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What we do at UCL

(Böhmer, Burnett, Chervova, Downes, Obukhov, Vassiliev)

Describing a 3-dimensional elastic medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and rotations. See

E.Cosserat and F.Cosserat, Théorie des Corps Déformables, 1909.

(c) Rotational elasticity: rotations only.

Classical and rotational elasticity are two limit cases of Cosserat.
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Classical elasticity is respectable, rotational elasticity is crazy.

Motivation for rotational elasticity.

(a) Curiosity.

(b) MacCullagh, 1839. Tried modelling world aether in terms of

rotational elasticity. Inadequate mathematical apparatus.

(c) A. Einstein and É. Cartan, 1920s. Teleparallelism = absolute

parallelism = fernparallelismus. Cartan knew the Cosserat book.

Drew inspiration from ‘beautiful’ work of the Cosserat brothers.
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Elastic medium occupies R3. To describe rotations of material

points I attach to each geometric point of R3 a coframe.

A coframe ϑ is a triple ϑj, j = 1,2,3, of orthonormal covector

fields. Each ϑj has hidden tensor index: ϑj = ϑj
α, α = 1,2,3.

Same in plain English: a coframe is a field of orthonormal bases.

Can think of the coframe as a field of orthogonal matrices ϑj
α.

NB. Coframe lives separately from Cartesian coordinates. It is

not aligned with coordinate lines.

The coframe ϑ is an unknown quantity (dynamical variable).

The other dynamical variable is a density ρ.
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Measuring rotational deformations

The natural measure of rotational deformations is torsion

T := ϑ1 ⊗ dϑ1 + ϑ2 ⊗ dϑ2 + ϑ3 ⊗ dϑ3.

Torsion is a rank 3 tensor antisymmetric in the last pair of indices.

Convenient to switch to tensor
∗
Tαβ :=

1

2
Tα

γδεγδβ .

Tensor
∗
T is a rank 2 tensor without any symmetries and arbitrary

trace. It is called dislocation density tensor. Explicit formulae:

∗
T = ϑ1 ⊗ curlϑ1 + ϑ2 ⊗ curlϑ2 + ϑ3 ⊗ curlϑ3,

∗
Tαβ =

3∑
j=1

ϑj
1∂2ϑj

3 − ϑj
1∂3ϑj

2 ϑj
1∂3ϑj

1 − ϑj
1∂1ϑj

3 ϑj
1∂1ϑj

2 − ϑj
1∂2ϑj

1
ϑj

2∂2ϑj
3 − ϑj

2∂3ϑj
2 ϑj

2∂3ϑj
1 − ϑj

2∂1ϑj
3 ϑj

2∂1ϑj
2 − ϑj

2∂2ϑj
1

ϑj
3∂2ϑj

3 − ϑj
3∂3ϑj

2 ϑj
3∂3ϑj

1 − ϑj
3∂1ϑj

3 ϑj
3∂1ϑj

2 − ϑj
3∂2ϑj

1

.
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Irreducible decomposition of rotational deformations

∗
T =

∗
Tax +

∗
T vec +

∗
T ten

where

∗
Tax

αβ :=

∗
T γ

γ

3
gαβ ,

∗
T vec

αβ :=

∗
Tαβ −

∗
Tβα

2
,

∗
T ten

αβ :=

∗
Tαβ +

∗
Tβα

2
−

∗
Tax

αβ .

Adjectives axial, vector and tensor
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Potential energy

P (x0) =
∫
R3

(
cax‖

∗
Tax‖2 + cvec‖

∗
T vec‖2 + cten‖

∗
T ten‖2

)
ρ dx1dx2dx3.

Here x1, x2, x3 are Cartesian coordinates and x0 is time.

Kinetic energy

K(x0) = ckin
∫
R3
‖ω‖2ρ dx1dx2dx3

where ω =
1

2
∗(ϑ1∧∂0ϑ1+ϑ2∧∂0ϑ2+ϑ3∧∂0ϑ3) is the (pseudo)vector

of angular velocity. Explicit formula for angular velocity:

ωα =
1

2

3∑
j=1

ϑj
2∂0ϑj

3 − ϑj
3∂0ϑj

2
ϑj

3∂0ϑj
1 − ϑj

1∂0ϑj
3

ϑj
1∂0ϑj

2 − ϑj
2∂0ϑj

1

 .
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Action (variational functional) of rotational elasticity

S(ϑ, ρ) =
∫
R
(P (x0)−K(x0))dx0 =

∫
R×R3

L(ϑ, ρ) dx0dx1dx2dx3

where

L(ϑ, ρ) =
(
cax‖

∗
Tax‖2 + cvec‖

∗
T vec‖2 + cten‖

∗
T ten‖2 − ckin‖ω‖2

)
ρ

is the Lagrangian density.

