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Linear algebra in a finite-dimensional complex vector space

Concept of self-adjoint linear operator L. Requires inner product.

Concept of Hermitian sesquilinear form S(u, v). Does not require
inner product.

In the presence of an inner product there is a one-to-one
correspondence between self-adjoint linear operators and
sesquilinear forms: S(u, v) = 〈u, Lv〉.

Given an Hermitian sesquilinear form S(u, v), can define a real-
valued quadratic form S(v , v). A physicist would call S(v , v) an
action. Variation gives a system of equations for v .



Object of study

Let M be a connected m-dimensional manifold without boundary,
local coordinates x = (x1, . . . , xm).

Will work with n-columns u : M → Cn of scalar fields.

First order sesquilinear form:

S(u, v) :=

∫
M

[
u∗Aα

(
∂v

∂xα

)
+

(
∂u

∂xα

)∗
Bαv + u∗Cv

]
dx ,

where A and B are matrix-valued vector densities, C is a
matrix-valued density and dx = dx1 . . . dxm.

I reserve bold font for density-valued quantities.



The symbol of a first order sesquilinear form

Canonical representation of a first order sesquilinear form:

S(u, v) =

∫
M

[
− i

2
u∗Eα

(
∂v

∂xα

)
+

i

2

(
∂u

∂xα

)∗
Eαv + u∗Fv

]
dx .

Density-valued principal symbol Sprin(x , p) := Eα(x) pα .

Density-valued subprincipal symbol Ssub(x) := F(x) .

Density-valued full symbol Sfull(x , p) := Sprin(x , p) + Ssub(x) .

Full symbol uniquely determines the sesquilinear form.

Sesquilinear form is Hermitian iff its full symbol is Hermitian.



Non-degeneracy condition

Definition 1 We say that our Hermitian first order sesquilinear
form S is non-degenerate if

Sprin(x , p) 6= 0, ∀(x , p) ∈ T ∗M \ {0}.



Gauge transformations of sesquilinear forms

Consider a smooth matrix-function

R : M → GL(n,C).

Given a sesquilinear form S can define another sesquilinear form

S̃(u, v) := S(Ru,Rv).

The corresponding full symbol is

S̃full = R∗ Sfull R +
i

2
[R∗

xα(Sfull)pαR − R∗(Sfull)pαRxα ] .

Want to solve ‘inverse problem’. We are given two full symbols,
Sfull and S̃full. Do they describe the same sesquilinear form?



Equivalence classes of symbols

Definition 2 We say that two full symbols Sfull and S̃full are
GL-equivalent if there exists a smooth matrix-function

R : M → GL(n,C). (1)

such that

S̃full = R∗ Sfull R +
i

2
[R∗

xα(Sfull)pαR − R∗(Sfull)pαRxα ] . (2)

Definition 3 We say that two full symbols Sfull and S̃full are
SL-equivalent if there exists a smooth matrix-function

R : M → SL(n,C). (3)

such that (2) is satisfied.



Task at hand

Give explicit necessary and sufficient conditions for a pair of full
symbols to be GL-equivalent or SL-equivalent.

I want to describe equivalence classes of sesquilinear forms.

Will achieve this goal for special values of m and n. Here m is the
dimension of the manifold and n is the number of scalar fields.

The analysis that follows is dimension sensitive.

For definiteness will deal with SL-equivalence.



Special case m = n2

Lemma 1 A manifold M admits a non-degenerate Hermitian first
order sesquilinear form iff it is parallelizable.

Proof is based on the observation that n × n Hermitian matrices
form a real vector space of dimension n2. But m = n2 is also the
dimension of our manifold.



Case m = 4, n = 2: appearance of Lorentzian geometry

The determinant of the denisty-valued principal symbol is a
quadratic form in momentum

det Lprin(x , p) = −gαβ(x) pαpβ ,

where gαβ(x) is a real symmetric 4× 4 matrix-function with values
in 2-densities.

Lemma 2 The matrix-function gαβ(x) has Lorentzian signature,
i.e. it has three positive eigenvalues and one negative eigenvalue.

Definition of Lorentzian density: ρ(x) := | det gµν(x)|1/6 . This
density is invariant under gauge transformations.



Rewriting sesquilinear form in terms of half-densities

Turn scalar fields into half-densities: v 7→ √ρv . Our sequilinear
form now reads

S(u, v) =

∫
M

[
− i

2
u∗Eα

(
∂v

∂xα

)
+

i

2

(
∂u

∂xα

)∗
Eαv + u∗Fv

]
dx .

Elements of the matrix E are vector fields and elements of the
matrix F are scalar fields.

Principal symbol Sprin(x , p) := Eα(x) pα . Invariantly defined
2× 2 Hermitian matrix-function on T ∗M.

Subprincipal symbol Ssub(x) := F (x) . Invariantly defined
Hermitian 2× 2 matrix-function on M.

Full symbol Sfull(x , p) := Sprin(x , p) + Ssub(x) .



My definition of the metric tensor

det Sprin(x , p) = −gαβ(x) pαpβ . (4)

Metric is Lorentzian and is invariant under gauge transformations.



Time-orientability

The Lorentzian manifold (M, g) is said to be time-orientable if it
admits a timelike vector field.

Lemma 3 A parallelizable Lorentzian manifold (M, g) admits a
non-degenerate Hermitian first order sesquilinear form satisfying
condition (4) iff it is time-orientable.

Proof in one direction is easy: just take trace of principal symbol.

Other way round not 100% obvious: proof relies on the fact that
S3 is parallelizable.



