
REGULARITY OF SETS WITH CONSTANT HORIZONTAL NORMAL

IN THE ENGEL GROUP

COSTANTE BELLETTINI AND ENRICO LE DONNE

Abstract. In the Engel group with its Carnot group structure we study subsets of locally
finite subRiemannian perimeter and possessing constant subRiemannian normal.

We prove the rectifiability of such sets: more precisely we show that, in some specific
coordinates, they are upper-graphs of entire Lipschitz functions (with respect to the Eu-
clidean distance). However we find that, when they are written as intrinsic horizontal
upper-graphs with respect to the direction of the normal, then the function defining the
set might even fail to be continuous. Nevertheless, we can prove that one can always find
other horizontal directions for which the set is the intrinsic horizontal upper-graph of a
function that is Lipschitz-continuous with respect to the intrinsic subRiemannian cones
(and in particular locally Hölder-continuous for the Euclidean distance).

We further discuss a PDE characterization of the class of all sets with constant hori-
zontal normal.

Finally, we show that our rectifiability argument extends to the case of filiform groups
of the first kind.

1. Introduction

Recent years have witnessed an increasing interest in Geometric Analysis of Metric Spaces.
A particular role has been played by the class of Carnot groups endowed with subRieman-
nian distances. In this setting both translations and dilations are present, hence the theory
of differentiation generalizes. Many notions from Analysis and Geometry have been investi-
gated in subRiemannian Carnot groups. Function Theory has been a fruitful study. There
have been several fundamental results in the study of maps such as Lipschitz, Sobolev,
quasiconformal, and bounded variation. Another subject of large interest has been Geo-
metric Measure Theory. Minimal surfaces, sets with finite perimeter, currents, and rec-
tifiable sets have received particular attention. As a source of reference, we point out to
[CDPT07, Vit08, LD10], and the references therein.

A theorem of basic importance in the study of Euclidean sets of finite perimeter is that
reduced boundaries admit a unique tangent space almost everywhere, in other words they
are rectifiable. The tangent is obtained via a blow-up analysis: dilating the set about almost
any point on the reduced boundary, one obtains in the limit a uniquely defined half-space
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([DG54], [DG55], [DG61]). The analogous analysis in the subRiemannian setting only yields
that the limiting object (after a blow up has been performed) must be a set with constant
horizontal normal. The analysis of sets with constant horizontal normal in Carnot groups
becomes consequently a matter of primary importance.

Let us shortly describe the state of the art. In Carnot groups of step two, the work of
Franchi, Serapioni and Serra Cassano [FSSC03] reveals that such sets are precisely verti-
cal half-spaces. This result has played a key role both in the subsequent development of
geometric measure theory in Carnot groups as well as in more far-flung applications, for
example the work by Cheeger and Kleiner [CK10] on the biLipschitz nonembeddability of
the Heisenberg group into L1. Already in [FSSC03], however the authors observed the ex-
istence, in step three Carnot groups, of sets with constant horizontal normal that fail to be
half-spaces. The complete understanding of sets with constant horizontal normal turns out
to be rather hard in full generality and in the present work we aim to give a contribution
in this direction by focusing on the simplest Carnot group of step three, the so-called Engel
group. The focus on the Engel group is justified by the fact that it allows to see already
the difficulties arising in groups of step at least three, but at the same time the controlled
algebraic complexity of the Lie algebra allows to state precise results on the structure of
sets with constant horizontal normal.

After the understanding of sets with constant horizontal normal has become deeper, it is
conceivable to go back to the blow-up analysis of sets of finite perimeter, where it is known
that any limit must be a set with constant horizontal normal, and face the further-reaching
investigation: is any such limit uniquely determined? Remark that, if it is so, then it must
be a half-space by the result of [AKLD09]. In the uniqueness issue, the precise knowledge
of what possible tangents can arise can play an important role.

The importance of sets with constant horizontal normal goes beyond the fact that they
appear as tangents of sets with locally-finite horizontal perimeter. Indeed, their boundaries
are examples of minimal hyper-surfaces that can be written as entire graphs with respect
to the group structure. Such parametrizations are called horizontal intrinsic graphs. Their
importance in the theory of rectifiable subsets of Carnot groups has been addressed in
[KSC04, FSSC06, ASCV06, BASCV07, MSCV08, BV10, BC10, BSC10, FSSC11], where
they have been extensively studied.

In step higher than 2, no regularity result is known for sets of constant horizontal nor-
mal. Actually, no Euclidean rectifiability is expected. It is not clear whether an intrinsic-
rectifiability result can be expected to hold for sets with constant horizontal normal in
general Carnot groups. Nor we have examples of finite-perimeter sets for which it fails that,
at almost every point of the boundary, the tangent is a half-space.

