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Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and ro-

tations. See

E. Cosserat and F. Cosserat, Théorie des Corps

Déformables, 1909. Available from Amazon.

(c) Teleparallelism (absolute parallelism, fern-

parallelismus): rotations only.
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Teleparallelism in Euclidean 3-space

Work in R3 equipped with standard metric and

Cartesian coordinates xα, α = 1,2,3.

A frame ϑ is a triplet ϑj, j = 1,2,3, of or-

thonormal vector fields. Each vector field ϑj

has a hidden tensor index: ϑj = ϑ
j
α, α = 1,2,3.

Same in plain English: a frame is a field of

orthonormal bases.

NB. Frame lives separately from Cartesian co-

ordinates (not aligned with coordinate lines).
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My model

The frame ϑ is an unknown quantity (dynam-

ical variable).

The other dynamical variable is a density ρ.

My Lagrangian density L(ϑ, ρ) is chosen from

the condition of conformal invariance.

Action (variational functional)
∫

L(ϑ, ρ) dx1dx2dx3.

Vary action with respect to frame ϑ and density

ρ to get Euler–Lagrange equations.

Difference with existing models

1. I assume metric to be fixed (prescribed).

2. My Lagrangian has never been considered.
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Introducing time into my model

Standard Newtonian construction: write down

angular velocity, write down kinetic energy etc.

My model remains conformally invariant, only

now in the Lorentzian sense.

Solving Euler–Lagrange equations

Switch to spinors:

frame ϑ and density ρ > 0

m

nonvanishing spinor field ξ modulo sign

My Lagrangian density L(ξ) is a rational func-

tion of ξ, ξ̄ and partial derivatives of ξ, ξ̄.
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Quasi-stationary solutions

Look first for quasi-stationary solutions

ξ(t, x1, x2, x3) = e−iωtη(x1, x2, x3), ω 6= 0.

Theorem 1 In the quasi-stationary case my

Euler–Lagrange equation is equivalent to a pair

of Weyl equations.

“Weyl equation” = “massless Dirac equation”.

Proof Amazing fact: my Lagrangian fac-

torises into a product of two Weyl Lagrangians!

Result follows from factorisation. �
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Plane waves

Special case of quasi-stationary solution

ξ(t, x1, x2, x3) = e−i(ωt+k·x)η

where η is constant spinor. This is plane wave.

Corollary 1 Plane wave solutions in my model

are the same as for a pair of Weyl equations.

Perturbations of plane waves

Idea: seek spinor field in the form

slowly varying amplitude ×e−i(ωt+k·x).

Theorem 2 Perturbations of plane wave solu-

tions in my model are described by a pair of

Weyl equations.
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Relativistic version of my model

Work in Minkowski 4-space instead of Euclidean

3-space. Write x0 instead of t. Frame now has

4 elements, each of these has 4 components.

Comparing the relativistic

and nonrelativistic models

Relativistic model has 3 extra degrees of free-

dom (Lorentz boosts in 3 directions) and, con-

sequently, 3 extra field equations.

Theorem 3 At the perturbative level the 3 ex-

tra field equations are automatically satisfied.

Conclusion: my nonrelativistic model possesses

relativistic invariance at the perturbative level.
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Incorporating mass m and

electromagnetic (co)vector potential A

Introduce 5th coordinate: (x0, x1, x2, x3, x4).

O.Klein (1926): prescribe oscillation ∼ e−imx4

along extra coordinate, then separate variables.

T.Kaluza (1921): perturb extended metric

(
gαβ 0
0 −1

)
→

gαβ − 1
m2AαAβ

1
mAα

1
mAβ −1

 .

This is shear.

NB. Kaluza–Klein extension destroys confor-

mal invariance!

Theorem 4 In special case with no dependence

on x3 my model is equivalent to the massive

Dirac equation with electromagnetic field.
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Summary

New mathematical model for fermions.

• Spacetime viewed as Cosserat continuum.

• Lagrangian chosen from the condition of

conformal invariance.

• Mass and electromagnetic field incorporated

via Kaluza–Klein extension.
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