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Linear algebra in a finite-dimensional complex vector space

Concept of self-adjoint linear operator L. Requires inner product.

Concept of Hermitian sesquilinear form S(u, v). Does not require
inner product.

In the presence of an inner product there is a one-to-one
correspondence between self-adjoint linear operators and
sesquilinear forms: S(u, v) = 〈u, Lv〉.

Given an Hermitian sesquilinear form S(u, v), can define a real-
valued quadratic form S(v , v). A physicist would call S(v , v) an
action. Variation gives a system of equations for v .



Object of study

Let M be a connected m-dimensional manifold without boundary,
local coordinates x = (x1, . . . , xm).

Will work with n-columns u : M → Cn of scalar fields.

First order sesquilinear form:

S(u, v) :=

∫
M

[
u∗Aα

(
∂v

∂xα

)
+

(
∂u

∂xα

)∗
Bαv + u∗Cv

]
dx ,

where Aα and Bα are matrix-valued vector densities, C is a
matrix-valued density and dx = dx1 . . . dxm.

I reserve bold font for density-valued quantities.



The symbol of a first order sesquilinear form

Canonical representation of a first order sesquilinear form:

S(u, v) =

∫
M

[
− i

2
u∗Eα

(
∂v

∂xα

)
+

i

2

(
∂u

∂xα

)∗
Eαv + u∗Fv

]
dx .

Density-valued principal symbol Sprin(x , p) := Eα(x) pα .

Density-valued subprincipal symbol Ssub(x) := F(x) .

Density-valued full symbol Sfull(x , p) := Sprin(x , p) + Ssub(x) .

Full symbol uniquely determines the sesquilinear form.

Sesquilinear form is Hermitian iff its full symbol is Hermitian.



Non-degeneracy condition

Definition 1 We say that our Hermitian first order sesquilinear
form S is non-degenerate if

Sprin(x , p) 6= 0, ∀(x , p) ∈ T ∗M \ {0}.



Gauge transformations of sesquilinear forms

Definition 2 We say that two sesquilinear forms, S and S̃ , are
GL-equivalent if

S̃(u, v) = S(Ru,Rv) (1)

for some smooth matrix-function

R : M → GL(n,C). (2)

Definition 3 We say that two sesquilinear forms, S and S̃ , are
SL-equivalent if we have (1) for some smooth matrix-function

R : M → SL(n,C). (3)

I view the map u 7→ Ru as a gauge transformation.



Task at hand

Give explicit necessary and sufficient conditions for a pair of
non-degenerate Hermitian first order sesquilinear forms to be
GL-equivalent or SL-equivalent.

I want to describe equivalence classes of sesquilinear forms.



Special case: two scalar fields over a 4-manifold

The case m = 4, n = 2 is special.

We can provide a complete description of equivalence classes of
sesquilinear forms, both in the GL setting and the SL setting.

For definiteness will deal with SL-equivalence.



Parallelizability

Lemma 1 A manifold M admits a non-degenerate Hermitian first
order sesquilinear form iff it is parallelizable.

Proof is based on the observation that 2× 2 Hermitian matrices
form a real vector space of dimension four. Four is also the
dimension of our manifold.

In other words, proof is based on the observation that we are
dealing with the case

n2 = m.



Lorentzian signature appears out of thin air

The determinant of the denisty-valued principal symbol is a
quadratic form in momentum

det Lprin(x , p) = −gαβ(x) pαpβ ,

where gαβ(x) is a real symmetric 4× 4 matrix-function with values
in 2-densities.

Lemma 2 The matrix-function gαβ(x) has Lorentzian signature,
i.e. it has three positive eigenvalues and one negative eigenvalue.

Definition of Lorentzian density: ρ(x) := | det gµν(x)|1/6 . This
density is invariant under gauge transformations.



Rewriting sesquilinear form in terms of half-densities

Turn scalar fields into half-densities: v 7→ √ρv . Our sequilinear
form now reads

S(u, v) =

∫
M

[
− i

2
u∗Eα

(
∂v

∂xα

)
+

i

2

(
∂u

∂xα

)∗
Eαv + u∗Fv

]
dx .

Elements of the matrix Eα are vector fields and elements of the
matrix F are scalar fields.

Principal symbol Sprin(x , p) := Eα(x) pα . Invariantly defined
2× 2 Hermitian matrix-function on T ∗M.

Subprincipal symbol Ssub(x) := F (x) . Invariantly defined
Hermitian 2× 2 matrix-function on M.

Full symbol Sfull(x , p) := Sprin(x , p) + Ssub(x) .



My definition of the metric tensor

det Sprin(x , p) = −gαβ(x) pαpβ . (4)

Metric is Lorentzian and is invariant under gauge transformations.



Time-orientability

The Lorentzian manifold (M, g) is said to be time-orientable if it
admits a timelike vector field.

Lemma 3 A parallelizable Lorentzian manifold (M, g) admits a
non-degenerate Hermitian first order sesquilinear form satisfying
condition (4) iff it is time-orientable.

Proof in one direction is easy: just take trace of principal symbol.

Other way round not 100% obvious: proof relies on the fact that
S3 is parallelizable.



Topological charge

ctop := − i

2

√
| det gαβ| tr

(
(Sprin)p1(Sprin)p2(Sprin)p3(Sprin)p4

)
,

where the subscripts p1, p2, p3 and p4 indicate partial derivatives
with respect to the components of momentum.