The aim of this paper is to show that in low step (namely, step 3) we have an intermediate
situation. We are going to focus on the lower-dimensional Carnot group of step 3, the Engel
group, and provide a collection of results that address the problem of regularity for sets
with constant horizontal normal from several points of view.

We shall show a structural geometric property, to wit, any such set is Lebesgue equiva-
lent to a Euclidean Lipschitz domain. In particular, such sets are rectifiable (even in the
Euclidean sense).
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We shall then give a more concrete and precise regularity result by using the model of
the Engel group corresponding to the so-called exponential coordinates of the second kind.
Namely, in this model we are able to: (i) describe any set with constant horizontal normal as
the upper-graph of an entire Lipschitz function and (ii) reformulate the constant horizontal
normal condition as a distributional partial differential inequality.

We shall analyse the problem of whether it is possible to express any given set with
constant horizontal normal as an intrinsic horizontal upper-graph with respect to specific
horizontal vectors and what regularity to expect for such a graph. In fact, there are examples
of sets with constant horizontal normal such that, if one writes the set as an intrinsic
horizontal upper-graph in the direction of the normal, the function giving the graph is not
even continuous. However, all constant normal sets are intrinsic Lipschitz upper-graphs in
other horizontal directions. This last feature is peculiar to the Engel group. In a subsequent
work we prove that in general Carnot groups sets with constant horizontal normal might
fail to be intrinsic Lipschitz upper-graphs in every horizontal direction.

1.1. Main setting, terminology, and previous contributions. Let G be a Carnot
group (see [AKLD09] for definitions). Let g be the Lie algebra of the left-invariant vector
fields in G. By definition, g is stratified. We denote by V1 the first stratum (also known as
horizontal layer).

A subset E of a Carnot group is said to have locally finite horizontal perimeter if, for any
X ∈ V1, the distribution X1E is a Radon measure. Caccioppoli and De Giorgi introduced
these sets (in the Euclidean space) for the study of minimal hyper-surfaces. The reason for
doing so is the good behavior of the perimeter, which is the total mass of the vector-valued
measure whose components are obtained by differentiating 1E in the directions of a fixed
basis of V1. In fact, the perimeter is lower semicontinuous and induces a locally compact
topology on the class of finite-perimeter sets. Hence, it becomes easy to show existence of
minimal surfaces.

A set E in a Carnot group G is said to have constant horizontal normal if there exists a

horizontal left-invariant vector field X on G and there exists a decomposition RX ⊕ V †1 of
V1 with the following property:

• the distributional derivative X1E of the characteristic function 1E of E in the
direction of X is a positive Radon measure;

• for all Y ∈ V †1 , the distribution Y 1E vanishes.

One should notice that the space V †1 is uniquely defined by E, unlike the vector X.
However, if we fix a scalar product on V1 and require that X is a unit vector orthogonal to

V †1 , then X is unique and it is called the normal of E.

In [FSSC03], the three authors extended a result of De Giorgi by proving rectifiability of
sets with locally finite horizontal perimeter in Carnot groups of step 2. Following De Giorgi’s
strategy, they obtained this result, by showing that almost every tangent is a set of constant
normal and that constant-normal sets are in fact half-spaces. Alas, they noticed that this
latter fact does not hold in higher-step Carnot groups. In fact, in [FSSC03, Example 3.2],
they gave the first explicit example of a subset of the Engel group with constant normal
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that is not a half-space. More examples have then been given in [AKLD09] and we will be
adding some more in the present work.

In [BASCV07], the three authors showed that sets with constant horizontal normal are
calibrated sets: the calibration that they used is the scalar product with the normal. This
calibration method implies that, in any Carnot group, boundaries of sets with constant
horizontal normal are minimal surfaces, just as it happens in the Euclidean framework.
Guided by the Euclidean experience, one could expect fairly good results on the smoothness
of calibrated sets: the classical regularity theory for minimal sets in Rn indeed argues, in
its key steps, as follows. First write the set, locally around a point where we have a tangent
plane, as a graph on the tangent plane; then prove that the normal is Hölder continuous.
It is now crucial the fact that, in this Euclidean setting, one can further improve regularity
to C1 (for the original proofs see [DG61] and [Giu84]).

