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Spectral theory for type 1 systems

Looking at a self-adjoint elliptic system of m PDEs, each of even
order 2n, on a compact d-dimensional manifold M with boundary
OM. Requires mn boundary conditions. | assume that the system
is semi-bounded from below

Principal symbol is an m x m positive Hermitian matrix-function
on T*M\ {0}.

| assume that the eigenvalues of the principal symbol have
constant multiplicity.



Extension of results from scalar case to type 1 systems is pretty
straightforward.

Take eigenvalues of the principal symbol and extract (2n)"
positive root. These are the new Hamiltonians.

Reflection law: allow jumps from one Hamiltonian to another.
Formula for the first Weyl coefficient requires minor modification.

Algorithm for the evaluation of the second Weyl coefficient
remains the same.

Important: the second Weyl coefficient comes from the boundary
OM, as in the scalar case. Contributions to the second Weyl
coefficient from M itself cancel out due to some symmetries.



Example of a type 1 system: linear elasticity

Equations of linear elasticity were first formulated by Baron
Augustin-Louis Cauchy in 1828-29.




Variational formulation of linear elasticity

Quadratic functional

Eu] :z/g)()\(vau ) + 1 (Vaug + Vaug) Vu ) V/detg dx,

where A and p are real constants called Lamé coefficients which
are assumed to satisfy

u >0, d\+2u >0,

u is the vector field of displacements (unknown quantity), V is the
Levi-Civita connection and +/det g is the Riemannian density.

Will have to denote spectral parameter by A.



Variation of quadratic functional gives spectral problem
Lu = Au,
where

(Lu)® = —p (vﬁvﬂua + Rica5u6> — (A + p)VOVP.

Principal symbol has two eigenvalues: simple eigenvalue

(A +2) €]

and eigenvalue
pligl?

of multiplicity d — 1. These correspond to longitudinal and
transverse elastic waves, respectively. Waves mix up when reflected
from the boundary, giving us a branching Hamiltonian billiards.



Boundary conditions

Dirichlet condition
ulpg =0

or free boundary condition
Tulgpa =0
where T is the boundary traction operator defined by

(Tuw)™ := AV’ + p <n5V5u°‘ + ngvauﬁ) .

Important: the free boundary condition is not the Neumann
boundary condition nBVBUO‘ =0.

In 1885 Lord Rayleigh analysed the free boundary condition and
discovered Rayleigh waves.



Timeline of spectral analysis of linear elasticity

1912: P.Debye writes down first Weyl coefficient.
1915: H.Weyl provides rigorous proof of Debye’s result.

1950: E.W.Montroll, incorrect calculation of the second Weyl
coefficient.

1960: M.Dupuis, R.Mazo, and L.Onsager write down second Weyl
coefficient for d = 3, both for Dirichlet and free boundary.

1997: | check the results of M.Dupuis, R.Mazo, and L.Onsager for
d = 3 using my algorithm, and also deal with d = 2.

2022: M.Capoferri, L.Friedlander, M.Levitin, and D.Vassiliev.
Second Weyl coefficient for any dimension. For odd dimensions
explicit formulae in terms of Lamé parameters, for even dimensions
formulae in terms of elliptic integrals.
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Elasticity operator in R?;

(i Cay)\ L (A 2p)03, + pd2 (A + p)02 ut(x, y)
£ (u2(x,y)> ~ < A+ mR,  u o+ (At 22)6&) (u?(xjy)>

Reflection about x-axis:
ut(x y)) <u1(x —y)>
R : ’ — ’ .
<U2(X7y) U2(X, _y)
Chain Rule tells us that

[£,R] 0.



