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Linear algebra in a finite-dimensional complex vector space

Concept of self-adjoint linear operator L. Requires inner product.

Concept of Hermitian sesquilinear form S(u, v). Does not require
inner product.

In the presence of an inner product there is a one-to-one
correspondence between self-adjoint linear operators and
sesquilinear forms: S(u,v) = (u, Lv).

Given an Hermitian sesquilinear form S(u, v), can define a real-
valued quadratic form S(v, v). A physicist would call S(v, v) an
action. Variation gives a system of equations for v.



Object of study
Let M be a connected m-dimensional manifold without boundary,
local coordinates x = (x1,...,x™).
Will work with n-columns u: M — C" of scalar fields.
First order sesquilinear form:

S(u,v) .—/M [u A ((3)("‘) + <8x0‘> BV +u Cv] dx,

where A% and B® are matrix-valued vector densities, C is a

matrix-valued density and dx = dx! ... dx™.

| reserve bold font for density-valued quantities.



The symbol of a first order sesquilinear form

Canonical representation of a first order sesquilinear form:

I oo [ OV i ou\" _, N
S(U,V)—/IVI|:—2UE <axa>+2(8xa> E v+u FV:| dX

Density-valued principal symbol Spin(x, p) := E*(x) pa -
Density-valued subprincipal symbol Sgup(x) := F(x).
Density-valued full symbol Sgyi(x, p) := Sprin(X, P) + Ssub(X) -
Full symbol uniquely determines the sesquilinear form.

Sesquilinear form is Hermitian iff its full symbol is Hermitian.



Non-degeneracy condition

Definition 1 We say that our Hermitian first order sesquilinear
form S is non-degenerate if

sprin(Xv P) # 0, V(Xa P) €eT'M \ {O}



Gauge transformations of sesquilinear forms

Definition 2 We say that two sesquilinear forms, S and SN are
GL-equivalent if

S(u,v) = S(Ru, Rv) (1)

for some smooth matrix-function

R: M — GL(n,C). (2)
Definition 3 We say that two sesquilinear forms, S and SN are
SL-equivalent if we have (1) for some smooth matrix-function

R:M — SL(n,C). (3)

| view the map u +— Ru as a gauge transformation.



Task at hand

Give explicit necessary and sufficient conditions for a pair of
non-degenerate Hermitian first order sesquilinear forms to be
GL-equivalent or SL-equivalent.

| want to describe equivalence classes of sesquilinear forms.



Special case: two scalar fields over a 4-manifold

The case m =4, n = 2 is special.

We can provide a complete description of equivalence classes of
sesquilinear forms, both in the GL setting and the SL setting.

For definiteness will deal with SL-equivalence.



Parallelizability

Lemma 1 A manifold M admits a non-degenerate Hermitian first
order sesquilinear form iff it is parallelizable.

Proof is based on the observation that 2 x 2 Hermitian matrices
form a real vector space of dimension four. Four is also the
dimension of our manifold.

In other words, proof is based on the observation that we are
dealing with the case
n-=m.



Lorentzian signature appears out of thin air

The determinant of the denisty-valued principal symbol is a
quadratic form in momentum

det Lprin(X7 p) = _ga,B(X) PaPpgs

where g®?(x) is a real symmetric 4 x 4 matrix-function with values
in 2-densities.

Lemma 2 The matrix-function g®?(x) has Lorentzian signature,
i.e. it has three positive eigenvalues and one negative eigenvalue.

Definition of Lorentzian density: p(x) := | detg"*(x)|*/®. This
density is invariant under gauge transformations.



Rewriting sesquilinear form in terms of half-densities

Turn scalar fields into half-densities: v — /pv. Our sequilinear
form now reads

o Ov i ou\" _, .
S(u,v)—/M[—zu E <axa>+2<axa> E +u Fv] dx.

Elements of the matrix E® are vector fields and elements of the
matrix F are scalar fields.

Principal symbol Spuin(x, p) := E%(x) po . Invariantly defined
2 x 2 Hermitian matrix-function on T*M.

Subprincipal symbol Sgub(x) := F(x). Invariantly defined
Hermitian 2 x 2 matrix-function on M.

Full symbol Sgan(x, p) := Sprin(X, p) + Ssub(x) -



My definition of the metric tensor

det 5prin(Xa P) = _gaﬁ(x) Papg - (4)

Metric is Lorentzian and is invariant under gauge transformations.



Time-orientability

The Lorentzian manifold (M, g) is said to be time-orientable if it
admits a timelike vector field.

Lemma 3 A parallelizable Lorentzian manifold (M, g) admits a
non-degenerate Hermitian first order sesquilinear form satisfying
condition (4) iff it is time-orientable.

Proof in one direction is easy: just take trace of principal symbol.

Other way round not 100% obvious: proof relies on the fact that
S® is parallelizable.



Topological charge

i
Ctop = oV | det gl tr((sprin)m(Sprin)p2(Sprin)Pa(Sprin)m)a

where the subscripts p1, p2, p3s and ps4 indicate partial derivatives
with respect to the components of momentum.

