ε2)→
D(C) such that CΨ ' [−1−m] comes from a Pn-object such that 2n+ 1 = m.15

15This is a special case of a result the author proved jointly with Pieter Belmans, Alessio Bottini,
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3.5.1 The k[t]-model

Take Pn-objects P1, . . . , Pm. Assume we replaced them with h-projective resolutions and

that for each i = 1, . . . ,m we fixed t̃i a lift of the generator of degree 2 of Hom•D(C)(Pi, Pi).

Then, we can apply Theorem 3.1.4 to (3.43) to obtain a spherical functor

D(?R)
−
L
⊗?R (Pm⊕···⊕P1)
−−−−−−−−−−−→ D(C)

whose twist is given by the composition of the P-twists around Pm, . . . , P1. Here (beware

that ei is just a placeholder to distinguish between the different copies of t)

R =
m⊕
i=1

k[t] · ei ⊕
⊕
i>j

HomC(Pi, Pj)

and the composition is defined as follows. Elements of HomC(Pi, Pj) and HomC(Pk, Pl)

compose according to the composition rule in Mod-C, p(t)ei and q(t)ej compose as

p(t)ei · q(t)ej = δijp(t)q(t)ei

and finally p(t)ei composes with f ∈ HomC(Pi, Pj) and g ∈ HomC(Pk, Pi) as

f · p(t)ei · g = f ◦ p(t̃i) ◦ g

where ◦ is the composition law in Mod-C.
The cotwist cannot be described as in Theorem 3.4.11 because k[t]∗ is not a shift of

k[t].

Example 3.5.6. For a geometric example of this construction, see Remark 4.4.19.

3.5.2 The k[ε]/ε2-model

Take Pn-objects P1, . . . , Pm. Assume we replaced them with h-projective resolutions and

that for each i = 1, . . . ,m we fixed t̃i a lift of the generator of degree 2 of Hom•D(C)(Pi, Pi).

We write P ′i := k[t, e] ⊗?k[t] Pi =

{
Pi[−2]

t̃i−→ Pi

}
. Applying Theorem 3.1.4 to (3.44) we

obtain a spherical functor

D(?R)
−
L
⊗?R (P ′m⊕···⊕P ′1)
−−−−−−−−−−−→ D(C) (3.45)

Emma Lepri and Johannes Krah, at a 2021 summer school at the Hausdorff Centre for Mathematics,
following a suggestion of Alexander Kuznetsov.
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whose twist is given by the composition of the P-twists around Pm, . . . , P1. Here

R =
m⊕
i=1

k[ε]/ε2 · idP ′i ⊕
⊕
i>j

HomC(P
′
i , P

′
j)

considered as a sub-dg-algebra of HomC(⊕mi=1P
′
i ,⊕mi=1P

′
i ).

Example 3.5.7. In § 4.4.2, we will provide a geometric example of this construction by

looking at the flop-flop autoequivalence for Mukai flops.

Remark 3.5.8. Our hope was to prove an isomorphism C(3.45)(−) ' −
L
⊗?R R∗[−2n − 1]

in analogy with Theorem 3.4.11. Unfortunately, we stumble upon technical issues we do

not know how to fix. More precisely, the components of the cotwist outside the diagonal

are of the form HomC(P
′
j , P

′
i )[−1], j < i, and we would like to use Serre duality to

relate them to HomC(P
′
i , P

′
j)
∗[−2n − 1]. The problem is that Serre duality provides us

with an isomorphism Hom•D(C)(P
′
j , P

′
i )[−1] ' Hom•D(C)(P

′
i , P

′
j)
∗[−2n−1] of k[ε]/ε2-k[ε]/ε2-

bimodules, but it is not clear whether one can lift this isomorphism to a quasi-isomorphism

HomC(P
′
j , P

′
i )[−1]→ HomC(P

′
i , P

′
j)
∗[−2n− 1] of k[ε]/ε2-k[ε]/ε2-bimodules.
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Chapter 4

Flop-flop autoequivalences

In § 1, we explained the raison d’être that connects the various projects whose results

are presented in this thesis. Namely, the results of § 3 were motivated by the will to

understand how spherical twists behave when composed with each other, whereas the

present chapter was born from the will to show that glued spherical functors appear

naturally in geometric situations. Along the way, the search for geometric examples of

glued spherical functors resulted in the discovery of various interesting results, which we

present in this chapter.

Here, we just want to spend a few words in motivating our use of cocomplete trian-

gulated categories. Since the very beginning of this thesis, we have been working with

cocomplete triangulated categories, and the reader might be wondering why, as most of

the questions geometry poses are about the bounded derived category of coherent sheaves.

The reason is that the use of cocomplete triangulated categories allows us to leverage pow-

erful theorems such as Brown representability [Nee96]. This turns out to be extremely

useful, especially when one deals with Verdier quotients because we can (in good cases)

realise the quotient as a subcategory of the parent category.

It is often the case that requiring the category to be cocomplete is not restrictive,

see also Remark 2.3.9. However, there are cases in which there is a tangible difference

between cocomplete and non-cocomplete triangulated categories, and in our treatment we

see this when we consider singular algebraic varieties, see Remark 4.2.4 and Remark 4.2.5.

4.1 General case

In this subsection we introduce the notion of a flop-flop diagram. The intuition behind

this notion, as we explain in Remark 4.1.2 below, is that they arise from correspondences

of schemes, and therefore appear naturally in the geometric context.

In the following, when we speak of triangulated categories we always mean enhanced
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triangulated categories. The question of which enhancement one uses does not make a

difference for the purposes of this chapter, and thus we do not fix any particular enhance-

ment. For more on the question of the wealth of available enhancements, the reader is

directed to § 2.1.

For the rest of section, all triangulated categories are assumed to be cocomplete and

compactly generated (see Definition 2.3.27). For simplicity, we assume that our triangu-

lated categories are generated by a single compact object that we call a compact generator,

but all the results apply in the general case.

We are now ready to introduce the central notion of this chapter. Let

B−
α−←− A

α+−→ B+ (4.1)

be a diagram of cocomplete triangulated categories and cocontinuous functors.

Definition 4.1.1. We call a diagram as (4.1) a flop-flop diagram if

(i) α− and α+ have fully faithful left adjoints αL− : B− ↪→ A and αL+ : B+ ↪→ A, respec-

tively

(ii) the functors

Φ+ = α+α
L
− : B− → B+ and Φ− = α−α

L
+ : B+ → B−

are equivalences.

Given a flop-flop diagram B−
α−←− A

α+−→ B+, we call the autoequivalences

Φ+Φ− : B+ → B+ and Φ−Φ+ : B− → B−

the flop-flop autoequivalences.

Remark 4.1.2. We chose the name flop-flop diagram because the typical example of a

diagram as (4.1) arises from a birational contraction f− : X− → Y together with its flop

f+ : X+ → Y . From f− and f+ we can construct the diagram of schemes

X−
p−←− X− ×Y X+

p+−→ X+,

which gives rise to the following diagram of categories

Dqc(X−)
(p−)∗←−−− Dqc(X− ×Y X+)

(p+)∗−−−→ Dqc(X+)

By work of Bridgeland [Bri02] and Chen [Che02], we know that this construction always

gives an example of a flop-flop diagram when X− and X+ are projective Calabi–Yau
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threefolds, Y has rational singularities, and we are flopping a single curve. We will

explore flop-flop diagrams arising from diagrams of schemes in § 4.2.

As we explained in § 1, our aim is to express the flop-flop autoequivalences arising

from a flop-flop diagram as inverses of spherical twists around spherical functors.

We define the subcategories

K := kerα− ∩ kerα+ and S± = ⊥K ∩ (αL∓B∓)⊥ = ⊥K ∩ kerα∓

and write iS± : S± ↪→ A for the inclusions. The following is the main theorem of this

section.

Theorem 4.1.3. Let B−
α−←− A

α+−→ B+ be a flop-flop diagram. Then, K is left admissible

in A and we have four periodic SODs

⊥K = 〈S+, α
L
−B−〉 = 〈αL−B−, S−〉 = 〈S−, αL+B+〉 = 〈αL+B+, S+〉 (4.2)

(⊥K)c = 〈Sc
+, α

L
−B

c
−〉 = 〈αL−Bc

−, S
c
−〉 = 〈Sc

−, α
L
+B

c
+〉 = 〈αL+Bc

+, S
c
+〉 (4.3)

Furthermore, the functors

Ψ+ := α+iS+ : S+ → B+ and Ψ− := α−iS− : S− → B−

are conservative spherical functors such that T−1
Ψ±

= Φ±Φ∓ ∈ Aut(B±), and their restric-

tions Ψ+|Sc+ and Ψ−|Sc− are conservative spherical functors such that T−1
Ψ±|Sc±

= Φ±Φ∓|Bc
±

.

Remark 4.1.4. Recall that a functor is called conservative if it has no kernel.

Proof. First, we prove that K is left admissible, see Definition 2.3.23. We write C =

〈αL±B±〉⊕ for the smallest cocomplete subcategory generated by the essential images of

αL+ and αL−. By definition, C is closed under arbitrary small direct sums in A, and

therefore it is localising. Moreover, as αL+ and αL− are fully faithful functors, if we fix

compact generators B+ ∈ Bc
+ and B− ∈ Bc

−, then C = 〈αL+(B+)⊕ αL−(B−)〉⊕.

As α+ and α− are cocontinuous functors, the functors αL+ and αL− preserve compact-

ness. Hence, αL+(B+)⊕αL−(B−) ∈ Ac, and by Lemma 2.3.31 we have the SOD A = 〈C⊥,C〉.
However, it is clear that C⊥ = K, and thus K is left admissible by Lemma 2.3.24.

Notice that the SOD A = 〈K,C〉 implies C = ⊥K. From now on, we will write ⊥K in

place of C.

Notice that the subcategories S+, S−, α
L
+B+, and αL−B− are localising because the

functors α+, α−, α
L
+, and αL− are cocontinuous, see Remark 2.3.11. Therefore, if we prove

the existence of the SODs (4.2), we get the SODs (4.3) from Lemma 2.3.22.
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We now prove the existence of the SODs (4.2). As the functors αL+ and αL− are

fully faithful, the subcategories αL+B+, α
L
−B− ⊂ ⊥K are right admissible. Therefore, by

Lemma 2.3.24 we have

⊥K = 〈⊥K ∩ (αL±B±)⊥, αL±B±〉 = 〈S∓, αL±B±〉,

where in the second equality we used the definition of S+ and S−. Thus, we established

the existence of the first and the third SOD in (4.2).

To prove the existence of the remaining SODs in (4.2), we have to do some more work.

To simplify the notation, we will focus on S+ and prove the existence of the fourth SOD.

The existence of the second SOD in (4.2) can be proven similarly.

The first step to prove that we have the SOD ⊥K = 〈αL+B+, S+〉 is to show that

S+ ⊂ ⊥K is a right admissible subcategory. By Lemma 2.3.31, it is enough to show that

S+ is compactly generated. Take B+ ∈ Bc
+ a compact generator. Then, the object

S+ := cone(αL−α−α
L
+(B+)→ αL+(B+))

belongs to S+. Indeed, S+ clearly belongs to ⊥K. Moreover, α−(S+) ' 0 because αL− is

fully faithful, and therefore S+ ∈ ⊥K ∩ kerα− = S+.

Now notice that S+ ∈ Ac because α+α
L
− is a cocontinuous equivalence and αL− and

αL+ preserve compactness (see above). Therefore, S+ ∈ Sc
+ because S+ is a localising

subcategory of A. We claim that S+ is a compact generator of S+, i.e., S+ = 〈S+〉⊕.

As S+ is a compact object, proving that S+ = 〈S+〉⊕ is equivalent to prove S⊥+∩S+ = 0.

Take T+ ∈ S⊥+ ∩ S+, then

0 ' Hom•S+(S+, T+) ' Hom•B+
(B+, α+(T+)).

As B+ is a compact generator, the above vanishing implies α+(T+) ' 0. Hence, we have

T+ ∈ S+ ∩ kerα+ = ⊥K ∩ kerα− ∩ kerα+ = ⊥K ∩K = 0.

Thus, we proved that S+ is compactly generated by S+, and therefore by Lemma 2.3.31

we have the SOD
⊥K = 〈S⊥+, S+〉. (4.4)

The next step in proving the existence of the fourth SOD in (4.2) is to show that

αL+B+ ⊂ S⊥+. By the definition of B+ ∈ Bc
+ and S+, since Φ− is an equivalence and αL+ is

fully faithful, we have

Hom•A(S+, α
L
+(B+)) ' cone

(
Hom•B+

(B+, B+)
'−→ Hom•B−(Φ−(B+),Φ−(B+))

)
[−1] ' 0.
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Hence, as S+ and B+ are compact generators of S+ and αL+B+, respectively, we have

αL+B+ = 〈αL+(B+)〉⊕ ⊂ (〈S+〉⊕)⊥ = S⊥+.

Applying Lemma 2.3.24, from (4.4) we get

⊥K = 〈⊥K ∩ (αL+B+)⊥ ∩ S⊥+, α
L
+B+, S+〉. (4.5)

To conclude, we now prove ⊥K ∩ (αL+B+)⊥ ∩ S⊥+ = 0. Indeed, since Φ− is an equivalence,

the distinguished triangle

αL−Φ− = αL−α−α
L
+ → αL+ → iS+i

L
S+
αL+,

which comes from the SOD 〈S+, α
L
−B−〉 = ⊥K, shows that

⊥K = 〈S+, α
L
−B−〉 = 〈S+, α

L
−Φ−B+〉 = 〈αL+B+, S+〉⊕.

