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Basic example of a problem in this subject area: acoustic res-

onator. Suppose we are studying the vibrations of air
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Here ϕ is the velocity potential and c is the speed of sound.

Seek solutions in the form ϕ(t, x1, x2, x3) = e−iωtψ(x1, x2, x3)

where ω is the unknown natural frequency.
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This leads to an eigenvalue problem:

−∆ψ = λψ in Ω, ∂ψ/∂n|∂Ω = 0,

where λ := ω2/c2 is the spectral parameter.

Finding eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ . . . is difficult, so one
introduces the counting function

N(λ) :=
∑

0≤λk<λ
1

(“number of eigenvalues below a given λ”) and studies the asymp-
totic behaviour of N(λ) as λ→ +∞.

Rayleigh–Jeans law (1905):

N(λ) =
V

6π2
λ3/2 + o(λ3/2) as λ→ +∞

where V is the volume of the resonator.
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Rayleigh’s “proof” of the Rayleigh–Jeans law

Suppose Ω is a cube with side length a. Then the eigenvalues

and eigenfunctions can be calculated explicitly:
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where k = (k1, k2, k3) and k1, k2, k3 are nonnegative integers.
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Rigorous proof of Rayleigh–Jeans law: H.Weyl (1912). Almost
incomprehensible.

Comprehensible proof: in R.Courant and D.Hilbert, Methods of
Mathematical Physics (1924).

Courant’s method. Approximate domain Ω by a collection of
small cubes, setting Dirichlet or Neumann boundary conditions
on boundaries of cubes. Setting extra Dirichlet conditions raises
the eigenvalues whereas setting extra Neumann conditions lowers
the eigenvalues. Remains only to

• choose size of cubes correctly (in relation to λ) and

• estimate contribution of bits of domain near the boundary
(we throw them out).
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General statement of the problem. Let M be a compact n-
dimensional manifold with boundary ∂M . Consider the spectral
problem for an elliptic self-adjoint semi-bounded from below dif-
ferential operator of even order 2m:

Au = λu on M, (B(j)u)
∣∣∣
∂M

= 0, j = 1, . . . ,m.

Has been proven (by many authors over many years) that

N(λ) = aλn/(2m) + o(λn/(2m)) as λ→ +∞

where the constant a is written down explicitly.

Weyl’s Conjecture (1913): one can do better and prove a two-
term asymptotic formula

N(λ) = aλn/(2m) + bλ(n−1)/(2m) + o(λ(n−1)/(2m)) as λ→ +∞

where the constant b can also be written down explicitly.
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For the case of a second order operator Weyl’s Conjecture was

proved by V.Ivrii and R.B.Melrose in 1980. I proved it for oper-

ators of arbitrary order in 1984.

My main mathematical result:

Theorem Weyl’s Conjecture is true if we don’t have too many

periodic and dead-end billiard trajectories.

Yu.Safarov and D.Vassiliev, The asymptotic distribution of eigen-

values of partial differential operators, American Mathematical

Society, 1997 (hardcover), 1998 (softcover).
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Concept of a principal symbol A2m(x, ξ)

Given a partial differential operator A, keep only leading (of order

2m) derivatives and replace each ∂/∂xk by iξk, k = 1, . . . , n, to

get function A2m(x, ξ). A physicist would call ξ momentum and

write p instead of ξ.

First asymptotic coefficient a = (2π)−n
∫

A2m(x,ξ)<1

dx dξ.

Hamiltonian h(x, ξ) := (A2m(x, ξ))1/(2m).

Hamiltonian trajectories

ẋ = hξ(x, ξ), ξ̇ = −hx(x, ξ).
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Idea of proof

Key word: microlocal analysis. L.Hörmander (Fields Medal 1962).

Introduce time t and study the “hyperbolic” equation

Au =
(
i
∂

∂t

)2m
u.

