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Why this talk is different

1. I do not have publications on Maxwell’s equations (yet).

2. I work on a closed manifold, not a domain in Euclidean space.

3. I am motivated by particle physics.
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Playing field

Let M be a closed n-dimensional manifold, n ≥ 2. Will denote

local coordinates by x = (x1, . . . , xn).

A half-density is a quantity M → C which under changes of local

coordinates transforms as the square root of a density.

Will work with m-columns v : M → Cm of half-densities.

Inner product 〈v, w〉 :=
∫
M
w∗v dx, where dx = dx1 . . . dxn.

Want to study a formally self-adjoint first order linear differential

operator L acting on m-columns of complex-valued half-densities.
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Need an invariant analytic description of my differential operator.

In local coordinates my operator reads

L = Fα(x)
∂

∂xα
+G(x),

where Fα(x) and G(x) are some m×m matrix-functions.

The principal and subprincipal symbols are defined as

Lprin(x, p) := iFα(x) pα,

Lsub(x) := G(x) +
i

2
(Lprin)xαpα(x),

where p = (p1, . . . , pn) is the dual variable (momentum).
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Fact: Lprin and Lsub are invariantly defined Hermitian matrix-

functions on T ∗M and M respectively.

Fact: Lprin and Lsub uniquely determine the operator L.

We assume that our operator L is elliptic:

detLprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M \ {0}.

Spectrum of L is discrete and accumulates to +∞ and −∞.

Spectral asymmetry: spectrum asymmetric about zero.
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Technical assumption: Lprin(x, p) has simple eigenvalues

1. Without this assumption analysis is too difficult.

2. Even with this assumption analysis is difficult enough.

3. Most physically motivated problems satisfy this assumption.
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First object of study: propagator

Let xn+1 ∈ R be the additional ‘time’ coordinate. Consider the

Cauchy problem

w|xn+1=0 = v (1)

for the hyperbolic system

(−i∂/∂xn+1 + L)w = 0 (2)

on M × R. The m-column of half-densities v = v(x1, . . . , xn) is

given and the m-column of half-densities w = w(x1, . . . , xn, xn+1)

is to be found. The solution of the Cauchy problem (1), (2) can

be written as w = U(xn+1) v, where U(xn+1) is the propagator.

Task: construct the propagator explicitly, modulo C∞. Here

“explicitly” means “ reducing problem to solving ODEs ”.
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Second object of study: the two counting functions

The two counting functions N±(λ) : (0,+∞)→ N are defined as

N+(λ) := number of eigenvalues of operator L in interval (0, λ),

N−(λ) := number of eigenvalues of operator L in interval (−λ,0).

Task: derive asymptotic expansions

N±(λ) = a±λ
n + b±λ

n−1 + . . .

as λ → +∞, where a± , b± , . . . are some real constants. Want

explicit formulae for the Weyl coefficients a± , b± , . . ..
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Third object of study: the eta function

The eta function of our operator L is defined as

η(s) :=
∑
λk 6=0

sgnλk
|λk|s

=
∫ +∞

0
λ−s (N ′+(λ)−N ′−(λ)) dλ ,

where summation is carried out over all nonzero eigenvalues λk
of our operator L and s ∈ C is the independent variable. The eta

function is meromorphic in C with simple poles which can only

occur at real integer values of s. No pole at s = 0.

The eta function is a measure of the asymmetry of the spectrum.

Task: evaluate the residues of η(s).

Task: evaluate η(0) (this is the so-called eta invariant).
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Evaluating the second Weyl coefficient b± is not easy
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The U(1) connection

Each eigenvector v(j)(x, p), j = 1, . . . ,m, of the m ×m matrix-

function Lprin(x, p) is defined modulo a gauge transformation

v(j) 7→ eiφ
(j)
v(j),

where

φ(j) : T ∗M \ {0} → R

is an arbitrary smooth real-valued function. There is a connec-

tion associated with this gauge degree of freedom, a U(1) con-

nection on the cotangent bundle (similar to electromagnetism).

The U(1) connection has curvature, and this curvature appears

in asymptotic formulae for the counting function and propagator.
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Is my formula for the second Weyl coefficient b± correct?

Test: invariance under gauge transformations of the operator

L 7→ R∗LR,

where

R : M → U(m)

is an arbitrary smooth unitary matrix-function.
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Two by two operators are special

If m = 2 then detLprin is a quadratic form in momentum

detLprin(x, p) = −gαβ(x) pαpβ .

The coefficients gαβ(x) = gβα(x), α, β = 1, . . . , n, can be inter-

preted as components of a (contravariant) metric tensor.

Further on we always assume that m = 2.
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Dimensions 2, 3 and 4 are special

Lemma 1 If n ≥ 5, then our metric is degenerate, i.e.

det gαβ(x) = 0, ∀x ∈M.

Further on we always assume that n ≤ 4.

Dimensions 2, 3 and are even more special

Lemma 2 If n = 4, then our 2×2 operator L cannot be elliptic.