Therefore

⊥K ∩ (αL+B+)⊥ ∩ S⊥+ = ⊥K ∩
(
〈αL+B+, S+〉⊕

)⊥
= ⊥K ∩ (⊥K)⊥ = 0

and plugging this equality in (4.5) the existence of the fourth SOD in (4.2) follows.

Given the existence of the SODs (4.2), the statements about the spherical functors

follow from Lemma 2.5.7.

Remark 4.1.5. [BB15] was the first paper in the literature to consider a particular class of

flop-flop diagrams (without calling them so) as per Definition 4.1.1. In ibidem, Bodzenta

and Bondal consider f− : X− → Y a morphism satisfying certain assumptions (among

which there is (f−)∗OX− ' OY and that the fibres of f− must have at most dimension 1),

take f+ : X+ → Y a flop of f−, and set B± = Db(X±), A = Db(X− ×Y X+), and α± =

(f±)∗. Among other things, Bodzenta and Bondal also prove the statement analogous to

Corollary 4.1.7 (see below) for their setup.

Let us now reformulate the above theorem using a language similar to [BB15, § 5.2].

In § 4.2, this will allow us to prove a statement about bounded derived categories of

coherent sheaves.

As K is left admissible, we have A = 〈K, ⊥K〉. This implies that the quotient func-

tor1 π : A → A/K induces an equivalence ⊥K ' A/K. Indeed, π is clearly essentially

surjective. The following lemma shows that it is also fully faithful.

1Let us spend a couple of words on the choice of the letter π as the notation for the quotient functor.
The reader might think that this is an inconvenient choice because it clashes with the notation for
projection functors of SODs. However, this clash of notation is intentional, and it is not a clash of
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Lemma 4.1.6 ([BB15, Lemma 5.7]). Let A be a triangulated category and S ⊂ A be a

thick subcategory. Then, for any E ∈ ⊥S and any F ∈ A, the quotient functor π : A →
A/S induces an isomorphism

HomA(E,F ) ' HomA/S(π(E), π(F )).

Hence, if we write α± for the functors induced by α± on A/K, and αL± = παL± (which

one can easily check, using Lemma 4.1.6, are the left adjoints to α±, see also page 105 for

a similar argument), then Theorem 4.1.3 can be reformulated as follows

Corollary 4.1.7. Let B−
α−←− A

α+−→ B+ be a flop-flop diagram. Then, we have four

periodic SODs

A/K = 〈kerα−, α
L
−B−〉 = 〈αL−B−, kerα+〉 = 〈kerα+, α

L
+B+〉 = 〈αL+B+, kerα−〉.

(A/K)c = 〈(kerα−)c, αL−B
c
−〉 = 〈αL−Bc

−, (kerα+)c〉

= 〈(kerα+)c, αL+B
c
+〉 = 〈αL+Bc

+, (kerα−)c〉.

Furthermore, the functors

Ψ− := α−ikerα+ : kerα+ → B− and Ψ+ := α+ikerα− : kerα− → B+

are conservative spherical functors such that T−1

Ψ±
= Φ±Φ∓ ∈ Aut(B±), and their restric-

tions Ψ±|(kerα∓)c are conservative spherical functors such that T−1

Ψ±|(kerα∓)c
= Φ±Φ∓|Bc

±
.

Proof. All the claims follow from Theorem 4.1.3 once we notice that the quotient functor

induces equivalences S∓ ' kerα± and Sc
∓ ' (kerα±)c.

4.2 Bounded derived categories

Let us continue the discussion we started in Remark 4.1.2. Take X−, X+, and X̂ three

separated, finite type schemes of finite Krull dimension together with finite type maps

X−
p−←− X̂

p+−→ X+. Assume that

(p−)∗OX̂ ' OX− (p+)∗OX̂ ' OX+
(4.6)

and that

Φ+ = (p+)∗p
∗
− : Dqc(X−)

'−→ Dqc(X+) Φ− = (p−)∗p
∗
+ : Dqc(X+)

'−→ Dqc(X−). (4.7)

notation at all. Indeed, as K sits in an SOD A = 〈K,⊥K〉, the quotient functor π has a fully faithful left
adjoint πL, and if we identify A/K with the essential image of πL (which is ⊥K) the quotient functor π
becomes the projection functor to ⊥K in the previous SOD.
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Then,

Dqc(X−)
(p−)∗←−−− Dqc(X̂)

(p+)∗−−−→ Dqc(X+) (4.8)

is a flop-flop diagram, and we say that X−
p−←− X̂

p+−→ X+ induces a flop-flop diagram.

Applying Corollary 4.1.7 to the flop-flop diagram (4.8), we obtain the SODs

Dqc(X̂)/K = 〈ker(p−)∗, p
∗
−Dqc(X−)〉 = 〈p∗−Dqc(X−), ker(p+)∗〉

= 〈ker(p+)∗, p
∗
+Dqc(X+)〉 = 〈p∗+Dqc(X+), ker(p−)∗〉.

(4.9)

We explained in Remark 4.1.2 that, in fact, these diagrams were the examples from which

this research started. We now want to investigate when we can pass from the categories of

complexes with quasi-coherent cohomology to the categories of cohomologically bounded

complexes with coherent cohomology, i.e., Db(−). For this reason, in this subsection we

make the following

Assumption. p− and p+ are proper and of finite Tor dimension.

Under this assumption, we have the functors

p∗± : Db(X±)→ Db(X̂) (p±)∗ : Db(X̂)→ Db(X±) p×± : Db(X±)→ Db(X̂).

The functors2 p×± are the right adjoints to (p±)∗, and the fact that they preserve Db(−) is

proved in [Nee18b, Lemma 3.12]. Moreover, [Nee18a, Remark 6.1.1] together with (4.6)

imply that p×± are fully faithful.

From now on, all the functors we write are assumed to be between bounded derived

categories of coherent sheaves unless otherwise stated.

Let us consider Kb = K ∩ Db(X̂), and take the quotient Db(X̂)/Kb with quotient

functor π : Db(X̂) → Db(X̂)/Kb. We consider the functors induced on the quotient by

(p±)∗, i.e.,

(p−)∗ : Db(X̂)/Kb → Db(X−) and (p+)∗ : Db(X̂)/Kb → Db(X+)

and the functors

p∗± : Db(X±)
πp∗±−−→ Db(X̂)/Kb and p×± : Db(X±)

πp×±−−→ Db(X̂)/Kb.

By Lemma 4.1.6, we have for any E,F ∈ Db(X±)

HomDb(X̂)(p
∗
±(E), F ) ' HomDb(X̂)/Kb(p∗±(E), π(F )).

2The functors p×± coincide with p!± because p± are proper, but to be consistent with the notation of
[Nee18b], we denote them by p×±.
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Therefore, fully faithfulness of p∗± implies fully faithfulness of p∗±, and the adjunction

p∗± a (p±)∗ induces an adjunction p∗± a (p±)∗. The following lemma shows that the same

holds true for p×±, i.e., they are fully faithful, and we have an adjunction (p±)∗ a p×±.

Lemma 4.2.1. Let A be a triangulated category and S ⊂ A be a thick subcategory. Then,

for any E ∈ S⊥ and any F ∈ A, the quotient functor π : A→ A/S induces an isomorphism

HomA(F,E) ' HomA/S(π(F ), π(E))

Proof. This can be proved similarly to Lemma 4.1.6.

Therefore, the subcategories p∗−Db(X−) and p∗+Db(X+) are left admissible in the quo-

tient category Db(X̂)/Kb, while the subcategories p×−Db(X−) and p×+Db(X+) are right

admissible in Db(X̂)/Kb. Hence, by Lemma 2.3.24 we have the following SODs

Db(X̂)/Kb = 〈ker(p−)∗, p
∗
−Db(X−)〉 = 〈p×+Db(X+), ker(p+)∗〉

= 〈ker(p+)∗, p
∗
+Db(X+)〉 = 〈p×−Db(X−), ker(p−)∗〉.

(4.10)

Theorem 4.2.2. Assume that X−
p−←− X̂

p+−→ X+ induces a flop-flop diagram and that

p− and p+ are proper and of finite Tor dimension. Then, we have a four periodic SOD

Db(X̂)/Kb = 〈ker(p−)∗, p
∗
−Db(X−)〉 = 〈p∗−Db(X−), ker(p+)∗〉

= 〈ker(p+)∗, p
∗
+Db(X+)〉 = 〈p∗+Db(X+), ker(p−)∗〉

and the functors

Ψb
− = (p−)∗ : ker(p+)∗ → Db(X−) and Ψb

+ = (p+)∗ : ker(p−)∗ → Db(X+)

are conservative spherical functors such that T−1
Ψb
±

= Φ±Φ∓ ∈ Aut(Db(X±)).

Proof. We will prove that p∗−Db(X−) = p×+Db(X+) and that p∗+Db(X+) = p×−Db(X−) as

subcategories of Db(X̂)/Kb. Then, substituting in (4.10) we get the four periodic SOD in

the statement of the theorem. Once we have the four periodic SOD, the statement about

the spherical functors follows from Lemma 2.5.7.

We prove p∗−Db(X−) = p×+Db(X+), the other equality being analogous. By (4.9) and

the adjunction (p+)∗ a p×+, we have the SODs

Dqc(X̂)/K = 〈p∗−Dqc(X−), ker(p+)∗〉 = 〈p×+Dqc(X+), ker(p+)∗〉,

where the functors are considered between unbounded derived categories of quasi-coherent

sheaves. Therefore, we have p∗−Dqc(X−) = p×+Dqc(X+) as subcategories of Dqc(X̂)/K.
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Hence, for every E− ∈ Db(X−) there exists E+ ∈ Dqc(X+) and an isomorphism p∗−(E−) '
p×+(E+) in Dqc(X̂)/K.

As p×+ is fully faithful, applying (p+)∗ to this isomorphism we get E+ ' (p+)∗p
∗
−(E−) ∈

Db(X+). Hence, for every E− ∈ Db(X−) there exists E+ ∈ Db(X+) such that p∗−(E−) '
p×+(E+) in Dqc(X̂)/K.

By Lemma 4.1.6, the isomorphism p∗−(E−) ' p×+(E+) is the image via π : Dqc(X̂) →
Dqc(X̂)/K of a morphism f : p∗−(E−) → p×+(E+) such that cone(f) ∈ K. However,

p∗−(E−) and p×+(E+) are cohomologically bounded complexes with coherent cohomology,

thus cone(f) is too. This means that π(f) is an isomorphism in Db(X̂)/Kb. Hence, we

have p∗−Db(X−) ⊂ p×+Db(X+), and similarly one proves the other containment.

Remark 4.2.3. The biggest drawback of the above theorem is that we can prove it only

at the level of quotient categories. It is not clear whether in general the subcategory Kb

is left admissible in Db(X̂), and therefore whether the SODs of Theorem 4.2.2 come from

SODs of Db(X̂) (as it happens in Theorem 4.1.3).

Remark 4.2.4. It is worth spending some time explaining what is the relationship between

the spherical functors of Theorem 4.2.2 and the ones obtained by applying Corollary 4.1.7

to the flop-flop diagram induced by X−
p−←− X̂

p+−→ X+.

Let us focus on the autoequivalence Φ+Φ− = (p+)∗p
∗
−(p−)∗p

∗
+. Corollary 4.1.7 and

Theorem 4.2.2 construct for us three spherical functors all of which have twist equal to

Φ+Φ−. However, these functors have different source and target categories, and in this

remark we want to explain what is the relationship among them.

As both Dqc(X̂)/K and Db(X̂)/Kb will play a role in what follows, we introduce

some auxiliary notation: we write ker(p−)∗ and ker(p−)b
∗ for the kernel of the functor

induced by (p−)∗ on Dqc(X̂)/K and Db(X̂)/Kb, respectively. The category ker(p−)c
∗ is

the subcategory of compact objects of ker(p−)∗.

Applying Corollary 4.1.7 to the flop-flop diagram (4.8), we obtain the spherical functors

Ψ+ : ker(p−)∗ → Dqc(X+) and Ψ+ : ker(p−)c
∗ → Dqc(X+)c.

On the other hand, Theorem 4.2.2 tells us that we have a spherical functor

Ψb
+ : ker(p−)b

∗ → Db(X+).

In general, these spherical functors only fit into a commutative diagram

ker(p−)c
∗ ker(p−)b

∗ ker(p−)∗

Dqc(X+)c Db(X+) Dqc(X+).

Ψ+ Ψb
+ Ψ+

(4.11)
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As a guiding example, the reader can think of Mukai flops in dimension 2. In § 4.4.2 we

prove that the top row of (4.11) in this case takes the form

D(k[ε]/ε2)c ↪→ Db(k[ε]/ε2) ↪→ D(k[ε]/ε2) (4.12)

where deg(ε) = −1 and Db(k[ε]/ε2) is the triangulated subcategory of D(k[ε]/ε2) gener-

ated by k seen as a trivial k[ε]/ε2-dg-module.

