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Dirac’s equation is a system of 4 homogeneous

linear PDEs for 4 complex unknowns in dimen-

sion 1+3.

Formulating Dirac’s equation requires:

(a) spinors,

(b) Pauli matrices,

(c) covariant derivative.

My reformulation of Dirac’s equation requires:

(a) differential forms,

(b) wedge product,

(c) exterior derivative.
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Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity (multipolar elasticity):

displacements and rotations. See, for example,

Truesdell’s First course in rational continuum

mechanics.

(c) Teleparallelism (absolute parallelism):

rotations only.
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Teleparallelism in Euclidean 3-space

Cartesian coordinates xα, α = 1,2,3.

Euclidean metric gαβ =

1 0 0
0 1 0
0 0 1

.

Euclidean distance squared = gαβdx
αdxβ.

Coframe {ϑ1, ϑ2, ϑ3}: triad of covector fields
satisfying metric constraint

g = ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3.

NB. Coframe lives separately from Cartesian
coordinates (not aligned with coordinate lines).

Notion of parallelism: each covector field ϑk,
k = 1,2,3, is parallel by definition.

Parallelism =⇒ connection. Curvature R = 0.

Terminology: if R = 0 spacetime is called flat
or teleparallel or Weitzenböck.
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Field strength: torsion

T = ϑ1 ⊗ dϑ1 + ϑ2 ⊗ dϑ2 + ϑ3 ⊗ dϑ3.

Analogue of strain tensor.

Irreducible piece of field strength: axial (totally
antisymmetric) torsion

Taxial =
1

3
(ϑ1 ∧ dϑ1 + ϑ2 ∧ dϑ2 + ϑ3 ∧ dϑ3).

Analogue of shear.

Possible Lagrangians

L = Taxial, (1)

L = ‖Taxial‖2 ∗ 1. (2)

Action (variational functional)
∫
L .

Vary action with respect to coframe subject to
metric constraint to get Euler–Lagrange equa-
tion, a nonlinear PDE for unknown coframe.

Lagrangian (1) gives first order equation,
Lagrangian (2) gives second order equation.
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Weyl’s equation (massless Dirac)

Dimension is now 1 + 3.

Coframe {ϑ0, ϑ1, ϑ2, ϑ3}.

g = ϑ0 ⊗ ϑ0 − ϑ1 ⊗ ϑ1 − ϑ2 ⊗ ϑ2 − ϑ3 ⊗ ϑ3.

T = ϑ0 ⊗ dϑ0 − ϑ1 ⊗ dϑ1 − ϑ2 ⊗ dϑ2 − ϑ3 ⊗ dϑ3.

Taxial =
1

3
(ϑ0∧dϑ0−ϑ1∧dϑ1−ϑ2∧dϑ2−ϑ3∧dϑ3).

Put l = ϑ0 + ϑ3 and define Lagrangian

L = l ∧ Taxial

Theorem 1 The corresponding Euler–Lagrange

eq-n is, up to change of variable, Weyl’s eq-n.
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Proof of Theorem 1 Perform transformation
ϑ0

ϑ1

ϑ2

ϑ3

7→

1 + 1

2|f |
2 Re f Im f 1

2|f |
2

Re f 1 0 Re f
Im f 0 1 Im f

−1
2|f |

2 −Re f − Im f 1− 1
2|f |

2



ϑ0

ϑ1

ϑ2

ϑ3


where f : M → C is an arbitrary scalar function.

Metric and Lagrangian are invariant! Hence,

solutions come in equivalence classes. Geo-

metric meaning of these equivalence classes?

We are looking at an Abelian subgroup of the

Lorentz group. Geometric fact: cosets of this

subgroup can be identified with spinors.

Details in Phys. Rev. D75, 025006 (2007).
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Origin of Lagrangian L = l ∧ Taxial

Consider Lagrangian

L = ‖Taxial‖2 ∗ 1 (3)

(special case of Cosserat elasticity).

Let metric be Minkowski and let {ϑ0,ϑ1,ϑ2,ϑ3}
be a constant coframe. Plane wave solution:
ϑ0

ϑ1

ϑ2

ϑ3

=


1 0 0 0
0 cos(x0 + x3) ± sin(x0 + x3) 0
0 ∓ sin(x0 + x3) cos(x0 + x3) 0
0 0 0 1




ϑ0

ϑ1

ϑ2

ϑ3



Look for solutions which are not necessarily
plane wave, with metric not necessarily Minkowski.

Formal perturbation argument: linearization of
Lagr-n (3) about plane wave gives Lagr-n

L = l ∧ Taxial (4)

where l = ϑ0 + ϑ3.
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Comparison with Maxwell’s equation

Maxwell’s equation My equation

Dynamical Covector Quartet of
variable field A covector fields

{ϑ0, ϑ1, ϑ2, ϑ3}

Field 2-form dA 3-form Taxial

strength

Lagrangian ‖dA‖2 ∗ 1 ‖Taxial‖2 ∗ 1
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Dirac’s equation

What is the geometric meaning of mass m?

Klein’s interpretation of mass, as illustrated by

Klein–Gordon equation in Minkowski space

(∂2
0 − ∂2

1 − ∂2
2 − ∂2

3)ψ+m2ψ = 0.

Introduce 5th coordinate: (x0, x1, x2, x3, x4).

Consider wave equation in extended space

(∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 − ∂2
4)ψ = 0.

Separate out the variable x4: ψ ∼ e−imx
4
.

Conjecture: Klein’s construction works in my

model to give Dirac’s equation with mass. “Sep-

aration of variables” means one full rotation of

coframe as we move along the 5th coordinate.
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Dirac’s equation with electromagnetic field

Electromagnetism in Dirac’s equation:

∇ → ∇+ iA.

Kaluza’s interpretation of electromagnetism:

perturbation (shear) of the extended metric(
gαβ 0
0 −1

)
→

(
gαβ −AαAβ Aα

Aβ −1

)
.

NB. Kaluza did not devise above substitution

for use in quantum mechanics. In fact, at the

time (1921) quantum mechanics didn’t exist.

Conjecture: Kaluza’s construction works in my

model to give Dirac’s equation with electro-

magnetic field.
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Summary

Result 1. New representation for the Weyl La-

grangian (massless Dirac Lagrangian):

L = l ∧ Taxial (5)

where l = ϑ0 + ϑ3.

Result 2. The Lagrangian (5) is the result of

formal linearization of the Lagrangian

L = ‖Taxial‖2 ∗ 1 (6)

about a plane wave.

Conjecture. The Dirac Lagrangian can also

be derived from the Lagrangian (6) with a

Kaluza–Klein extension.
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