Topological charge

ctop := − i

2

√
| det gαβ| tr

(
(Sprin)p1(Sprin)p2(Sprin)p3(Sprin)p4

)
,

where the subscripts p1, p2, p3 and p4 indicate partial derivatives
with respect to the components of momentum.

Can take only two values, +1 or −1, and describes the orientation
of the principal symbol relative to our chosen orientation of local
coordinates x = (x1, x2, x3, x4).

It is invariant under gauge transformations.



Temporal charge

ctem := sgn tr Sprin(x , q(x)) ,

where q is a prescribed timelike covector field used as a reference.

Can take only two values, +1 or −1, and describes the orientation
of the principal symbol relative to our chosen time orientation.

It is invariant under gauge transformations.



Spin structure

Definition 4 Consider two principal symbols, Sprin and S̃prin,
which carry the same metric, same topological charge and same
temporal charge. We say that these two principal symbols are
spin-equivalent if we have

S̃prin = R∗SprinR

for some smooth matrix-function R : M → SL(2,C) . An
equivalence class of principal symbols is called spin structure.

Lemma 4 For parallelizable time-orientable Lorentzian
4-manifolds the two definitions of spin structure, our analytic
definition and the traditional one, are equivalent.

Proof due to Nikolai Saveliev.



How restrictive is the parallelizability assumption?

Lemma 5 A non-compact time-orientable Lorentzian 4-manifold
is parallelizable if and only if it is spin.

Proof also due to Nikolai Saveliev.

Implication: my analytic definition of spin structure may not work
for Lorentzian 4-manifolds that are compact or not time-orientable.



Dealing with the subprincipal symbol

Subprincipal symbol transforms as

Ssub 7→ R∗SsubR +
i

2
(R∗

xα(Sprin)pαR − R∗(Sprin)pαRxα) .

Problem: subprincipal symbol does not transform covariantly.

Solution: define covariant subprincipal symbol Scsub(x) as

Scsub := Ssub +
i

16
gαβ{Sprin, adjSprin,Sprin}pαpβ ,

where {U,V ,W } := UxαV Wpα − UpαV Wxα is the generalised
Poisson bracket on matrix-functions and adj is the operator of

matrix adjugation U =

(
a b
c d

)
7→
(

d −b
−c a

)
=: adjU .



Electromagnetic covector potential appears out of thin air

The covariant subprincipal symbol can be uniquely represented as

Scsub(x) = Sprin(x ,A(x)), (5)

where A is a real-valued covector field which is invariant under
gauge transformations.

Explanation: the matrices (Sprin)pα , α = 1, 2, 3, 4, are Pauli
matrices and these form a basis in the real vector space of 2× 2
Hermitian matrices. Formula (5) is simply an expansion of the
matrix Scsub with respect to the basis of Pauli matrices.



Main result

Theorem 1 A pair of full symbols is SL-equivalent iff

I their metrics are the same,

I their electromagnetic covector potentials are the same,

I their topological charges are the same,

I their temporal charges are the same and

I they have the same spin structure.



Bottom line, in plain English

Suppose that I am looking at a system of two linear first order
PDEs for two unknown complex-valued scalar fields over a
4-manifold.

Suppose that I know that this system of PDEs admits a variational
formulation.

Then Lorentzian geometry is automatically encoded within this
system of PDEs.

There is no need to introduce geometric constructs a priori. They
are already there.



3-dimensional Riemannian geometry

1. More restrictive choice of sesquilinear forms: tr Sprin(x , p) = 0.

2. My non-degeneracy condition is now equivalent to the more
familiar ellipticity condition det Sprin(x , p) 6= 0.

3. A 3-manifold admits a 2× 2 first order sesquilinear form with
trace-free principal symbol iff it is parallelizable.

4. A 3-manifold is parallelizable iff it is orientable.

5. My metric is automatically Riemannian: det Sprin(x , p) < 0.

6. More restrictive choice of gauge transformations:

R : M → SU(2).



Appearance of an operator

In the 3-dimensional setting we have a natural inner product on
2-columns of complex-valued half-densities:

〈u, v〉 :=

∫
M
u∗v dx .

Our gauge transformations preserve this inner product.

An Hermitian sesquilinear form S can now be identified with a
self-adjoint linear operator L via the formula S(u, v) = 〈u, Lv〉.

Definition 5 A massless Dirac operator is an elliptic self-adjoint
2× 2 first order linear differential operator with trace-free principal
symbol and zero covariant subprincipal symbol.



Examples from 3-dimensional Riemannian geometry

1. S3 has a unique spin structure.

2. T3 has eight distinct spin structures.



Two different spin structures on T3

Using cyclic coordinates xα, α = 1, 2, 3, of period 2π:

Lprin(x , p) =

(
p3 p1 − ip2

p1 + ip2 −p3

)
,

Lprin(x , p) =

(
p3 e ix

3
(p1 − ip2)

e−ix3(p1 + ip2) −p3

)

=

(
e

i
2
x3 0

0 e−
i
2
x3

)(
p3 p1 − ip2

p1 + ip2 −p3

)(
e−

i
2
x3 0

0 e
i
2
x3

)
.

Special unitary matrix-function in latter formula is discontinuous.



Two different massless Dirac operators on T3

L = −i
(

∂3 ∂1 − i∂2
∂1 + i∂2 −∂3

)
,

L = −i

(
∂3 e ix

3
(∂1 − i∂2)

e−ix3(∂1 + i∂2) −∂3

)
− 1

2
I .

Their spectra are different.