The functors in the top row of the diagram (4.11) are induced by the inclusions

Dqc(X̂)c ↪→ Db(X̂) ↪→ Dqc(X̂). However, notice that while it is obvious that ker(p−)b
∗

maps to ker(p−)∗, the fact that ker(p−)c
∗ maps to ker(p−)b

∗ follows from the equivalence

ker(p−)c
∗ ' Sc

+ and the fact, proved in the proof of Theorem 4.1.3, that S+ is generated

by an object which is compact in Dqc(X̂), and thus, Sc
+ = S+ ∩Dqc(X̂)c ⊂ Db(X̂).

In the general case, we cannot say much about the functor ker(p−)b
∗ → ker(p−)∗.

However, we will see in § 4.3 that if the fibres of p− and p+ have dimension at most one,

then this functor is fully faithful.

On the other hand, the functor ker(p−)c
∗ → ker(p−)b

∗ is always fully faithful. To see

this, notice that this functor is constructed as

ker(p−)c
∗
π−1

−−→ Sc
+ ↪→ Db(X̂)

π−→ Db(X̂)/Kb

and that the functor π : Sc
+ → Db(X̂)/Kb (which lands in ker(p−)b

∗) is fully faithful by

the definition of S+ and Lemma 4.1.6.

The example of Mukai flops (4.12) shows that we cannot expect ker(p−)c
∗ ↪→ ker(p−)b

∗

to be essentially surjective in general. Indeed, Db(k[ε]/ε2) strictly contains D(k[ε]/ε2)c

because k ∈ D(k[ε]/ε2) is not a perfect k[ε]/ε2-dg-module. To see this, notice that

RHomk[ε]/ε2(k, k) ' k[q], deg(q) = 2, is infinite dimensional, while k[ε]/ε2 is proper.

Remark 4.2.5. In the previous remark, we explained the relationship between the various

spherical functors that one can obtain by applying Corollary 4.1.7 and Theorem 4.2.2 to

the flop-flop diagram (4.8).

In this remark we want to stress that, if X− and X+ are smooth, then Db(X±) =

Dqc(X±)c, and therefore, regardless of putting further assumptions on p− and p+, we can

always realise the flop-flop autoequivalence of Db(X±) associated to the equivalences (4.7)

by restricting the spherical functors of Theorem 4.1.3 to compact objects.

This approach, when pursuable, is better suited for computations for two reasons.

First, because it is easier to compute morphisms in Dqc(X̂) rather than in Db(X̂)/Kb.

Second, because we have generators for S− and S+, whereas we do not have them in

general for ker(p−)∗, ker(p+)∗ ⊂ Db(X̂)/Kb.

108



Flop-flop autoequivalences and compositions of spherical twists

4.3 Fibres of dimension at most one

In this subsection, we keep employing the notation we introduced in § 4.2.

Our aim is to compare our work to [BB15]. For this reason, in this subsection we

make the following

Assumption. p− and p+ are proper, of finite Tor dimension, and have fibres of dimension

at most one.

The following lemma is well known.

Lemma 4.3.1 ([Bri02, Lemma 3.1]). An object K ∈ Dqc(X̂) is in K if and only if its

cohomology sheaves are.

Proof. Our assumptions on p± imply, by [Sta18, Tag 08D5], that for any E ∈ Dqc(X̂) to

compute Hi((p±)∗E) we can assume E ∈ D+
qc(X̂). Then, we have a convergent, second

page spectral sequence Hi((p±)∗Hj(E)) =⇒ Hi+j((p±)∗E) that degenerates at page 2

and the statement follows.

In [BB15, Lemma 5.5] Bodzenta and Bondal use the above lemma to prove that

Db(X̂)/Kb is a full subcategory of D−(X̂)/K−, K− = K ∩ D−(X̂). We claim that the

same argument proves that D−(X̂)/K− is a full subcategory of Dqc(X̂)/K. Indeed, the

proof of [BB15, Lemma 5.5] carries on verbatim replacing the functors of truncation above

with those of truncation below, and choosing l ∈ Z such that all the objects appearing in

the relevant diagrams belong to D≤lqc rather than to D≥lqc . Thus, it follows that Db(X̂)/Kb

is a full subcategory of Dqc(X̂)/K.

For the convenience of the reader, we recall that applying Corollary 4.1.7 to the flop-

flop diagram (4.8) we obtain the SODs

Dqc(X̂)/K = 〈ker(p−)∗, p
∗
−Dqc(X−)〉 = 〈p∗−Dqc(X−), ker(p+)∗〉

= 〈ker(p+)∗, p
∗
+Dqc(X+)〉 = 〈p∗+Dqc(X+), ker(p−)∗〉.

(4.13)

Given that Db(X̂)/Kb ⊂ Dqc(X̂)/K is a full subcategory, it makes sense to ask whether

the SODs (4.13) induce the SODs of Theorem 4.2.2 (see Definition 2.3.15 for the definition

of an induced SOD). The answer is yes, as the following theorem shows.

Theorem 4.3.2. Assume that X−
p−←− X̂

p+−→ X+ induces a flop-flop diagram and that

p− and p+ are proper, of finite Tor dimension, and with fibres of dimension at most one.

Then, the SODs (4.13) induce the SODs of Theorem 4.2.2.

Proof. We prove that the SODs

Dqc(X̂)/K = 〈ker(p−)∗, p
∗
−Dqc(X−)〉 = 〈p∗−Dqc(X−), ker(p+)∗〉 (4.14)
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induce the SODs

Db(X̂)/Kb = 〈ker(p−)∗, p
∗
−Db(X−)〉 = 〈p∗−Db(X−), ker(p+)∗〉.

The proof for the other two SODs in (4.13) is similar.

By Definition 2.3.15, we have to prove that the projection functors of the SODs (4.14)

preserve the subcategory Db(X̂)/Kb. We begin with the SOD

Dqc(X̂)/K = 〈ker(p−)∗, p
∗
−Dqc(X−)〉. (4.15)

Take E = π(E) ∈ Db(X̂)/Kb. Then, Lemma 4.1.6 shows that the adjunction counit

for the adjoint pair p∗− a (p−)∗ is the image, via the quotient functor π : Dqc(X̂) →
Dqc(X̂)/K, of the adjunction counit for the adjoint pair p∗− a (p−)∗. Therefore, we have

an isomorphism between the following distinguished triangles

p∗−(p−)∗(E)→ E → E
′ ' π

(
p∗−(p−)∗(E)→ E → E ′

)
.

As p− is proper and of finite Tor dimension, the fact that E ∈ Db(X̂) implies that

p∗−(p−)∗(E) ∈ Db(X̂), and thus that E ′ ∈ Db(X̂). Therefore, we get

p∗−(p−)∗(E) ' π(p∗−(p−)∗(E)) ∈ Db(X̂)/Kb iker(p−)∗i
L
ker(p−)∗

(E
′
) ' π(E ′) ∈ Db(X̂)/Kb,

which means that the projection functors of the SOD (4.15) preserve the subcategory

Db(X̂)/Kb ⊂ Dqc(X̂)/K.

Now we prove that the projection functors of the SOD

Dqc(X̂)/K = 〈p∗−Dqc(X−), ker(p+)∗〉 (4.16)

preserve Db(X̂)/Kb. By Corollary 4.1.7 we know that p×+Dqc(X+) = p∗−Dqc(X−) as sub-

categories of Dqc(X̂)/K, and by the proof of Theorem 4.2.2 we know that p×+Db(X+) =

p∗−Db(X−) as subcategories of Db(X̂)/Kb. Hence, it is enough to prove that the SOD

Dqc(X̂)/K = 〈p×+Dqc(X+), ker(p+)∗〉 induces an SOD of Db(X̂)/Kb. We prove this state-

ment.

Take E = π(E) ∈ Db(X̂)/Kb. Then, using Lemma 4.2.1 in place of Lemma 4.1.6, we

see that the following distinguished triangles are isomorphic

E
′ → E → p×+(p+)∗(E) ' π

(
E ′ → E → p×+(p+)∗(E)

)
.

As p+ is proper and of finite Tor dimension, E ∈ Db(X+) implies that p×+(p+)∗(E) ∈
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Db(X̂), see [Nee96, Lemma 3.12], and thus also that E ′ ∈ Db(X̂). Therefore, we get

p∗+(p+)∗(E) ' π(p×+(p+)∗(E)) ∈ Db(X̂)/Kb iker(p+)∗i
R
ker(p+)∗

(E
′
) ' π(E ′) ∈ Db(X̂)/Kb,

which means that the projection functors of the SOD (4.16) preserve the subcategory

Db(X̂)/Kb ⊂ Dqc(X̂)/K.

Remark 4.3.3. We are finally in a position to tie up our results with some of the results

in [BB15]. To do so, let us recall the setup of ibidem and the relevant results.

In their work Bodzenta and Bondal consider a cartesian diagram

X̂

X− X+

Y

p− p+

f− f+

(4.17)

where the schemes and f− are subject to various assumptions, f+ is the flop of f−, and Y

is affine. Among the assumptions that f− must satisfy there are two that are of particular

importance for us: f− has fibres of dimension at most one and (f−)∗OX− ' OY .

Under their assumptions, Bodzenta and Bondal prove that the functors (p±)∗p
∗
∓ are

equivalences [BB15, Corollary 4.23] and that (p±)∗OX̂ ' OX± [BB15, Remark 4.2], i.e.,

in our terminology, the upper half of the diagram (4.17) induces a flop-flop diagram.

Moreover, they give an explicit construction of the flop-flop autoequivalence as the inverse

of the spherical twist around a spherical functor.

Namely, they show that, as f− has fibres of dimension at most one, the null-category

Af− = {E ∈ Coh(X−) : (f−)∗E = 0} is abelian [BB15, Lemma 2.1], and it has a

projective generator [BB15, Proposition 2.4]. Therefore, one can derive the inclusion

Af− ↪→ Coh(X−) to a functor ι : Db(Af−)→ Db(X−). In [BB15, Corollary 5.18] Bodzenta

and Bondal prove that ι is spherical and that the inverse of the spherical twist around it

is the flop-flop autoequivalence.

The connection between ι and Ψ− is provided by [BB15, Proposition 5.11, Theorem

5.17], which show that Db(Af−) ' ker(p+)∗ ⊂ Db(X̂)/Kb, and by [BB15, Lemma 5.10],

which proves that under this equivalence ι is identified with Ψ−. Therefore, up to equiv-

alences, in this setup Theorem 4.2.2 and Bodzenta–Bondal’s construction produce the

same functor.

Let us conclude this remark by noticing that when Y = SpecR for R a complete local

k-algebra, Bodzenta and Bondal prove that the endomorphism algebra of the projective

generator of Af− is isomorphic to the contraction algebra Acon as defined in [DW13], see
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[BB15, Theorem 6.2]. Therefore, in this situation we get equivalences

Db
f.g.(Acon) ' Db(Af−) ' ker(p+)∗ and D(Acon) ' ker(p+)∗

where f.g. means finitely generated modules and the first copy of ker(p+)∗ is considered

as a subcategory of Db(X̂)/Kb, while the second as a subcategory of Dqc(X̂)/K.

4.4 Examples

As we explained in § 1, the research project that brought to Theorem 4.1.3 started from

the will of finding geometric examples of glued spherical functors as constructed in The-

orem 3.1.4.

In [ADM19], Addington–Donovan–Meachan proved that the flop-flop autoequivalence

for standard flops and Mukai flops has a factorisation in terms of inverses of spherical

twists around spherical functors. For this reason, it seemed a good idea to study these

examples in further detail.

The reader not well-acquainted with the geometry of standard flops and Mukai flops

should not worry, we will recall the setup when the time comes. For now, let us outline

the approach we will use to tackle both examples.

Theorem 4.1.3 provides us with a spherical functor3 Ψ+ whose twist has inverse isomor-

phic to the flop-flop autoequivalence, and it is natural to guess that, if a glued spherical

functor is hiding behind the scene, Ψ+ should be that functor.

To identify Ψ+ as a glued spherical functor, we have to check that the source category

S+ of Ψ+ admits an SOD with gluing functors as the ones described by Theorem 3.1.4,

and that Ψ+ restricted to the components of this SOD restricts to the spherical functors

we are supposed to be gluing.

This strategy is easy to explain, but rather difficult to carry out. Let us summarise

what the problem is, as this shows once more that passing from Db(X̂) to Dqc(X̂) did

indeed make things easier.

The point is that in S+ it is “easy” to compute morphisms because it is a full subcat-

egory of Dqc(X̂). However, the geometric source category of Ψ+, the one that naturally

arises from the geometry, is really ker(p−)∗.

Thus, one should really look at the structure of ker(p−)∗ rather than at the one of

S+. Fortunately, the quotient functor π : Dqc(X̂) → Dqc(X̂)/K induces an equivalence

S+ ' ker(p−)∗, and we can leverage both strengths at once: the insight on the structure

of ker(p−)∗, and the ability to carry out computations in S+. However, while we can often

3The choice of Ψ+ over Ψ− is just a matter of convention, and it does not play any role.

112



Flop-flop autoequivalences and compositions of spherical twists

easily guess what the SOD should look like for ker(p−)∗, transporting it back to S+ to

check all the necessary properties requires us to compute πL, which is rather complicated.

On top of this problem, when we want to work with cohomologically bounded com-

plexes an important difference between Db(X̂) and Dqc(X̂) shows up. Namely, that

we have no analogue of S+ in the former, and the only category we can work with is

ker(p−)∗ ⊂ Db(X̂)/Kb, which is hard to deal with because we are not always able to

compute morphisms in this quotient category.