Construct the operator U(t) := e−itA
1/(2m)

. This operator is

called the wave group (or unitary group) and it provides the

“solution” to the Cauchy problem (initial value problem) for our

“hyperbolic” equation. The wave group can be constructed ex-

plicitly, modulo an integral operator with smooth kernel, in the

form of a Fourier integral operator. This is a way of doing the

Fourier transform for operators with variable coefficients.
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A Fourier integral operator is an oscillatory integral. Similar to

Feynman diagrams, the variability of coefficients playing role of

perturbation. Unlike Feynman diagrams, 100% rigorous.

Having constructed the wave group, recover information about

the spectrum using Fourier Tauberian theorems. These allow us

to perform the inverse Fourier transform from variable t (time)

to variable λ (spectral parameter) using incomplete information,

with control of error terms.

Similar to Tauberian theorems used in number theory.

Appendix Fourier Tauberian theorems in our book was written

by Michael Levitin.
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Example: vibrations of a plate

∆2u = λu in Ω ⊂ R2, u|∂Ω = ∂u/∂n|∂Ω = 0.

Then

N(λ) =
S

4π
λ1/2 +

βL

4π
λ1/4 + o(λ1/4) as λ→ +∞

where S is the area of the plate, L is the length of the boundary
and

β = −1−
Γ(3/4)
√
π Γ(5/4)

≈ −1.763.

The first asymptotic term was derived by Courant (1922).

Inverting the formula and switching to frequencies λ
1/2
N , we get

λ
1/2
N =

4π

S
N −

2
√
π βL

S3/2

√
N + o(

√
N ) as N → +∞.
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What I am doing now

Looking at systems

Av = λv

where A is an elliptic self-adjoint first order m × m matrix

(pseudo)differential operator acting on complex-valued m-columns

v over an n-dimensional compact manifold M without boundary.

The operator is not necessarily semi-bounded.

Principal symbol A1(x, ξ) is matrix-valued function on T ∗M \{0}.

The eigenvalues h(j)(x, ξ) of the principal symbol play the role

of Hamiltonians.
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Warning: doing microlocal analysis for systems is not easy

Main contributors to the spectral theory of systems:

1 V.Ivrii, 1980, Soviet Math. Doklady.

2 V.Ivrii, 1982, Funct. Anal. Appl.

3 V.Ivrii, book, 1984, Springer Lecture Notes.

4 Yu.Safarov, DSc thesis, 1989, Steklov Mathematical Institute.

5 V.Ivrii, book, 1998, approx 800 pages, Springer.

6 V.Ivrii, future book. 2012? Approx 3000 pages?

7 O.Chervova, R.J.Downes and D.Vassiliev, The spectral func-
tion of a first order system (in preparation, approx 45 pages).
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The U(1) connection

Each eigenvector v(j)(x, ξ) of the principal symbol is defined

modulo a gauge transformation

v(j) 7→ eiφ
(j)
v(j)

where

φ(j) : T ∗M \ {0} → R

is an arbitrary smooth function. This gives a U(1) connection

characterised by a 2n-component covector potential

i ( [v(j)]∗v(j)
xα , [v(j)]∗v(j)

ξβ
).

Curvature is the exterior derivative of the covector potential.
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Scalar curvature of the U(1) connection:

−i{[v(j)]∗, v(j)}

where curly brackets denote the Poisson bracket on matrix-functions

{P,R} := PxαRξα − PξαRxα .

Correct formula for second asymptotic coefficient:

b = bSaf −
ni

(2π)n(n− 1)

∑
j

∫
0<h(j)<1

h(j){[v(j)]∗, v(j)} dx dξ .

15



The teleparallel connection

Consider special case when m = 2, n = 3, the operator is differ-
ential and has trace-free principal symbol.

Define an affine connection as follows. Suppose we have a co-
vector η “based” at the point y ∈M and we want to construct a
“parallel” covector ξ “based” at the point x ∈ M . This is done
by solving the linear system of equations

A1(x, ξ) = A1(y, η).

The teleparallel connection has zero curvature and nonzero tor-
sion. It is the opposite of the Levi-Civita connection.