Going back to the subRiemannian framework, one can write any constant-normal set as
an intrinsic upper-graph in the direction of the normal. Such graphs have been considered
in [KSC04, FSSC06, ASCV06, BASCV07, MSCV08, BV10, BC10, BSC10, FSSC11] and
give canonical parametrizations. The result of [MV11] suggested that sets that are upper-
graphs of functions with controlled normal (e.g., constant) should admit some regularity.
This behaviour occurs indeed in the Euclidean case, as previously indicated. We shall give
examples in the Engel group of sets with constant horizontal normal where the function
is not even continuous. Here the choice of a specific normal direction (namely, of a scalar
product on V1) will be crucial; indeed we can on the other hand prove that, by choosing
other horizontal directions, we can express the set as upper-graph of a function taking values
in the new direction, and this function is intrinsically Lipschitz continuous, i.e., Lipschitz
with respect to cones in the intrinsic subRiemannian geometry, in particular it is locally
Euclidean Hölder continuous.

1.2. Overview of results. We recall now the definition of the Carnot group of interest to
us, the Engel group. The Engel algebra is the Lie algebra generated, as vector space, by
four vectors X1, X2, X3, X4, with relations

[X1, X2] = X3 and [X1, X3] = X4,(1.1)

[X1, X4] = [X2, X4] = [X2, X3] = [X3, X4] = 0.

Such an algebra is nilpotent of step 3 and stratified by the strata

V1 := RX1 ⊕ RX2, V2 := RX3, V3 := RX4.

The Engel group is defined as the unique connected and simply connected Lie group with
the Engel algebra as Lie algebra. Through the paper we denote by G such a group.

We endow the Engel group G with some Haar measure volG. Given a measurable set
E ⊂ G and a left-invariant vector field X ∈ Lie(G), we write

X1E ≥ 0 ( resp. X1E = 0 )

if, for all φ ∈ C∞c (G) with φ ≥ 0,

−
∫
E
Xφ d volG ≥ 0 ( resp.

∫
E
Xφ d volG = 0 ).
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Since the flow of a left-invariant vector field is a right translation, then the flow of such a
vector field preserves the Haar measure, which on a nilpotent group is always biinvariant. In
other words, any element of the Lie algebra is a divergence-free vector field on the manifold
G, endowed with a Haar measure volG.

Definition 1.2 (Constant horizontal normal). Let V1 be the first stratum of Lie(G). Fix
a scalar product 〈·|·〉 on V1. A set E ⊆ G is said to have constant horizontal normal
X ∈ Lie(G) if X ∈ V1, X1E ≥ 0, and

Y ∈ V1, 〈X|Y 〉 = 0 =⇒ Y 1E = 0.

A direction X such that X1E ≥ 0 will be referred to as a monotone direction for the set E.

Regarding the next definition, recall that, being connected, simply connected, and nilpo-
tent, the Engel group G is diffeomorphic to Lie(G), via the exponential map, and so is
diffeomorphic to R4 .

Definition 1.3 (Euclidean Lipschitz domain). A set E ⊆ G is called an Euclidean Lip-
schitz domain if, for one (and thus for all) diffeomorphisms f : G → R4, the set f(E) is a
Lipschitz domain of R4. Namely, f(E) is an open set and any point on the boundary has a
neighborhood in which the set can be described as the upper-graph of a Lipschitz map of
three variables.

Our first result is the following.

Theorem 1.4. If E is a subset of the Engel group G that has constant horizontal normal,
then there exists an Euclidean Lipschitz domain Ẽ ⊂ G that is equivalent to E, i.e., it is
such that vol(E∆Ẽ) = 0. In the particular case that the normal is X1, then E is equivalent
more precisely to a vertical half-space.

We give now a sketch of the proof, referring for the intermediate steps to subsequent
subsections of the paper. Let Y1 = X be the normal of E. Take Y2 ∈ V1 with 〈X|Y2〉 = 0.
Hence Y11E ≥ 0 and Y21E = 0. A result of [AKLD09, Proposition 4.7] allows us to obtain
two extra monotone directions for E, namely we get (see Section 2.1) Y3, Y4 ∈ Lie(G) such
that Y1, Y2, Y3, Y4 form a basis, Y31E ≥ 0, and Y41E ≥ 0. Take the Lebesgue representative
Ẽ of E (Section 2.2). The set Ẽ will have the property that, for all p ∈ ∂Ẽ and for all

Z =
∑4

j=1 αjYj with αj > 0, one has that

{t ∈ R : p exp(tZ) ∈ Ẽ} = (0,+∞).

In other words, the ‘cone’

Cp :=

p exp

 4∑
j=1

αjYj

 : αj > 0


does not intersect Ẽ. Finally, a standard cone criterion gives the Lipschitz regularity of ∂Ẽ.