The problem of computing morphisms in Db(X̂)/Kb already appears in the example of

Mukai flops, § 4.4.2, and we are only able to circumvent it because we can use the theory

of base change for SODs as developed in [Kuz11], see also the proof of Theorem 4.4.13.

Regardless of these problems, in the examples of standard flops and Mukai flops we

are able to match the picture of glued spherical functors with that of the flop-flop autoe-

quivalence. The relevant theorems are Theorem 4.4.1 and Theorem 4.4.13, respectively.

After dealing with the examples of standard flops § 4.4.1 and Mukai flops § 4.4.2, we

will briefly survey two more examples: Grassmannian flops and the Abuaf flop, § 4.4.3. In

these last examples, we are not able to match the factorisation of the flop-flop autoequiv-

alence with the construction of Theorem 3.1.4, but we will explain what our expectations

are.

For the rest of this section, k denotes an algebraically closed field of characteristic

zero.

4.4.1 Standard flops

Let Z be a smooth, projective variety and consider V− and V+ two locally free sheaves of

rank n + 1 over Z. Let X− be a smooth, projective variety such that we have a closed

embedding j− : PV− ↪→ X− with NPV−/X− = OPV−(−1) ⊗ b∗−V+, where b− : PV− → Z is

the projection. Let us assume, as in [Huy06], that we can flop X− along j−(PV ). Then,

we obtain the following diagram

X̂

E = PV− ×Z PV+

X− PV− PV+ X+

Z

p− p+

d− d+

l

j−
b− b+

j+
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Here, b± and d± are the projections, i and j± are closed embeddings, the normal bundle

of PV− and PV+ in X− and X+ are given by

NPV−/X− = OPV−(−1)⊗ b∗−V+ and NPV+/X+ = OPV+(−1)⊗ b∗+V−

respectively, and X̂ = BlPV± X±.

Notice that (p±)∗OX̂ ' OX± because p± are blow-ups of smooth projective varieties in

smooth subvarieties. Moreover, by [BO95] we have equivalences (p∓)∗p
∗
± : Db(X±)

'−→
Db(X∓), and by [KL15, Lemma 2.12] we deduce equivalences (p∓)∗p

∗
± : Dqc(X±)

'−→
Dqc(X∓). Therefore, the hypotheses of Theorem 4.1.3 are satisfied. Even more, p± are

proper and of finite Tor dimension, hence also Theorem 4.2.2 applies.

We now want to describe the source categories for the spherical functors produced

by these theorems. We concentrate on the spherical functor Ψ+ and the subcategories4

S+ = ⊥K∩ (p∗−Dqc(X−))⊥ and Sb
+ = S+ ∩Db(X̂), but clearly this is not restrictive by the

symmetry of the situation.

For i ∈ Z, consider the functors

α−i(−) = (j+)∗(OPV+(−i)⊗ b∗+(−)) : Dqc(Z)→ Dqc(X+) (4.18)

and write

A−i = (b+ × j+)∗∆∗OPV+(−i) ∈ Db(Z ×X+) (4.19)

for their Fourier–Mukai kernels. In [ADM19], Addington–Donovan–Meachan prove that

the functors α−i are spherical, and that we have an isomorphism

(p+)∗p
∗
−(p−)∗p

∗
+ ' T−1

α−1
T−1
α−2

. . . T−1
α−n .

It follows that we can apply the construction of Theorem 3.1.4 to produce a glued

spherical functor whose twist has inverse isomorphic to this flop-flop autoequivalence. On

the other hand, we can also use our geometric construction to produce a spherical functor

for this autoequivalence. Our next theorem states that these two approaches produce

exactly the same spherical functor.

Theorem 4.4.1. Let us write S+ and Ψ+ for the source category and the spherical functor,

respectively, obtained by applying Theorem 4.1.3 to the setup of standard flops. Then, the

category S+ has an SOD

S+ = 〈Dqc(Z),Dqc(Z), . . . ,Dqc(Z)〉 (4.20)

4A priori the quotient functor π : Dqc(X̂)→ Dqc(X̂)/K does not identify Sb+ with the kernel of (p−)∗

in Db(X̂)/Kb because we do not know whether the SODs of Theorem 4.1.3 for the flop-flop diagram (4.8)

induce SODs of Db(X̂). However, for standard flops this will be the case, as Theorem 4.4.1 shows.
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where n copies of Dqc(Z) appear. Moreover, the functor Ψ+ restricted to the i-th copy

of Dqc(Z) (counting right to left) is identified with α−i, and for any 1 ≤ i < j ≤ n the

functor αR−jα−i[1] is the right gluing functor for the couple formed by the j-th and i-th

copy of Dqc(Z) (counting right to left).

Furthermore, the SODs obtained by applying Theorem 4.1.3 to the setup of standard

flops induce SODs of ⊥K ∩Db(X̂), and thus the category Sb
+ = S+ ∩Db(X̂) has an SOD

Sb
+ = 〈Db(Z),Db(Z), . . . ,Db(Z)〉 (4.21)

and the quotient functor π : Dqc(X̂) → Dqc(X̂)/K induces an equivalence π : Sb
+

'−→
ker(p−)∗ ⊂ Db(X̂)/Kb.

Remark 4.4.2. In [ADM19], at the end of § 2, Addington–Donovan–Meachan point out

that the flop-flop functor should fit into the framework of [HLS16, Theorem 3.11]. The

four periodic SOD of Theorem 4.1.3 implements this framework.

We now prepare the ground for the proof of the above theorem. We will proceed in

steps. First, we prove that S+ and Sb
+ have the claimed SODs, Proposition 4.4.5, and

then we prove the claim about the gluing functors, Proposition 4.4.6.

Let us define the fully faithful functors

ιa,b(−) := l∗
(
OE(a, b)⊗ d∗±b∗±(−)

)
: Dqc(Z)→ Dqc(X̂) a, b ∈ Z

υm(−) := l∗
(
OE(mE)⊗ d∗−(−)

)
: Dqc(PV−)→ Dqc(X̂) m ∈ Z

(4.22)

and notice that by Grothendieck–Verdier duality ιa,b has a left adjoint given by

ιLa,b(−) = (b−)∗(d−)∗
(
ωE/Z [dimE − dimZ]⊗ (OE(−a,−b)⊗ l∗(−))

)
where ωE/Z = ωE ⊗ (d±b±)∗ω∨Z . Furthermore, let us recall the definition of the right

mutation along im(ιa,b) as an endofunctor of Dqc(X̂):

Ra,b = cone
(
id→ ιa,bι

L
a,b

)
[−1] : Dqc(X̂)→ Dqc(X̂).

The blow-up formula together with [HL15, Lemma 3.20] tell us that we have an SOD

Dqc(X̂) = 〈im(υn), . . . , im(υ2), im(υ1), p∗−Dqc(X−)〉.

Moreover, noticing that OE(mE) ' OPV−×ZPV+(−m,−m), we can use Orlov’s SOD of

projective bundles to get that

im(υm) = 〈im(ι−m+a,−m), . . . , im(ι−m+n+a,−m)〉 a ∈ Z.
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Putting these two things together, we get the SOD

Dqc(X̂) = 〈im(ι−n,−n), . . . , im(ι0,−n), . . . , im(ι−n,−1), . . . , im(ι0,−1), p∗−Dqc(X−)〉 (4.23)

Set R0 = id and for m = −1, . . . ,−n+ 1 define the functors

Rm := R−1,−1R−2,−1 . . .R−n,−1 . . .R−1,mR−2,m . . .R−n,m.

Then, mutating (4.23) (see [BK89] for mutations of SODs), we get the SOD (read each

block top to bottom, left to right)

Dqc(X̂) = 〈

im(ι−n,−n), . . . , im(ι−1,−n),

im(ι−n,−n+1), . . . im(ι−1,−n+1),

. . .

im(ι−n,−1), . . . , im(ι−1,−1),︸ ︷︷ ︸
A

R−n+1 im(ι0,−n),

R−n+2 im(ι0,−n+1),

. . . ,

R−1 im(ι0,−2),

im(ι0,−1),︸ ︷︷ ︸
B

p∗−Dqc(X−)〉. (4.24)

Remark 4.4.3. A similar SOD exists if we replace Dqc(−) with Db(−) because all the vari-

eties appearing are smooth, and both the blow-up formula and Orlov’s SOD for projective

bundles exist for Db(−).

The following lemma is the first step in the proof of Theorem 4.1.3, and it shows that

(4.24) is the SOD constructed in Theorem 4.1.3.

Lemma 4.4.4. In the SOD (4.24), we have K = A and S+ = B.

Proof. It is enough to prove K = A, as then Theorem 4.1.3 implies

B = ⊥K ∩ (p∗−Dqc(X−))⊥ = ⊥K ∩ ker(p−)∗ = S+.

It is clear that A ⊂ K, so we only have to show that K ⊂ A. Given an object K ∈ K,

its projection to p∗−Dqc(X−) is zero. Therefore, K can be decomposed in terms of the

remaining subcategories in the SOD (4.24). In other words, there exists a distinguished

triangle B → K → A where B ∈ B and A ∈ A.

Our aim is to show that K ∈ A, which is equivalent to say that B is zero. Thus, we

can assume we are in the following local situation: Z is affine and such that V+ is trivial.

Hence, PV+ ' Pn × Z ⊂ X+.

As B ∈ B, by the definition of an SOD Definition 2.3.1, we know that there exist

objects Ei ∈ B and maps

0 = En → En−1 → · · · → E0 = B (4.25)
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such that for every i = 1, . . . , n there exists Zi ∈ Dqc(Z) such that

cone(Ei → Ei−1) = R−n+iι0,−n+i−1(Zi).

Now consider B(1) := B ⊗ p∗+OX+(1). As (p+)∗(B) = 0, the projection formula tells

us that Γ(B(1)) = 0. We will use this vanishing to prove Z1 = 0.

The object Γ(B(1)) carries a filtration given by image via Γ of the tensor product of

(4.25) with p∗+OX+(1). The graded pieces of this filtration are given by

Γ(R−n+iι0,−n+i−1(Zi)⊗ p∗+OX+(1)) ' Γ(OPV+(−n+ i)⊗ b∗+Zi) (4.26)

for i = 1, . . . , n. As i− n ∈ {1− n, . . . , 0}, the right hand side of (4.26) vanishes for all i

except i = n, in which case it is given by Γ(Z1). As all the graded pieces of the filtration

of Γ(B(1)) are zero and Γ(B(1)) = 0, we get Γ(Z1) = 0, and, as Z is affine, Z1 = 0.

The vanishing of Z1 implies that E1 ' E0, and therefore we can rewrite (4.25) ending

with E1. Then, we proceed inductively, i.e., we tensor with p∗+OX+(m), m = 2, . . . , n,

and we deduce that Zi = 0 for every i. Therefore, B = 0, and K ∈ A.

Let us define the subcategories

D−j = R−j+1 im ι0,−j ' imR−j+1ι0,−j ' Dqc(Z) and Db
−j = D−j ∩Db(X̂) ' Db(Z).

The following proposition bring us one step closer to proving Theorem 4.4.1: it shows

that the categories S+ and Sb
+ have the desired SODs (4.20) and (4.21), respectively.

Proposition 4.4.5. The subcategory S+ has an SOD

S+ = 〈D−n, . . . ,D−1〉

and the functor Ψ+ restricted to D−i is identified with α−i for any i = 1, . . . , n.

Furthermore, the SODs obtained by applying Theorem 4.1.3 to the setup of standard

flops induce SODs of ⊥K ∩Db(X̂), and thus the subcategory Sb
+ has an SOD

Sb
+ = 〈Db

−n, . . . ,D
b
−1〉

and the quotient functor π : Dqc(X̂) → Dqc(X̂)/K induces an equivalence π : Sb
+

'−→
ker(p−)∗ ⊂ Db(X̂)/Kb.

Proof. The SOD of S+ follows from Lemma 4.4.4, while the statement about Ψ+ follows

from observing that R−i+1ι0,−i is related to ι0,−i by mutations through subcategories

contained in K, and therefore Ψ+R−i+1ι0,−i ' Ψ+ι0,−i ' α−i.
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The statement that the SODs obtained by applying Theorem 4.1.3 to the setup of

standard flops induce SODs of ⊥K∩Db(X̂) follows from Remark 4.4.3 and [Kuz11, Lemma

3.3].

Finally, once we have the SOD ⊥K ∩ Db(X̂) = 〈Sb
+, p

∗
−Db(X−)〉, the equivalence

π : Sb
+
'−→ ker(p−)∗ ⊂ Db(X̂)/Kb follows by e.g. Lemma 4.1.6.

To complete the proof of Theorem 4.4.1, we are now only left to prove that in the SOD

S+ = 〈D−n, . . . ,D−1〉 the right gluing functor for the couple (D−j,D−i), 1 ≤ i < j ≤ n,

is given by αR−jα−i[1].

Let us fix 1 ≤ i < j ≤ n. Then, Remark 2.3.6 tells us that the right gluing

functor for the couple (D−j,D−i) is given by (R−j+1ι0,−j)
RR−i+1ι0,−i[1]. If we had to

identify this functor with αR−jα−i[1] by hand, it would be complicated. However, both

(R−j+1ι0,−j)
RR−i+1ι0,−i and αR−jα−i are Fourier–Mukai transforms, thus it is enough to

show that they have the same kernel.