Further on we always assume that n = 3. This is the highest

dimension in which one can have an elliptic 2 × 2 first order

self-adjoint linear differential operator.
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Additional assumption:

trLprin(x, p) = 0. (3)

Logic: want to single out the simplest class of first order systems,

expect to extract more geometry out of our asymptotic analysis

and hope to simplify the results.

Lemma 3 Under the assumption (3) our metric is Riemannian,

i.e. the metric tensor gαβ(x) is positive definite.

Note: half-densities are now equivalent to scalars. Just multiply

or divide by (det gαβ(x))1/4 .
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Extracting more geometry from our differential operator

Let us perform gauge transformations of the operator

L 7→ R∗LR

where

R : M → SU(2)

is an arbitrary smooth special unitary matrix-function. Why uni-
tary? Because I want to preserve the spectrum of my operator.

Principal and subprincipal symbols transform as

Lprin 7→ R∗LprinR,

Lsub 7→ R∗LsubR+
i

2

(
R∗xα(Lprin)pαR−R∗(Lprin)pαRxα

)
.
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Problem: subprincipal symbol does not transform covariantly.

Solution: define covariant subprincipal symbol Lcsub(x) as

Lcsub := Lsub −
i

16
gαβ{Lprin, Lprin, Lprin}pαpβ ,

where subscripts pα and pβ indicate partial derivatives and curly
brackets denote the generalised Poisson bracket on matrix-functions

{P,Q,R} := PxαQRpα − PpαQRxα .

Electromagnetic covector potential appears out of thin air

Covariant subprincipal symbol can be uniquely represented as

Lcsub(x) = Lprin(x,A(x)) + IA4(x),

where A = (A1, A2, A3) is some real-valued covector field
(magnetic covector potential), A4 is some real-valued scalar field
(electric potential) and I is the 2× 2 identity matrix.

17



Geometric meaning of asymptotic coefficients

a± =
1

6π2

∫
M

√
det gαβ dx ,

b± = ∓
1

2π2

∫
M
A4

√
det gαβ dx .
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Massless Dirac operator

Special case of the above construction, when electromagnetic
potential is zero. Massless Dirac is determined by metric and
spin structure modulo gauge transformations. Models neutrino.

• Geometers drop the adjective “massless”.

• “Massless Dirac” 6= “Dirac type”.

• For massless Dirac the first five asymptotic coefficients of
N ′+(λ) and N ′−(λ) are the same. Very difficult to observe spectral
asymmetry for large λ.

• We studied spectral asymmetry for small λ.

• We found nontrivial families of metrics for which eigenvalues
can be evaluated explicitly, both for the 3-torus and the 3-sphere.
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Generalized Berger sphere

We work in R4 equipped with Cartesian coordinates (x1, x2, x3, x4).
Consider the following three covector fields

e1
α =


x4

x3

−x2

−x1

 , e2
α =


−x3

x4

x1

−x2

 , e3
α =


x2

−x1

x4

−x3

 .
These covector fields are cotangent to the 3-sphere

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1.

We define the rank 2 tensor

gαβ :=
3∑

j,k=1

cjk e
j
α e

k
β

and restrict it to the 3-sphere. Here the cjk are real constants,
elements of a positive symmetric 3× 3 matrix.
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Maxwell’s homogeneous vacuum equations on M × R:


curl ∂/∂x4

−∂/∂x4 curl
div 0
0 div


(
E
B

)
= 0. (4)

M is a closed oriented Riemannian 3-manifold. The operators

curl and div act over M and can be written out explicitly using

local coordinates (x1, x2, x3) and the metric tensor.

x4 ∈ R is the time coordinate.

Need to incorporate Maxwell’s equations (4) into my scheme.

22



Step 1: complexification

Put u := E + iB. Then Maxwell’s equations take the form

(
−i∂/∂x4 + curl

div

)
u = 0.

Step 2: extension

(
−i∂/∂x4 + curl −grad

div −i∂/∂x4

)(
u
s

)
= 0.

Here s is an unknown complex-valued scalar field.

Extra eigenvalues coming from the Laplace-Beltrami operator.
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Step 3: projection onto a frame

A frame is a triple of smooth orthonormal vector fields on M .

Topological fact: an oriented 3-manifold is parallelizable.

Hence, our oriented Riemannian 3-manifold M admits a frame.

After projection of the vector field u onto a frame extended

Maxwell’s equations take the form

(−i∂/∂x4 + L)w = 0,

where w is a 4-column of complex-valued half-densities and L is

a 4× 4 elliptic self-adjoint first order linear differential operator.
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Step 4: block diagonalization of principal symbol

Fact: there exists a linear transformation of our unknowns w

which reduces extended Maxwell’s equations to the form

[(
−i∂/∂x4 + Dirac 0

0 −i∂/∂x4 + Dirac

)
+ 4× 4 matrix-function

]
w = 0.
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