Can take only two values, +1 or —1, and describes the orientation
of the principal symbol relative to our chosen orientation of local

coordinates x = (x1, x2, x3, x4).

It is invariant under gauge transformations.



Temporal charge

Ctem ‘= SgNtr Sprin(Xa CI(X)) )

where g is a prescribed timelike covector field used as a reference.

Can take only two values, +1 or —1, and describes the orientation
of the principal symbol relative to our chosen time orientation.

It is invariant under gauge transformations.



Spin structure

Definition 4 We say that two principal symbols, Sy, and §prin,
are equivalent if we have

Sprin =R* Sprin R

for some smooth matrix-function R: M — SL(2,C). An
equivalence class of principal symbols is called spin structure.

Lemma 4 For parallelizable time-orientable Lorentzian
4-manifolds the two definitions of spin structure, our analytic
definition and the traditional one, are equivalent.

Proof due to Nikolai Saveliev.



How restrictive is the parallelizability assumption?

Lemma 5 A non-compact time-orientable Lorentzian 4-manifold
is parallelizable if and only if it is spin.

Proof also due to Nikolai Saveliev.

Implication: my analytic definition of spin structure may not work
for Lorentzian 4-manifolds that are compact or not time-orientable.



Dealing with the subprincipal symbol

Subprincipal symbol transforms as
i *
Ssub — R*LSHbR + 5 (R;a(sprin)paR - R (Sprin)pa RXQ) .
Problem: subprincipal symbol does not transform covariantly.

Solution: define covariant subprincipal symbol Ssun(x) as

] .
Scsub = Ssub + T6 goz,B{Sprina ad_] Sprim Sprin}pap@ 5

where {U,V, W} = Uga V W, — Up, V Wia is the generalised
Poisson bracket on matrix-functions and adj is the operator of

. , . a b d —b .
matrix adjugation U = <c d) — (—c 5 ) =:adj U.



Electromagnetic covector potential appears out of thin air

The covariant subprincipal symbol can be uniquely represented as
Sesub(X) = Sprin(x, A(x)), (5)

where A is a real-valued covector field which is invariant under
gauge transformations.

Explanation: the matrices (Sprin)p.. @ = 1,2,3,4, are Pauli
matrices and these form a basis in the real vector space of 2 x 2
Hermitian matrices. Formula (5) is simply an expansion of the
matrix Sgeup With respect to the basis of Pauli matrices.



Main result

Theorem 1 A pair of sesquilinear forms is SL-equivalent iff
> their metrics are the same,
> their electromagnetic covector potentials are the same,
> their topological charges are the same,
» their temporal charges are the same and

> they have the same spin structure.



Bottom line, in plain English

Suppose that | am looking at a system of two linear first order
PDEs for two unknown complex-valued scalar fields over a
4-manifold.

Suppose that | know that this system of PDEs admits a variational
formulation.

Then Lorentzian geometry is automatically encoded within this
system of PDEs.

There is no need to introduce geometric constructs a priori. They
are already there.



3-dimensional Riemannian geometry
1. More restrictive choice of sesquilinear forms: tr Spyin(x, p) = 0.

2. My non-degeneracy condition is now equivalent to the more
familiar ellipticity condition det Spyin(x, p) # 0.

3. A 3-manifold admits a 2 x 2 first order sesquilinear form with
trace-free principal symbol iff it is parallelizable.

4. A 3-manifold is parallelizable iff it is orientable.
5. My metric is automatically Riemannian: det S,;in(x, p) < 0.

6. More restrictive choice of gauge transformations:

R: M — SU(2).



Appearance of an operator

In the 3-dimensional setting we have a natural inner product on
2-columns of complex-valued half-densities:

(u,v) ::/ uvdx.
M

Our gauge transformations preserve this inner product.

An Hermitian sesquilinear form S can now be identified with a
self-adjoint linear operator L via the formula S(u,v) = (u, Lv).

Definition 5 A massless Dirac operator is an elliptic self-adjoint
2 x 2 first order linear differential operator with trace-free principal
symbol and zero covariant subprincipal symbol.



Examples from 3-dimensional Riemannian geometry

1. S? has a unique spin structure.

2. T3 has eight distinct spin structures.



Two different spin structures on T3

Using cyclic coordinates x%, o« = 1,2, 3, of period 27:

p3 p1 — ip2
Lorin(, P) = (Pl +ip2  —p3 > ’

i3
e —
Losin(x, p) = ( 7ix3(P3 (p1 Pz))

e " (p1 + ip2) —p3

— e 0 < p3 PliP2) e 2 0
0 e 3 p1 + ip2 —p3 0 e |’

Special unitary matrix-function in latter formula is discontinuous.



Two different massless Dirac operators on T3

[ — _j O3 oL —i0s
o 01+ i0h —03 ’

. s e (0, —idy)\ 1
L=—i| ., , — 1.
e ™ (81 + 132) —03 2

Their spectra are different.