From now on, we agree on the following: if E ∈ Dqc(X1×X2) and F ∈ Dqc(X2×X3) are

the Fourier–Mukai kernels of the functors FME : Dqc(X1) → Dqc(X2), FMF : Dqc(X2) →
Dqc(X3), then we write FE := (p13)∗(p

∗
12(E)⊗p∗23(F )), where pij : X1×X2×X3 → Xi×Xj

are the projections, for the Fourier–Mukai kernel of the functor FMFFME : Dqc(X1) →
Dqc(X3).

We write Ra,b, Ia,b, and ILa,b for the Fourier–Mukai kernels of Ra,b, ιa,b, and ιLa,b, respec-

tively. Explicitly, they are given by5

Ia,b = (b+d+ × i)∗∆∗OPV−×ZPV+(a, b) ∈ Db(Z × X̂)

ILa,b = I∨a,b ⊗ p∗X̂ωX̂ [dim X̂] ∈ Db(X̂ × Z)

Ra,b = cone
(
∆∗OX̂ → Ia,bI

L
a,b

)
[−1] ∈ Db(X̂ × X̂)

where ∆ is the diagonal inclusion, and the map in the third line is given by adjunction.

Following the above convention, we write

R−i := R−1,−1R−2,−1 . . . R−n,−1 . . . R−1,−i . . . R−n,−i ∈ Db(X̂ × X̂)

for the Fourier–Mukai kernel of R−i. Then, the functor (R−j+1ι0,−j)
RR−i+1ι0,−i has

Fourier–Mukai kernel given by

(pZ×Z)∗(p
∗
X̂×Z(R−j+1I−j)

∨ ⊗ p∗ZωZ ⊗ p∗Z×X̂R−i+1I−i)[dimZ] ∈ Db(Z × Z) (4.27)

5Here we are suppressing the twist morphism X̂ × Z → Z × X̂ and we consider I∨a,b as a complex on

X̂ × Z. We will always suppress the twist morphism in the following. Moreover, we are computing the
Fourier–Mukai kernel of a left adjoint functor following [Huy06, Proposition 5.9].
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where pX̂×Z , pZ×X̂ , pZ×Z and pZ are the projections from Z × X̂ × Z to X̂ × Z, Z × X̂,

Z × Z and Z, respectively. Similarly, the Fourier–Mukai kernel of αR−jα−i is given by

(pZ×Z)∗(p
∗
X+×ZA

∨
−j ⊗ p∗ZωZ ⊗ p∗Z×X+

A−i)[dimZ] ∈ Db(Z × Z) (4.28)

with the projection maps defined from Z ×X+ × Z to Z ×X+, X+ × Z, Z × Z and Z,

respectively.

To prove an isomorphism of functors (R−j+1ι0,−j)
RR−i+1ι0,−i ' αR−jα−i it is enough to

prove that the Fourier–Mukai kernels (4.27) and (4.28) are isomorphic. By the projection

formula, it is enough to prove

(pZ×Z)∗(p
∗
X̂×Z(R−j+1I−j)

∨ ⊗ p∗
Z×X̂R−i+1I−i) ' (pZ×Z)∗(p

∗
X+×ZA

∨
−j ⊗ p∗Z×X+

A−i).

We prove such isomorphism in the following proposition, thus concluding the proof of

Theorem 4.4.1.

Proposition 4.4.6. For 1 ≤ i < j ≤ n we have an isomorphism

(pZ×Z)∗(p
∗
X̂×Z(R−j+1I−j)

∨ ⊗ p∗
Z×X̂R−i+1I−i) ' (pZ×Z)∗(p

∗
X+×ZA

∨
−j ⊗ p∗Z×X+

A−i)

and therefore the right gluing functor for the couple (D−j,D−i), 1 ≤ i < j ≤ n, in the

SOD of Proposition 4.4.5 is given by αR−jα−i[1].

Proof. We first construct a map

(pZ×Z)∗(p
∗
X̂×Z(R−j+1I−j)

∨ ⊗ p∗
Z×X̂R−i+1I−i)→ (pZ×Z)∗(p

∗
X+×ZA

∨
−j ⊗ p∗Z×X+

A−i) (4.29)

that we will then prove to be an isomorphism.

First of all, notice that all as the Fourier–Mukai kernels involved are perfect objects

in the respective derived categories, we can rewrite the left hand side of (4.29) as

(pZ×Z)∗(RHom(p∗
X̂×ZR−j+1I−j, p

∗
Z×X̂R−i+1I−i))

and the right hand side as

(pZ×Z)∗(RHom(p∗X+×ZA−j, p
∗
Z×X+

A−i)).
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Then, using flat base change we get a map

(id×p+ × id)∗(RHom(p∗
X̂×ZR−j+1I−j, p

∗
Z×X̂R−i+1I−i))

→RHom((id×p+ × id)∗p
∗
X̂×ZR−j+1I−j, (id×p+ × id)∗p

∗
Z×X̂R−i+1I−i))

'RHom(p∗X+×Z(p+ × id)∗R−j+1I−j, p
∗
Z×X+

(id×p+)∗R−i+1I−i)).

(4.30)

To get from (4.30) to (4.29) we now prove that we have an isomorphism

(id×p+)∗R−i+1I0,−i ' A−i

for any 1 ≤ i ≤ n. Indeed, as by definition Ra,b maps to ∆∗OX̂ for any a and b, we can

construct a map R−i+1I0,−i → I0,−i. The cone of this map is an iterated extension of

complexes of the form Ia,bI
L
a,b with a, b ∈ {−n, . . . ,−1}, and therefore it is in the kernel

of (id×p+)∗, i.e., (id×p−)∗R−i+1I0,−i ' A−i.

Summing up, we constructed a map

(id×p+ × id)∗(RHom(p∗
X̂×ZR−j+1I−j, p

∗
Z×X̂R−i+1I−i))→ RHom(p∗X+×ZA−j, p

∗
Z×X+

A−i)

(4.31)

and we set (4.29) to be (pZ×Z)∗(4.31).

Our aim is now to prove that (4.29) is an isomorphism. To do so we will use the

technique of the deformation to the normal bundle, see [Ful98, Chapter 5].

Let us briefly recall this piece of theory. Given any closed immersion X ↪→ Y , we can

construct a flat, proper family f : X → A1 together with a closed immersion X×A1 ↪→ X
such that for any t ∈ A1 \ {0} we have Xt = X ×A1 {t} = Y with the given embedding,

and X0 = Tot(NX/Y ) with the embedding given by the zero section.

Let us write f̂ : X̂ → A1 for the deformation to the normal bundle of X̂, and similarly

f± : X± → A1 for the deformation to the normal bundle of X±. The maps p± lift to

maps p± : X̂ → X±, which remain proper. Moreover, the functors α−i, ιa,b and Ra,b can

be constructed flatly in the family and we write Afam
−i , I fam

a,b , Rfam
a,b for their Fourier–Mukai

kernels. Convolving the kernels Rfam
a,b we get a family version Rfam

−i of R−i. Then, it is easy

to see that (id×p±)∗R
fam
−i+1I

fam
0,−i ' Afam

−i . Therefore, we get a map

(pZ×A1×Z)∗(RHom(p∗X̂×ZR
fam
−j+1I

fam
−j , p

∗
Z×X̂R

fam
−i+1I−i)

fam)

→ (pZ×A1×Z)∗(RHom(p∗X+×ZA
fam
−j , p

∗
Z×X+

Afam
−i ))

(4.32)

where

pZ×A1×Z : (Z × A1)×A1 X̂ ×A1 (Z × A1) ' Z × X̂ × Z id×f̂×id−−−−−→ Z × A1 × Z.
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The map (4.32) is a family version of (4.29) and restricts to (4.29) on every fibre different

from 0 ∈ A1.

Let us call S the cone of (4.32). As (4.32)|Xt = (4.29) for any t 6= 0, to conclude the

proof of the proposition it is enough to prove that St ' 0 for some t ∈ A1 \{0}. We claim

that this follows if we prove that S0 ' 0.

Indeed, let us assume S0 ' 0. Then, notice that pZ×A1×Z is proper because f̂ is.

Therefore, as all the Fourier–Mukai kernels involved are perfect objects in the respective

derived categories, S ∈ Db(Z ×A1×Z) and its support is a closed subset of Z ×A1×Z.

Assume there existed a point (z, t, z′) ∈ Z × A1 × Z with t 6= 0. Then, as f̂ and f± are

trivial outside 0 ∈ A1 and Supp(S) is closed, this would mean that (z, 0, z′) ∈ Supp(S),

which is against our assumption.

Hence, if S0 ' 0, then S ' 0, which implies that (4.32) restricts to an isomorphism

on every fibre, and in particular on a fibre over t 6= 0, which is what we needed to show.

Thus, to conclude the proof of the proposition we are left to show that S0 ' 0, i.e.,

that (4.32) restricts to an isomorphism over 0. We do this in the lemma below.

Lemma 4.4.7. With the notation as in the proof of Proposition 4.4.6, we have S0 ' 0.

Proof. Over 0 ∈ A1 we are in the local situation. Namely, we have X+ = Tot(OPV+(−1)⊗
b∗+V−) and X̂ = Tot(OPV−×ZPV+(−1,−1)), and the restriction of (4.32) to this setting is

simply the map (4.29) for the local case.

Proving that S0 ' 0 is local question in Z. Therefore, we can further assume that Z

is affine and that V− and V+ are trivial.

In this situation, we have the following description of the Fourier–Mukai kernels for

α−i, ιa,b and R−j+1ι0,−j, respectively6

∆∗OZ �OPn(−i) ∆∗OZ �OPn×Pn(a, b) ∆∗OZ � R−j+1OPn×Pn(0,−j).

As Z is affine, the derived local homs in (4.29) become derived global homs. More-

over, given the above description of the Fourier–Mukai kernels, these global homs split

in a part coming from Z × Z and a part coming from either Tot(OPn×Pn(−1,−1)) or

Tot(OPn(−1)⊕n+1). The parts coming from Z ×Z clearly play no role in the proof of the

isomorphism (they are the same on both sides), and therefore it is enough to prove that

statement of the lemma for the case Z = pt.

Summing up, we reduced to prove the following statement: the morphism

RHomTot(OPn×Pn (−1,−1))(R−j+1OPn×Pn(0,−j),R−i+1OPn×Pn(0,−i))
(p+)∗−−−→RHomTot(OPn (−1)⊕n+1)(OPn(−j),OPn(−i))

(4.33)

6We suppress the pushforward functors (j+)∗ and l∗ to ease the notation.
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is an isomorphism for 1 ≤ i < j ≤ n.

To prove this statement, we describe the objects R−j+1OPn×Pn(0,−j) in a way that

allows us to easily match the two hom spaces appearing in (4.33). For the sake of simplicity

we do it for n = 2, the general case being analogous.

When j = 1, we have R0OPn×Pn(0,−1) = OPn×Pn(0,−1) and there is nothing to do.

Let us consider j = 2. On Tot(OPn×Pn(−1,−1)) we have the following exact sequences

OX̂(1, 1)
u−→ OX̂ → OP×P (4.34)

OX̂(−2,−1)→ OX̂(−1,−1)⊕3 → OX̂(0,−1)⊕3 → OX̂(0,−2)→ OP×P(0,−2) (4.35)

The first one is given by the tautological section u ∈ OTot(OPn×Pn (−1,−1))(−1,−1). The sec-

ond one is obtained by joining the tensor product of (4.34) with OTot(OPn×Pn (−1,−1))(0,−2)

and the tensor product of the pull-up of the Koszul complex from the first copy of Pn

with OTot(OPn×Pn (−1,−1))(1,−1).

Let us write

π⊥ = πp∗−Dqc(X−)⊥ = cone(p∗−(p−)∗ → idDqc(X̂))

for the projection functor to p∗−Dqc(X−)⊥. Then, tensoring the short exact sequence (4.34)

with OTot(OPn×Pn (−1,−1))(−1,−1), we see that

π⊥(OTot(OPn×Pn (−1,−1))(−1,−1)) ' OPn×Pn(−1,−1) ∈ K.

Similarly, π⊥(OTot(OPn×Pn (−1,−1))(−2,−1)) ∈ K. Therefore, applying π⊥ to (4.35) we get

the distinguished triangle

π⊥(
{
OX̂(0,−1)⊕3 → OX̂(0,−2)

}
)→ OP×P(0,−2)→

→ π⊥(
{
OX̂(−2,−1)→ OX̂(−1,−1)⊕3

}
)[1] (4.36)

where the last term is in K, and we use the notation {−} to denote a complex of coherent

sheaves whose rightmost term is in degree 0.

Applying RHomTot(OPn×Pn (−1,−1))(OPn×Pn(0,−1),−) to the distinguished triangle (4.36),

as K ⊂ OPn×Pn(0,−1)⊥ by (4.23), and

RHomTot(OPn×Pn (−1,−1))(OPn×Pn(0,−1),OPn×Pn(0,−2)) ' 0,

we see that

π⊥(
{
OX̂(0,−1)⊕3 → OX̂(0,−2)

}
) ∈ OPn×Pn(0,−1)⊥.
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Therefore,

π⊥(
{
OX̂(0,−1)⊕3 → OX̂(0,−2)

}
) ∈ 〈OPn×Pn(0,−1), p∗−Dqc(X−)〉⊥.

As the projections with respect to an SOD are uniquely defined, the distinguished triangle

(4.36) and the SOD (4.24) imply

R−1OPn×Pn(0,−2) ' π⊥(
{
OX̂(0,−1)⊕3 → OX̂(0,−2)

}
).