Euler–Lagrange equations: vary coframe ϑ and density ρ.

Model is physically linear but geometrically nonlinear.
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Solving Euler–Lagrange equations

Varying coframe is difficult because of kinematic constraint: co-

vectors ϑj, j = 1,2,3, have to remain orthonormal. Could use

Euler angles (yaw, pitch, and roll) but this is inconvenient.

Most convenient description of rotations in R3: switch to spinors

coframe ϑ and density ρ > 0

m

nonvanishing 2-component complex spinor field ξ modulo sign

My Lagrangian density L(ξ) is a rational function of ξ, ξ̄ and

partial derivatives of ξ, ξ̄.

8



Expressing density ρ and coframe ϑ via spinor ξa =

(
ξ1

ξ2

)
:

ρ = ξ̄1̇ξ1 + ξ̄2̇ξ2,

ϑ1
α = ρ−1 Re

 (ξ1)2 − (ξ2)2

i(ξ1)2 + i(ξ2)2

−2ξ1ξ2

 ,

ϑ2
α = ρ−1 Im

 (ξ1)2 − (ξ2)2

i(ξ1)2 + i(ξ2)2

−2ξ1ξ2

 ,

ϑ3
α = ρ−1

 ξ̄2̇ξ1 + ξ̄1̇ξ2

iξ̄2̇ξ1 − iξ̄1̇ξ2

ξ̄1̇ξ1 − ξ̄2̇ξ2

 .
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Plane wave solutions

Look first for plane wave solutions

ξ(x0, x1, x2, x3) = e−i(p0x0+p1x1+p2x2+p3x3)ζ .

Theorem 1 My Euler–Lagrange equation admits plane wave

solutions with velocities

√
4cax + 2cten

3ckin
and

√
cvec + cten

2ckin
.
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Purely axial material

cax 6= 0, cvec = cten = 0.

Potential energy feels only the axial deformation, i.e. only the

trace of the dislocation density tensor
∗
T .

For convenience normalise the kinetic term by setting ckin =
4

3
cax.

Look for stationary solutions

ξ(x0, x1, x2, x3) = e−ip0x0
η(x1, x2, x3).

Theorem 2 In the stationary setting my Euler–Lagrange
equation is equivalent to a pair of massless Dirac equations(

∓p0 + i∂3 i∂1 + ∂2
i∂1 − ∂2 ∓p0 − i∂3

)(
η1

η2

)
= 0.
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Nonlinear second order PDEs

which reduce to pairs of linear first order PDEs

Consider a pair of formally self-adjoint first order linear differen-
tial operators A± acting on smooth vector functions v : Rn → Cm.

Define corresponding Lagrangians L±(v) := Re(v∗A±v).

Define new Lagrangian

L(v) =
L+(v)L−(v)

L+(v)− L−(v)
. (1)

Work with vector functions such that L+(v) 6= L−(v).

Lemma 1 A vector function v is a solution of the Euler–Lagrange
equation for the Lagrangian density (1) if and only if it is a
solution of A+v = 0 or A−v = 0.
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Example illustrating the use of Lemma 1

The pair of linear first order ordinary differential equations

iv′ ± v = 0

is equivalent to a single nonlinear second order equation

d

dx

(
v̄v′ − vv̄′

2|v|2
v

)
+

(v̄v′)2 − (vv̄′)2

4|v|4
v + v = 0 .

Same trick works for systems of PDEs with variable coefficients.
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Summary

• Rotational elasticity is an interesting subject.

• Nobody has studied rotational elasticity.

• Rotational elasticity may provide an alternative description
of fermions (neutrinos, electrons) in quantum mechanics.

Papers and preprints can be found on my web page

http://www.homepages.ucl.ac.uk/∼ucahdva/

My talks (including this one) are also on my web page.

14

http://www.homepages.ucl.ac.uk/~ucahdva/