Can take only two values, +1 or −1, and describes the orientation
of the principal symbol relative to our chosen orientation of local
coordinates x = (x1, x2, x3, x4).

It is invariant under gauge transformations.



Temporal charge

ctem := sgn tr Sprin(x , q(x)) ,

where q is a prescribed timelike covector field used as a reference.

Can take only two values, +1 or −1, and describes the orientation
of the principal symbol relative to our chosen time orientation.

It is invariant under gauge transformations.



Spin structure

Definition 4 We say that two principal symbols, Sprin and S̃prin,
are equivalent if we have

S̃prin = R∗SprinR

for some smooth matrix-function R : M → SL(2,C) . An
equivalence class of principal symbols is called spin structure.

Lemma 4 For parallelizable time-orientable Lorentzian
4-manifolds the two definitions of spin structure, our analytic
definition and the traditional one, are equivalent.

Proof due to Nikolai Saveliev.



How restrictive is the parallelizability assumption?

Lemma 5 A non-compact time-orientable Lorentzian 4-manifold
is parallelizable if and only if it is spin.

Proof also due to Nikolai Saveliev.

Implication: my analytic definition of spin structure may not work
for Lorentzian 4-manifolds that are compact or not time-orientable.



Dealing with the subprincipal symbol

Subprincipal symbol transforms as

Ssub 7→ R∗LsubR +
i

2
(R∗

xα(Sprin)pαR − R∗(Sprin)pαRxα) .

Problem: subprincipal symbol does not transform covariantly.

Solution: define covariant subprincipal symbol Scsub(x) as

Scsub := Ssub +
i

16
gαβ{Sprin, adjSprin,Sprin}pαpβ ,

where {U,V ,W } := UxαV Wpα − UpαV Wxα is the generalised
Poisson bracket on matrix-functions and adj is the operator of

matrix adjugation U =

(
a b
c d

)
7→
(

d −b
−c a

)
=: adjU .



Electromagnetic covector potential appears out of thin air

The covariant subprincipal symbol can be uniquely represented as

Scsub(x) = Sprin(x ,A(x)), (5)

where A is a real-valued covector field which is invariant under
gauge transformations.

Explanation: the matrices (Sprin)pα , α = 1, 2, 3, 4, are Pauli
matrices and these form a basis in the real vector space of 2× 2
Hermitian matrices. Formula (5) is simply an expansion of the
matrix Scsub with respect to the basis of Pauli matrices.



Main result

Theorem 1 A pair of sesquilinear forms is SL-equivalent iff

I their metrics are the same,

I their electromagnetic covector potentials are the same,

I their topological charges are the same,

I their temporal charges are the same and

I they have the same spin structure.



Bottom line, in plain English

Suppose that I am looking at a system of two linear first order
PDEs for two unknown complex-valued scalar fields over a
4-manifold.

Suppose that I know that this system of PDEs admits a variational
formulation.

Then Lorentzian geometry is automatically encoded within this
system of PDEs.

There is no need to introduce geometric constructs a priori. They
are already there.



3-dimensional Riemannian geometry

1. More restrictive choice of sesquilinear forms: tr Sprin(x , p) = 0.

2. My non-degeneracy condition is now equivalent to the more
familiar ellipticity condition det Sprin(x , p) 6= 0.

3. A 3-manifold admits a 2× 2 first order sesquilinear form with
trace-free principal symbol iff it is parallelizable.

4. A 3-manifold is parallelizable iff it is orientable.

5. My metric is automatically Riemannian: det Sprin(x , p) < 0.

6. More restrictive choice of gauge transformations:

R : M → SU(2).



Appearance of an operator

In the 3-dimensional setting we have a natural inner product on
2-columns of complex-valued half-densities:

〈u, v〉 :=

∫
M
u∗v dx .

Our gauge transformations preserve this inner product.

An Hermitian sesquilinear form S can now be identified with a
self-adjoint linear operator L via the formula S(u, v) = 〈u, Lv〉.

Definition 5 A massless Dirac operator is an elliptic self-adjoint
2× 2 first order linear differential operator with trace-free principal
symbol and zero covariant subprincipal symbol.



Examples from 3-dimensional Riemannian geometry

1. S3 has a unique spin structure.

2. T3 has eight distinct spin structures.



Two different spin structures on T3

Using cyclic coordinates xα, α = 1, 2, 3, of period 2π:

Lprin(x , p) =

(
p3 p1 − ip2

p1 + ip2 −p3

)
,

Lprin(x , p) =

(
p3 e ix

3
(p1 − ip2)

e−ix3(p1 + ip2) −p3

)

=

(
e

i
2
x3 0

0 e−
i
2
x3

)(
p3 p1 − ip2

p1 + ip2 −p3

)(
e−

i
2
x3 0

0 e
i
2
x3

)
.

Special unitary matrix-function in latter formula is discontinuous.



Two different massless Dirac operators on T3

L = −i
(

∂3 ∂1 − i∂2
∂1 + i∂2 −∂3

)
,

L = −i

(
∂3 e ix

3
(∂1 − i∂2)

e−ix3(∂1 + i∂2) −∂3

)
− 1

2
I .

Their spectra are different.