Using this description of R−1OPn×Pn(0,−2) and the adjunctions p∗± a (p±)∗, it is easy to

see that (4.33) is an isomorphism.

This completes the proof of the lemma.

4.4.2 Mukai flops

In this section, we consider the example of Mukai flops. We keep employing the notation

introduced in § 4.4.1, but we restrict to the case Z = pt. Therefore, we have

X± = Tot(OPn(−1)⊕n+1) and X̂ = Tot(OPn×Pn(−1,−1)).

Remark 4.4.8. The reason why we assume that Z is a point is that we want to avoid

complications related to P-functors, see [Add16] and [AL19] for the relevant definitions.

Taking global sections, we see that we have a non-trivial surjection of algebras

Symk(Homk(k
n, kn)) � H0(X̂,OX̂) ' H0(X±,OX±)

Therefore, there exist canonical maps g± : X± → A1, ĝ : X̂ → A1 corresponding to the

identity idkn in the left hand side above. We define

W± = {g± = 0} and Ŵ = {ĝ = 0}.

Given the above definitions, we get the following diagram whose top row takes the

name of Mukai flop

W− Ŵ W+

X− X̂ X+

r−

q−

r̂

q+

r+

p− p+

(4.37)

Notice that W± ' Tot(Ω1
Pn), which is embedded in X± via the Euler exact sequence,

and that the equation ĝ = 0 describes Ŵ as a normal crossing divisor in X̂ with two
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irreducible components: one of them is the blow-up of W± along Pn, that we denote by

W̃ , and the other is Pn × Pn. These two irreducible components are glued along P(Ω1
Pn)

that is the exceptional locus of the blow-up and that sits inside Pn× Pn via the inclusion

Ω1
Pn ↪→ OPn(−1)⊕n+1.

The smooth varieties W− and W+ are birational, and furthermore the functors (q±)∗q
∗
∓

induce derived equivalences Db(W±) ' Db(W∓), see [Nam03], [Kaw02]. These equiva-

lences induce equivalences Dqc(W±) ' Dqc(W∓) by [KL15, Lemma 2.12], and therefore

we can apply Theorem 4.1.3. Even more, we can also apply Theorem 4.2.2 because q±

are proper and of finite Tor dimension.

As in § 4.4.1, from now on we focus on the description of the spherical functor Ψ+

and of the categories S+ ⊂ Dqc(Ŵ ), Sb
+ = S+ ∩ Db(Ŵ ), but this is not restrictive by the

symmetry of the situation.

Remark 4.4.9. Two remarks are in order here. First, the notation S+ and Sb
+ will not be

ambiguous because even though the varieties X̂ and X± appear in this subsection, the

source categories for the spherical functors obtained in § 4.4.1 do not. Second, as it was

the case for standard flops, a priori it is not clear that Sb
+ is the correct source category

for the spherical functor obtained from Theorem 4.2.2, but Theorem 4.4.13 will prove it

is.

In [ADM19], Addington–Donovan–Meachan describe a factorisation of (q+)∗q
∗
−(q−)∗q

∗
+

in terms of P-twists around P-objects. We now briefly recall their result and rephrase it

in terms of spherical functors.

We have talked about P-objects in the framework of dg-categories in § 3.5. For the

convenience of the reader, and to fix the notation, we now quickly survey the concept

once more.

P-objects were introduced by Huybrechts–Thomas in [HT06]. Given a smooth, projec-

tive variety Y of dimension 2n, an object P ∈ Db(Y ) is called a Pn-object if P ⊗ ωY ' P

and

Hom•Db(Y )(P, P ) ' H•(Pn, k)

as graded algebras. To each such object, Huybrechts and Thomas associate an autoequiv-

alence of Db(Y ) called the P-twist around P . What Addington–Donovan–Meachan prove

is that the objects OPn(−j) ∈ Db(W+) are Pn-objects for any j ∈ Z, and that the flop-flop

autoequivalence (q+)∗q
∗
−(q−)∗q

∗
+ factorises as the composition of inverses of P-twists.

From our perspective, it will be more useful to interpret P-twists as spherical twists

according to the construction proposed by Segal in [Seg18] and that we explained in § 3.5.

Let us recall this construction. In [Seg18], Segal notices that the P-object P carries

an action of the dg-algebra k[q], where deg(q) = 2. Therefore, if we call t the generator
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of Hom•Db(Y )(P, P ), by Koszul duality the object

P̃ := cone(t : P → P [2]) (4.38)

carries an action of the dg-algebra k[ε]/ε2, where deg(ε) = −1.

Then, Segal proves [Seg18, Proposition 4.2] that the functor

βP (−) = −⊗k[ε]/ε2 P̃ : D(k[ε]/ε2)→ Dqc(Y )

is spherical and that TβP is isomorphic to the P-twist around P . With this notation,

[ADM19, Theorem B] can be restated saying that we have an isomorphism of functors

(q+)∗q
∗
−(q−)∗q

∗
+ ' T−1

βOPn (−1)
◦ · · · ◦ T−1

βOPn (−n)
. (4.39)

Remark 4.4.10. In the description above we have been consciously imprecise because we

believe that conveying the basic idea is more important that spelling out every single

detail. However, for the proof of Theorem 4.4.13 we will need to perform some choices,

and therefore in this remark we explain all the technicalities we hid above.

Given a Pn-object P by definition we have an isomorphism Hom•Db(Y )(P, P ) ' k[t]/tn+1

as graded algebras, where deg(t) = 2. To define a k[q]-module structure on P we fix an

h-injective7 resolution IP of P . Then, HomX̂(IP , IP ) is a dg-algebra whose cohomology is

given by Hom•Db(Y )(P, P ), and we can fix a lift tP : IP → IP [2] of t so that we make q act

on IP as tP .

The next step in giving a formal definition of βP is to fix a lift of P̃ . Let us consider

the cone of tP in the category of complexes of OY -modules. Namely, we consider

ĨP = cone(tP ) = IP [1]⊕ IP [2]

with the differential given by the cone construction. Then, we have a closed, degree zero

morphism ĨP → ĨP [−1] given by

ĨP = IP [1]⊕ IP [2] 3 (a, b) 7→ (0, a) ∈ IP ⊕ IP [1] = ĨP [−1]

that endows ĨP with the structure of a k[ε]/ε2-dg-module. Hence, we can consider ĨP

as a Fourier–Mukai kernel ĨP ∈ Dqc(Spec(k[ε]/ε2) × Y ). The functor βP is the functor

associated to this Fourier–Mukai kernel. Notice that it does not depend on the choices

performed.

Remark 4.4.11. The notion of a P-object has been generalised to that of a split P-functor,

7See [Spa88] for these complexes, which in ibidem are called K-injective.
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[Add16], [Cau12b], and more generally to a P-functor [AL19]. Using these more general

notions, [ADM19, § 3] and [AL19, § 7.4] prove the factorisation of the flop-flop autoequiv-

alence for Mukai flops in terms of P-twists for any base Z.

Once again, given Theorem 3.1.4, the isomorphism of functors (4.39) is for us a hint

that a glued spherical functor might be hiding in plain sight. This is indeed the case, as

we are about to show.

Let us define Db(k[ε]/ε2), deg(ε) = −1, to be the smallest triangulated subcategory

of D(k[ε]/ε2) generated by k ∈ D(k[ε]/ε2).

Remark 4.4.12. Notice that Db(k[ε]/ε2) coincides with the subcategory of D(k[ε]/ε2) given

by those complexes whose total cohomology is finite dimensional. See e.g. [KS22, Propo-

sition 2.2].

Theorem 4.4.13. Let us write S+ and Ψ+ for the source category and the spherical

functor, respectively, obtained by applying Theorem 4.1.3 to the setup of Mukai flops.

Then, the category S+ has an SOD

S+ = 〈D(k[ε]/ε2), . . . ,D(k[ε]/ε2)〉 (4.40)

where n copies of D(k[ε]/ε2) appear. Moreover, the functor Ψ+ restricted to the i-th copy

of D(k[ε]/ε2) (counting right to left) is identified with βOPn (−i), and for any 1 ≤ i < j ≤ n

the functor βROPn (−j)βOPn (−i)[1] is the right gluing functor for the couple formed by the j-th

and i-th copy of D(k[ε]/ε2) (counting right to left).

Furthermore, the SODs obtained by applying Theorem 4.1.3 to the setup of Mukai flops

induce SODs of ⊥K ∩Db(Ŵ ), and thus the category Sb
+ has an SOD

Sb
+ = 〈Db(k[ε]/ε2), . . . ,Db(k[ε]/ε2)〉 (4.41)

and the quotient functor π : Dqc(Ŵ ) → Dqc(Ŵ )/K induces an equivalence π : Sb
+
'−→

ker(q−)∗ ⊂ Db(Ŵ )/Kb.

We will obtain this theorem by base changing the results we proved in § 4.4.1. Because

of the many parts it is made of, we split the proof of Theorem 4.4.13 in various parts.

For 1 ≤ j ≤ n, let us write

O−j := R−j+1OPn×Pn(0,−j) ∈ Db(X̂), R−j = 〈r̂∗O−j〉⊕, and Rb
−j = R−j ∩Db(Ŵ ).

First, we prove that S+ and Sb
+ have SODs in terms of the subcategories R−j and Rb

−j,

respectively.

Lemma 4.4.14. The subcategory S+ has the SOD S+ = 〈R−n, . . . ,R−1〉.
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Proof. Notice that ĝ ∈ OX̂ is a regular section because X̂ is smooth. Therefore, the

diagram

Ŵ X̂

{0} A1

r̂

ĝ

i0

(4.42)

is Tor independent, and we can apply base change for SODs as developed in [Kuz11].

More precisely, let us write KX̂ ⊂ Dqc(X̂) for the common kernel of (p±)∗. Then, by

(4.24) we have the SOD

Dqc(X̂) = 〈KX̂ , O−n, . . . , O−1, p
∗
−Dqc(X−)〉 (4.43)

Now, [Kuz11, Proposition 4.2] allows us to base change (4.43) along (4.42) to obtain the

SOD

Dqc(Ŵ ) = 〈〈r̂∗KX̂〉
⊕,R−n, . . . ,R−1, q

∗
−Dqc(W−)〉 (4.44)

If we write KŴ for the common kernel of (q±)∗, to prove that we have the SOD

S+ = 〈R−n, . . . ,R−1〉 it is now enough to prove that KŴ = 〈r̂∗KX̂〉⊕. Indeed, if we have

KŴ = 〈r̂∗KX̂〉⊕, then Theorem 4.1.3 and (4.44) imply

S+ = ⊥KŴ ∩ ker(q−)∗ = ⊥KŴ ∩ (q∗−Dqc(W−))⊥ = 〈R−n, . . . ,R−1〉,

as we wanted.

We now prove that KŴ = 〈r̂∗KX̂〉⊕. Take K ∈ Dqc(Ŵ ), then K ∈ 〈r̂∗KX̂〉⊕ if and

only if

K ∈ 〈R−n, . . . ,R−1, p
∗
−Dqc(W−)〉⊥,

which in turn is equivalent to

r̂∗K ∈ 〈O−n, . . . , O−1, p
∗
−Dqc(X−)〉⊥ = KX̂ .

However, 0 = (p±)∗r̂∗K = (r±)∗(q±)∗K if and only if (q±)∗K = 0 because r− and r+ are

closed embeddings, and we get KŴ = 〈r̂∗KX̂〉⊕, as we wanted.

Given Lemma 4.4.14, we are now in the position to prove

Lemma 4.4.15. The SODs obtained by applying Theorem 4.1.3 to the setup of Mukai

flops induce SODs of ⊥K ∩Db(Ŵ ), and thus the category Sb
+ has an SOD

Sb
+ = 〈Rb

−n, . . . ,R
b
−1〉

and the quotient functor π : Dqc(Ŵ ) → Dqc(Ŵ )/K induces an equivalence π : Sb
+
'−→
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ker(q−)∗ ⊂ Db(Ŵ )/Kb.

Proof. This lemma is actually just an easy consequence of the following observation: as X̂

is smooth, the projection functors of the SOD (4.43) have finite cohomological amplitude,

see [Kuz11] for the definition of this notion, and therefore we can also use [Kuz11, Theorem

5.6] to base change the SOD

Db(X̂) = 〈Kb
X̂
, O−n, . . . , O−1, p

∗
−Db(X−)〉

of Remark 4.4.3 to the SOD

Db(Ŵ ) = 〈KŴ ∩Db(Ŵ ),Rb
−n, . . . ,R

b
−1, q

∗
−Db(W−)〉, (4.45)

and we get the desired induced SOD of ⊥KŴ ∩Db(Ŵ ). Similarly, one shows that also the

other three SODs of Theorem 4.1.3 induce SODs of Db(Ŵ ).

As a consequence of (4.45), we get

Sb
+ = S+ ∩Db(Ŵ ) = 〈Rb

−n, . . . ,R
b
−1〉,

as we wanted.

Now that we proved that the SODs obtained by applying Theorem 4.1.3 to the setup

of Mukai flops induce SODs of ⊥KŴ ∩Db(Ŵ ), the proof that the quotient functor induces

an equivalence π : Sb
+
'−→ ker(q−)∗ ⊂ Db(Ŵ )/Kb is the same as in Proposition 4.4.5.

Summing up, thanks to Lemma 4.4.14 and Lemma 4.4.15 we know that we have the

SODs

S+ = 〈R−n, . . . ,R−1〉 and Sb
+ = 〈Rb

−n, . . . ,R
b
−1〉.