Lemma The scalar curvature of the U(1) connection is expressed
via torsion of the teleparallel connection.
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The massless Dirac operator

Imagine a single neutrino living in a compact 3-dimensional uni-

verse. I want to find the spectrum of energy levels this neutrino

can occupy. This leads to an eigenvalue problem

Av = λv

where A is the massless Dirac operator (a 2×2 matrix first order

differential operator) and λ is the spectral parameter (energy).

Note: the explicit formula for the massless Dirac operator in

curved space is very complicated.

Now suppose I am a spectral analyst and I want to know whether

my differential operator A is a massless Dirac operator, without

having to learn the differential geometry of spinors.
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Theorem An operator is a massless Dirac operator iff

a) its principal symbol is trace-free,

b) subprincipal symbol is proportional to the identity matrix, and

c) second asymptotic coefficient of the spectral function is zero.

Here spectral function is e(λ, x, x) :=
∑

0<λk<λ

‖vk(x)‖2. Counting

function and spectral function are related as N(λ) =
∫
M
e(λ, x, x) dx.

Bottom line: the differential geometry of spinors is encoded
within the microlocal analysis of PDEs.
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More radical approach:

poor man’s way of solving nonlinear PDEs

Working on a compact 3-manifold, consider eigenvalue problem

Av = λsv

where A is a 2× 2 matrix first order partial differential operator

with trace-free principal symbol and zero subprincipal symbol,

and s = s(x) > 0 is a scalar weight function. View coefficients

as dynamical variables and consider the map

principal symbol of operator and scalar weight 7→7→7→
second asymptotic coefficient of counting function.
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Theorem (to be published in a separate paper) The map

principal symbol of operator and scalar weight 7→7→7→
second asymptotic coefficient of counting function.

is equivalent to the map

metric and spinor field 7→7→7→ static massless Dirac action.

Explanation

Metric is the determinant of the principal symbol.

A 2×2 trace-free Hermitian matrix is not fully defined by its de-

terminant. The remaining degrees of freedom are called “spinor”.
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Four fundamental equations of theoretical physics

1 Maxwell’s equations. Describe electromagnetism and photons.

2 Dirac equation. Describes electrons and positrons.

3 Massless Dirac equation. Describes∗ neutrinos and antineutrinos.

4 Linearized Einstein field equations of general relativity. De-

scribe gravity.

All four contain the same physical constant — the speed of light.

∗OK, I know that neutrinos actually have a small mass.
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Accepted explanation: theory of relativity

God is a geometer. He created a 4-dimensional world parametrized

by coordinates x0, x1, x2, x3 (here x0 is time), in which distances

are measured in a funny way:

distance2 = −c2(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

where c is the speed of light.

Without the term −c2(dx0)2 this would be Pythagoras’ theo-

rem. We do not notice the term −c2(dx0)2 in everyday life and

think that we live in a 3-dimensional Euclidean world in which

Pythagoras’ theorem is true∗. Funny way of measuring distances

is called Minkowski metric.
∗OK, maybe in a slightly modified version if the world is curved.
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Having decided to use the Minkowski metric, God then wrote

down the main equations of theoretical physics using only ge-

ometric constructions. This way all equations have the same

physical constant — the speed of light — encoded in them.

Geometric concepts used in modern theoretical physics: metric,

U(1) connection, spinor, spin connection, Dirac equation etc.

Theoretical physics has become part of differential geometry.
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Alternative explanation

God is an analyst. He created a 3-dimensional Euclidean world,

then added (absolute) time and wrote down one system of non-

linear PDEs which describes phenomena in this world. This

system of PDEs has different solutions which we interpret as

electromagnetism, gravity, electrons, neutrinos etc. The reason

the same physical constant — the speed of light — mani-

fests itself in all physical phenomena is because we are looking

at different solutions of the same system of PDEs.

I cannot write down the unifying system of field equations but I

can extract the main geometric constructs of theoretical physics

from systems of PDEs, simply by performing microlocal analysis.
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