Thus, to prove the existence the SODs (4.40) and (4.41) it is enough to prove

R−j ' D(k[ε]/ε2) and Rb
−j ' Db(k[ε]/ε2)

for j = 1, . . . , n. We do this in the following

Lemma 4.4.16. For any j = 1, . . . , n, we have equivalences

(i) R−j ' D(k[ε]/ε2)

(ii) Rb
−j ' Db(k[ε]/ε2)

Proof of (i). By definition the category R−j is generated by the compact object r̂∗O−j.

Therefore, to prove that R−j ' D(k[ε]/ε2) it is enough to prove that the derived endo-
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morphism algebra of r̂∗O−j is isomorphic to k[ε]/ε2. Namely, we want to prove

RHomŴ (r̂∗O−j, r̂
∗O−j) ' k[ε]/ε2. (4.46)

Recall that, by construction, we have isomorphisms

RHomX̂(O−j, O−j) RHomX̂(OPn×Pn(0,−j),OPn×Pn(0,−j))

RHomX̂(O−j,OPn×Pn(0,−j))

' ' (4.47)

given by postcomposition and precomposition, respectively, with the canonical morphism

O−j → OPn×Pn(0,−j) coming from the definition of right mutation. Notice that all the

hom spaces in (4.47) carry an action of H0(A1,OA1) via ĝ, and that the isomorphisms

in (4.47) are H0(A1,OA1)-linear. This means that we can rewrite the diagram (4.47) as

follows

ĝ∗RHomX̂(O−j, O−j) ĝ∗RHomX̂(OPn×Pn(0,−j),OPn×Pn(0,−j))

ĝ∗RHomX̂(OPn×Pn(0,−j), O−j)

' ' (4.48)

It is easy to show that ĝ∗RHomX̂(OPn×Pn(0,−j),OPn×Pn(0,−j)) ' (i0)∗O{0}, where

i0 : {0} ↪→ A1, and therefore (4.48) tells us that we have an isomorphism

ĝ∗RHomX̂(O−j, O−j) ' (i0)∗O{0}.

Applying flat base change along (4.42) to this isomorphism, we obtain the isomorphism8

RHomŴ (r̂∗O−j, r̂
∗O−j) ' i∗0ĝ∗RHomX̂(O−j, O−j) ' i∗0(i0)∗O{0} ' k[ε]/ε2,

which is exactly (4.46), as we wanted.

Given the isomorphism (4.46), by e.g. [LS16, Proposition B.1], we conclude that

R−j ' D(k[ε]/ε2), concluding the proof.

Proof of (ii). To prove the equivalence Rb
−j ' Db(k[ε]/ε2), we have to study the equiv-

alence R−j ' D(k[ε]/ε2) more carefully and answer the following question: under the

equivalence R−j ' D(k[ε]/ε2) to what subcategory does Db(Ŵ ) correspond? The equiv-

8Notice that we are doing three steps at once: by flat base change we obtain that the underlying
graded algebra of the RHom in (4.46) is k⊕ k[1]. However, there is only one structure of graded algebra
on this graded vector space, which is given by k[ε]/ε2. Finally, for degree reasons, the dg-algebra k[ε]/ε2

is intrinsically formal, see also [KS22, Lemma 2.1], which means that any dg-algebra with the same
cohomology is already quasi-isomorphic to it. Thus, we can conclude that (4.46) holds.
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alence R−j ' D(k[ε]/ε2) is given by

ν−j(−) = −⊗k[ε]/ε2 r̂
∗O−j : D(k[ε]/ε2)→ Dqc(Ŵ ).

What we want to show is that ν−j(D
b(k[ε]/ε2)) = Rb

−j.

Notice that as r̂∗O−j ∈ D(Ŵ )c, it follows formally that ν−j(D(k[ε]/ε2)c) = Rc
−j. How-

ever, we cannot formally deduce anything about ν−j(D
b(k[ε]/ε2)) because this subcategory

is controlled by the action of ν−j on k, which in general can be recovered by the action of

ν−j on k[ε]/ε2 only as an homotopy colimit.

We begin by showing that if ν−j(A) ∈ Rb
−j, then A ∈ Db(k[ε]/ε2). Take A ∈ D(k[ε]/ε2)

and assume that A′ = ν−j(A) ∈ Rb
−j. As ν−j is fully-faithful, we have

A ' νR−jν−j(A) ' RHomŴ (r̂∗O−j, A
′) ' RHomX̂(O−j, r̂∗A

′).

As A′ is bounded, so is r̂∗A
′, and thus, as O−j ∈ Db(X̂) is set-theoretically supported

on Pn × Pn, the rightmost term above has bounded and finite dimensional cohomology.

Therefore, by Remark 4.4.12, we get A ∈ Db(k[ε]/ε2).

Conversely, we now prove ν−j(D
b(k[ε]/ε2)) ⊂ Db(Ŵ ). By definition of Db(k[ε]/ε2), it

is enough to prove that ν−j(k) ∈ Db(Ŵ ), and this is what we show.

Let us write πO−j for the projection functor to the subcategory generated by O−j for

the SOD (4.43), and πR−j for the projection functor to the subcategory R−j for the SOD

(4.44). Here 1 ≤ j ≤ n.

[Kuz11, Proposition 4.2, Theorem 5.6] tell us that πO−j and πR−j are compatible.

Namely, they tell us that for any 1 ≤ j ≤ n we have an isomorphism of functors

r̂∗πR−j ' πO−j r̂∗. (4.49)

We will use this isomorphism of functors to prove that ν−j(k) ∈ Db(Ŵ ).

Notice that

r̂∗OPn×Pn(0,−j) ∈ 〈O−j+1, . . . , O−1, p
∗
−Dqc(X−)〉⊥ = 〈KX̂ , O−n, . . . , O−j〉. (4.50)

Therefore, we have9

πO−j(r̂∗OPn×Pn(0,−j)) ' RHomX̂(O−j, r̂∗OPn×Pn(0,−j))⊗k O−j ' O−j,

9Recall that by Remark 2.3.3 the projection functor to the rightmost subcategory in an SOD is the
right adjoint to the inclusion of that subcategory. In this case, the inclusion of the category generated
by O−j is the given by the functor −⊗k O−j , and its right adjoint is RHom

Ŵ
(O−j ,−).

130



Flop-flop autoequivalences and compositions of spherical twists

and thus

r̂∗πR−j(OPn×Pn(0,−j))
(4.49)
' πO−j(r̂∗OPn×Pn(0,−j)) ' O−j (4.51)

Now notice that (4.50) implies

OPn×Pn(0,−j) ∈ 〈R−j+1, . . . ,R−1, q
∗
−Dqc(W−)〉⊥ = 〈KŴ ,R−n, . . . ,R−j〉

and therefore

πR−j(OPn×Pn(0,−j)) ' RHomŴ (r̂∗O−j,OPn×Pn(0,−j))⊗k[ε]/ε2 r̂
∗O−j

' k ⊗k[ε]/ε2 r̂
∗O−j = ν−j(k).

Plugging this isomorphism into (4.51), we obtain r̂∗ν−j(k) ' O−j. As r̂ is a closed

embedding, r̂∗ reflects boundedness and coherence, and therefore ν−j(k) ∈ Db(Ŵ ), as we

wanted.

Having proved Lemma 4.4.14, Lemma 4.4.15, and Lemma 4.4.16, we know that we

have SODs

S+ = 〈D(k[ε]/ε2), . . . ,D(k[ε]/ε2)〉 and Sb
+ = 〈Db(k[ε]/ε2), . . . ,Db(k[ε]/ε2)〉,

and to conclude the proof of Theorem 4.4.13 we have to prove that the functor Ψ+

restricted to the i-th copy of D(k[ε]/ε2) (counting right to left) is identified with βOPn (−i),

and that for any 1 ≤ i < j ≤ n the functor βROPn (−j)βOPn (−i)[1] is the right gluing functor

for the couple formed by the j-th and i-th copy of D(k[ε]/ε2) (counting right to left).

We begin by proving

Lemma 4.4.17. With the notation of Lemma 4.4.16, we have an isomorphism of functors

Ψ+ν−j ' βOPn (−j) for any j = 1, . . . , n.

Proof. Recall that in Remark 4.4.10 we explained that the functor βOPn (−j) is defined by

performing some choices. However, in the same remark we also noticed that the resulting

functor does not depend on the choices made, and therefore proving the isomorphism

Ψ+ν−j ' βOPn (−j) amounts to prove the following: write A for the Fourier–Mukai ker-

nel defining Ψ+ν−j, then A has the structure of a k[ε]/ε2-dg-module and we have an

isomorphism

A ' cone(OPn(−j)→ OPn(−j)[2])

under which the two actions of ε correspond (the action of k[ε]/ε2 on the right hand side

was defined in Remark 4.4.10).

We now prove that the Fourier–Mukai kernel of Ψ+ν−j does indeed satisfy these prop-

erties. Let us write Ĩ−j for an h-injective resolution of r̂∗O−j. Then, we can lift the k[ε]/ε2-
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dg-module structure on r̂∗O−j to a k[ε]/ε2-dg-module structure on Ĩ−j in such a way that

the isomorphism Ĩ−j ' r̂∗O−j becomes an isomorphism in Dqc(Spec(k[ε]/ε2)× Ŵ ).

Having made this choice of an h-injective resolution, we get that ν−j is the functor

associated to the Fourier–Mukai kernel Ĩ−j ∈ Dqc(Spec(k[ε]/ε2)× Ŵ ), and that Ψ+ν−j is

the functor associated to the Fourier–Mukai kernel

(id×q+)∗(Ĩ−j) ∈ Dqc(Spec(k[ε]/ε2)×W+).

Now notice that the underlying OW+-module of (id×q+)∗(Ĩ−j) is

(q+)∗(Ĩ−j) ' (q+)∗r̂
∗O−j ' r∗+OPn(−j). (4.52)

We claim that we have an isomorphism

r∗+OPn(−j) ' cone(OPn(−j)→ OPn(−j)[2]) (4.53)

and that the isomorphism obtained by composing (4.52) and (4.53) is an isomorphism in

the category Dqc(Spec(k[ε]/ε2)×W+).

We begin by proving the isomorphism (4.53). First, notice that OPn ∈ Db(X+) can be

resolved using a Koszul resolution. Namely, Pn ⊂ X+ is the zero locus of a regular section

s ∈ OX+(−1)⊕n+1 and the Koszul complex associated to s is a resolution of OPn . Then,

if we use (the twist by OX+(−j) of) this complex to compute r∗+OPn(−j), we obtain the

(twist by OW+(−j)) of the Koszul complex associated to the restriction of s to W+. The

latter complex is not exact because because Pn has codimension n in W+, while s|W+ is a

section a vector bundle of rank n + 1. However, the dimension is off only by one, which

means that the Koszul complex associated to s|W+ has cohomology only in degree 0 and

−1. In degree zero the cohomology is OPn , while in degree −1 it is given by the kernel of

the map

OPn(1)⊕n+1 ' OW+(1)⊕n+1|Pn → NPn/W+ ' (Ω1
Pn)∨,

which is OPn . Therefore, we have a distinguished triangle

OPn(−j)[1]→ r∗+OPn(−j)→ OPn(−j),

which proves the isomorphism (4.53).

To prove that the isomorphism obtained by composing (4.52) and (4.53) respects the

k[ε]/ε2-dg-module structure on both sides, we notice that by our choice of the k[ε]/ε2-

dg-module structure on Ĩ−j and the diagram (4.47), we have the following commutative
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diagram

Ĩν−j r̂∗O−j r̂∗OPn×Pn(0,−j)

Ĩν−j [−1] r̂∗O−j[−1] r̂∗OPn×Pn(0,−j)[−1]

ε

'

ε ε

'

Applying (q+)∗ to the above diagram, and using the isomorphism (4.53), we see that the

isomorphism (q+)∗(Ĩ−j)→ cone(OPn(−j)→ OPn(−j)[2]) is an isomorphism of k[ε]/ε2-dg-

modules. Therefore, we proved Ψ+ν−j ' βOPn (−j), as required.

Finally, we are in the position to complete the proof of Theorem 4.4.13 by proving the

statement about the right gluing functors of the SOD (4.40).

Lemma 4.4.18. With the notation of Lemma 4.4.16, we have an isomorphism of functors

νR−jν−i ' βROPn (−j)βOPn (−i) for any 1 ≤ i < j ≤ n.

Proof. We proved in Lemma 4.4.17 that we have an isomorphism Ψ+ν−j ' βOPn (−j),

therefore we only have to prove

νR−jν−i ' (Ψ+ν−j)
RΨ+ν−i.

Notice that we have a natural transformation

νR−jν−i → νR−jΨ
R
+Ψ+ν−i = (Ψ+ν−j)

RΨ+ν−i (4.54)

and that all the functors appearing are cocontinuous. Thus, to prove that the natural

transformation is an isomorphism it is enough to prove that it is an isomorphism on

k[ε]/ε2 ∈ D(k[ε]/ε2). We have

νR−jν−i(k[ε]/ε2) = RHomŴ (r̂∗O−j, r̂
∗O−i) ' i∗0ĝ∗RHomX̂(O−j, O−i)

and
(Ψ+ν−j)

RΨ+ν−i(k[ε]/ε2) = RHomW−((q+)∗(Ĩ−j), (q+)∗(Ĩ−j))

' RHomW−(r∗+OPn(−j), r∗+OPn(−i))

' i∗0(g+)∗RHomX+(OPn(−j),OPn(−i)).

Under this identification the natural transformation (4.54) becomes the image via i∗0 of

the morphism

ĝ∗RHomX̂(O−j, O−i) = (g+)∗(p+)∗RHomX̂(O−j, O−i)→

→ (g+)∗RHomX+(OPn(−j),OPn(−i)).
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However, in Lemma 4.4.7 we proved that this last morphism is an isomorphism, and

therefore the natural transformation νR−jν−i → (Ψ+ν−j)
RΨ+ν−i is an isomorphism when

evaluated at k[ε]/ε2, as we wanted.

The proof of the lemma, and thus of Theorem 4.4.13, is now complete.

Remark 4.4.19. Notice that by Koszul duality we have Db(k[ε]/ε2) ' D(k[q])c, thus we

also recover the other construction of [Seg18]. The thick generators of the copies of

D(k[q])c are the objects

k ⊗k[ε]/ε2 r̂
∗R−j+1OPn×Pn(0,−j),

which in the terminology of [KS22] are P∞[2]-objects.

4.4.3 Other examples

Let us walk through a few more examples where we can apply the theory of § 4 but where

an explicit description of the category S+ eludes our understanding.

Grassmannian flops

Let V and S be two vector spaces of dimension n and r, respectively, with r < n. Consider

the quotient stack

Xr,n = [Hom(S, V )⊕ Hom(V, S) /GL(S) ]

where the action is given by M · (a, b) = (aM−1,Mb). The GIT quotient associated to

the linearisations O(1) := detS∨ and O(−1) are, respectively,

Xss
+ /GL(S) = {(a, b) : b is surjective} /GL(S) = Tot (Hom(S, V )→ Gr(V, r)) =: X+,

which is the total space of a vector bundle over the grassmannian of r dimensional quo-

tients in V , and

Xss
− /GL(S) = {(a, b) : a is injective} /GL(S) = Tot (Hom(V, S)→ Gr(r, V )) =: X−,

where Gr(r, V ) is the grassmannian of r dimensional subspaces of V .

The two varieties X− and X+ are birational and derived equivalent, see [DS14], [HL15].

The fibre product over the common singularity is given by

X̂ = Tot (Hom(Q,S)→ Gr(r, V )×Gr(V, r))

where Q is the tautological quotient bundle and S is the tautological subbundle.

In [BCF+19] it was proved that X̂ gives a derived equivalence between Db(X−) and

Db(X+). As everything is smooth, by [KL15, Lemma 2.12] we obtain an equivalence
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Dqc(X−) ' Dqc(X+), and we can apply Theorem 4.1.3. In [BCF+19] it is also (implicitly)

proved that the flop-flop functor is given by a composition of n−r window shifts, see [ibi-

dem, Corollary 5.2.9, Corollary 5.2.10]. Moreover, by [DS14] we know that every window

shift is realised as the spherical twist around a spherical functor whose source category is

given by Dqc(X
r−1,n). Therefore, as in all the examples we considered, one would expect

S+ to have an SOD reflecting this factorisation of the flop-flop autoequivalence. However,

the picture is more complicated, and we are not able to match up the construction of § 3

with the spherical functor constructed via Theorem 4.1.3.

Abuaf flop

Consider V a symplectic vector space of dimension 4. Then, define

X− = Tot(L⊥ /L ⊗ L2 → PV ) and X+ = Tot(S(−1)→ LGr(2, V ))

where L is the tautological subbundle on PV , S is the tautological subbundle on LGr(2, V ),

and OLGr(−1) =
∧2

S. The varieties X− and X+ are birational and derived equivalent

[Seg16], and furthermore they resolve the same singularity Y = Spec H0(X±,OX±). In

[Har17], Hara proves that the structure sheaf of the fibre product X− ×Y X+ gives an

equivalence from Db(X−) to Db(X+). He proves this statement identifying the flop functor

with the equivalence constructed by Segal, who used tilting bundles to prove Db(X−) '
Db(X+). Furthermore, Hara constructs another family of tilting bundles, and one can

show that (one of) the equivalence(s) produced by this new family is identified with the

flop functor Db(X+) → Db(X−). Thus, the diagram X− ← X− ×Y X+ → X+ induces a

flop-flop diagram, and we can apply Theorem 4.1.3 and Theorem 4.2.2.

Studying the families of tilting bundles in further detail, one can show that the flop-flop

autoequivalence is given by

T−1
j∗S
T−1
j∗OLGr(−1)T

−1
j∗S(−1)T

−1
j∗OLGr(−2)T

−1
j∗S(−2) (4.55)

where j : LGr(2, V ) ↪→ X+ is the inclusion of the zero section. Given this decomposition of

the flop-flop functor, we might expect the category S+ to have a full exceptional collection

of length five, so to match the spherical functor of Theorem 4.1.3 with the glued spherical

functor of Theorem 3.1.4, as it happened for standard flops.

However, there is a fundamental difference between this example and standard flops:

the objects j∗S, i∗OLGr(−1), j∗S(−1), i∗OLGr(−2), and j∗S(−2) are not “independent”

in the derived category: we have the following short exact sequence on LGr(2, V )

S(−1)→ V ∗ ⊗OLGr(−1)→ S. (4.56)
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Hence, the functor obtained by gluing the twists in (4.55) using the construction of

Theorem 3.1.4 is not conservative, while the spherical functor Ψ+ is. We can guess

what S+ should look like as follows; the fibre product X̂ is the gluing of BlLGrX+ and

PV × LGr(2, V ) along P(S(−1)), which is embedded in the latter via the exact sequence

(4.56). We can prove that S+ is generated by the objects i∗OLGr(−1), i∗OLGr(−2), i∗S(−1)

where i : PV × LGr(2, V ) ↪→ X̂ is the closed embedding, and therefore one might conjec-

ture that S+ is the quotient of the source category obtained by gluing the spherical twists

in (4.55) by the kernel of the associated glued spherical functor. However, at the moment

we do not know how to prove whether this is right or wrong.
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Chapter 5

Concluding remarks and further

directions

We want to conclude this thesis by presenting some possible future applications of the

novel mathematics we developed in the previous chapters. The author does not know

whether the suggestions that he is about to make will turn into precise theorems, but he

hopes that others will share his interest in the approach proposed.

5.1 Glued spherical functors

We have spent the entire § 3 to understand how to glue spherical functors, and then we

spent a big part of § 4 to find geometric examples of such construction. However, the

reader might wonder why should they be interested in such construction. What are the

new information we can access that we could not grasp without glued spherical functors?

Theorem 3.1.4 has already found applications in the joint work of the author with

Dr. Jongmeyong Kim [BK21] to compute the categorical entropy of the composition of

two spherical twists around spherical objects. However, here we want to present another

possible application of Theorem 3.1.4.

In § 1, we said that sometimes having different presentations of a fixed autoequiva-

lence as a spherical twist around a spherical functor can be an advantage, rather than

a disadvantage. Glued spherical functors are able to harness this opportunity and shed

light on some relations that might result a priori unexpected.

Let us consider the following example. Let E ∈ C be a d-spherical object in a proper

triangulated category with a Serre functor SC. By Theorem 3.1.4, we know that the

autoequivalence T 2
E ∈ Aut(C) can be realised as the spherical twist around the spherical

functor

Ψ(−) = −
L
⊗R (E ⊕ E) : D(R)→ C
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where R is the path dg-algebra of the quiver

2 1
a

b
deg(a) = 0, deg(b) = d

Here, the vertex labelled 2 corresponds to the left copy of E in E⊕E, the vertex labelled 1

corresponds to the right copy of E, and a and b correspond to the identity and the unique

extension of E by itself, respectively. Notice that instead of the dg-algebra constructed

in § 3.4 we consider its associated graded algebra, which in this case we can do because

there are no relations among the morphisms and therefore the algebra (3.41) is formal,

i.e., isomorphic to its cohomology.

What we want to point to the attention of the reader is that the functor Ψ defined

above is not conservative. Namely, if we consider the SOD D(R) = 〈D(k),D(k)〉 con-

structed in Proposition 2.4.25 and explained in Example 2.4.30, then we see that

Ψ(cone(a : k ⊗2 R→ k ⊗1 R)) ' cone(id : E → E) ' 0.

Therefore, ker Ψ 6= 0, and actually ker Ψ = 〈cone(a : k ⊗2 R→ k ⊗1 R)〉.

Thus, we can consider another spherical functor whose twist is isomorphic to T 2
E,

namely, the functor

Ψ: D(R)/ ker Ψ→ C.

The question now is: can we say something about D(R)/ ker Ψ and this new functor?

To answer this question we will proceed pictorially, but the we reassure the reader

that every step can be formalised. In passing from D(R) to D(R)/ ker Ψ we are imposing

that the morphism a should become an isomorphism. Therefore, what we are saying is

that the two vertices in the path-algebra presentation of R should become isomorphic.

Namely, the process of taking the quotient acts as follows

2 1
a

b
1 b

The algebra corresponding to the quiver on the right is the algebra k[b], where deg(b) = d.

For compactness reasons, this answer is not quite right, and we have to pass the algebra

k[b] through Koszul duality. Thus, we obtain

D(R)/ ker Ψ ' D(k[ε]/ε2) deg(ε) = 1− d
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and the spherical functor Ψ is identified with the spherical functor

Ψε(−) = −
L
⊗k[ε]/ε2 cone(E → E[d]) : D(k[ε]/ε2)→ C.

Hence, we proved that T 2
E = TΨε .

The spherical functor Ψε has already appeared in [Seg18] as the spherical functor whose

twist gives the P-twist around a P-object. The claim we make here and the statement of

ibidem tie up once we recall that the square of the spherical twist around a 1-spherical

object is isomorphic to the P-twist around the same object considered as a P1-object, see

[HT06], and more generally that the square of the spherical twist around a d-spherical

object is isomorphic to the P-twist around E considered as a P1[d]-object, see [Kru18] for

this notion.

However, the point we want to stress is that even if we did not know the result of

[HT06], we could use the formula T 2
E = TΨε to prove that the square of the spherical twist

around a spherical object is the P-twist around the same object.

This is the insight we want to provide to the reader: the gluing construction of The-

orem 3.1.4 gives us many new spherical functors with the same twist because the glued

spherical functor is not necessarily conservative. The question the author has in mind is:

can we harness the failure of conservativity to find new, interesting relations among (a

priori) different autoequivalences? For example, along the same lines of what we showed

above, one can recover the well known fact that an An-configuration of spherical objects

gives rise to an action of the braid group, see [ST01].

5.2 Four periodic SODs

Throughout the thesis we motivated the research that led to the mathematics presented

in § 4 by a search for geometric examples of glued spherical functors as constructed in

§ 3. We want to use this concluding section to show that the mathematics of § 4 has also

the potential to be used to prove new, interesting statements.

In § 4 we started from what we called a flop-flop diagram, see Definition 4.1.1,

B−
α−←− A

α+−→ B+

and we showed that left orthogonal to the category K = kerα− ∩ kerα+ admits a four

periodic SOD whose induced spherical functors have twists whose inverses are isomorphic

to the flop-flop autoequivalences.

What we want to point out is that it is easy to prove that, under the assumption

that αL− and αL+ are fully faithful, the existence of the four periodic SOD described in
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Theorem 4.1.3 is equivalent to the flop functors being equivalences.

This observation can be used, for example, to prove that if the pull-push functors via

X̂ for the standard flops are equivalences, then so are the pull-push functors via Ŵ for

the Mukai flops. See § 4.4.1 and § 4.4.2 for the notation we are employing.

Indeed, once we know that the flop functors for the standard flops are equivalences,

we can use Theorem 4.1.3 to claim the existence of four SODs

Dqc(X̂) = 〈KX̂ , S
X
+ , p

∗
−Dqc(X−)〉 = 〈KX̂ , p

∗
−Dqc(X−), SX− 〉 =

= 〈KX̂ , S
X
− , p

∗
+Dqc(X+)〉 = 〈KX̂ , p

∗
+Dqc(X+), SX+ 〉

where KX̂ = ker(p−)∗ ∩ ker(p+)∗. Then, using the theory of base change for SODs as

developed in [Kuz11], we obtain four SODs

Dqc(Ŵ ) = 〈KŴ , S
W
+ , q

∗
−Dqc(W−)〉 = 〈KŴ , q

∗
−Dqc(W−), SW− 〉 =

= 〈KŴ , S
W
− , q

∗
+Dqc(W+)〉 = 〈KŴ , q

∗
+Dqc(W+), SW+ 〉

(5.1)

Here we are implicitly using a series of facts that we either proved in § 4.4.2, or that are

easy to prove. Namely, that

〈ĝ∗KX̂〉⊕ = KŴ and 〈ĝ∗p∗±Dqc(X±)〉⊕ = q∗±Dqc(W±).

Given the four SODs (5.1), we obtain a four periodic SOD of ⊥KŴ , and using the fully

faithfulness of q∗− and q∗+ (which implicitly we already used because we wrote q∗−Dqc(W−)

and q∗+Dqc(W+) rather than 〈q∗−Dqc(W−)〉⊕ and 〈q∗−Dqc(W−)〉⊕), we conclude that the flop

functors for the Mukai flops are equivalences.

What the author wonders is: can we use this strategy to construct new examples in

support of the Bondal–Orlov–Kawamata conjecture?
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