We remark that Theorem 1.4 is an intrinsic structural statement for E, i.e., it only
depends on the differentiable structure of G and not on the specific choice of a coordinate
system. However, from the proof just sketched we shall draw a more precise characterization
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of any set with constant horizontal normal when we use the model of the Engel group
corresponding to the use of exponential coordinates of the second kind (see the beginning
of Section 3.1 for the definition). Observe that the cone Cp is a left translation of Cq, for

p, q ∈ ∂Ẽ. We show that in exponential coordinates of second kind there exists an Euclidean
cone C such that the set Cp contains the translated cone p+C. Thus we conclude that ∂Ẽ
is an entire Lipschitz graph:

Theorem 1.5. Let G be the Engel group. Let Ψ : R4 → G be the exponential coordinates
of the second kind. For all horizontal vector X, exists a basis w1, . . . , w4 ∈ R4 with the
following property. If E ⊂ G is any subset that has constant horizontal normal X, then
there exists a 1-Lipschitz map h : R3 → R such that E is equivalent to

{Ψ(a1w1 + . . .+ a4w4) : a1, a2, a3 ∈ R, a4 > h(a1, a2, a3)}.

The rectifiability argument of Theorem 1.4 can be extended almost verbatim to all “fili-
form groups of the first kind”. See Section 5 for a discussion on filiform group and the proof
of the result.

To complete the description of sets with constant horizontal normal in the Engel group
in exponential coordinates of second kind we shall give an analytic characterization of any
such set as upper-graph of a function that satisfies a partial differential inequality. Recall
from Theorem 1.4 that the only nontrivial case to address is the one of constant normal
different from X1. Roughly speaking we show:

Theorem (See Theorem 3.17). For any X 6= X1 there is a suitable choice of exponential
coordinates (x1, x2, x3, x4) of the second kind such that the following holds. A set has finite
perimeter and constant horizontal normal X if and only if it is of the form {x2 > G(x3, x4)}
for a BV function G : R2 → R = {−∞} ∪ R ∪ {+∞} that satisfies the following partial
differential inequality: for all h ∈ C∞c (G) such that h ≥ 0, it holds

(1.6) (〈∂3G, h〉)2 + 2〈∂4G, h〉〈L2, h〉 ≤ 0.

Here L2 denotes the Lebesgue measure on R2 and 〈 , 〉 denotes the pairing of distributions
and smooth test functions.

The statement of the result requires a suitable notion of BV-function taking values into
the extended real line R and would be a bit too technical for this introduction: the precise
features of G and the meaning of the partial differential inequality (1.6) are therefore post-
poned to Theorem 3.17. Minimal graphs of functions that also assume the values +∞ and
−∞ have already appeared in the Euclidean setting. For example, Mario Miranda consid-
ered them in the solution of the Dirichlet’s problem for the minimal surfaces equation, see
[Mir77] and [Giu84, Chapter 16].

It should be noted that the ‘Euclidean Lipschitz continuity’ obtained in Theorem 1.5, as
well as the analytic characterization just given, require the expression of E as an upper-
graph with respect to a nonhorizontal direction. We thus now turn our attention to the
expression of E as an “algebraically intrinsic horizontal graph” (see Section 4). This means
that we express E as union of half-flow-lines in a horizontal left-invariant direction. More
precisely:
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Definition 1.7 (Intrinsic horizontal upper-graph). Given a Carnot group G, let X ∈ Lie(G)
be a horizontal direction. Let W be a subgroup that is complementary to exp(RX). Let
T : W → R be any function. We say that a set E ⊂ G is an intrinsic horizontal upper-graph
in the direction X if

(1.8) E = {w exp(tX) : w ∈W, t > T (w)}.

One should observe that the point w exp(tX) is the flow from w for time t in the direction
X. We will express any set with constant horizontal normal E as an intrinsic horizontal
upper-graph as in (1.8). Understanding the regularity of T is then our next task.

The most natural horizontal direction to use would seem to be the direction of the normal.
Nevertheless we will find, in Section 4:

Theorem (See Theorem 4.1). For any X 6= X1, we can provide an example of subset
E ⊂ G with constant horizontal normal X and with the property that, when E is expressed
as intrinsic horizontal upper-graph in the direction of X, the function for which it is upper-
graph is not continuous.

Theorem (See Theorem 4.6). Let E ⊂ G be an arbitrary set having constant horizontal
normal X. Whenever E is written as intrinsic horizontal upper-graph using a horizontal
direction Y with 〈X,Y 〉 6= 0 and X not parallel to Y , then the function for which it is
upper-graph is Lipschitz continuous with respect to intrinsic cones in G (see Definition 4.5).
In particular, the function is locally Hölder continuous for the Euclidean distance.

Such intrinsic cones are cones with respect to the intrinsic subRiemannian geometry. The
above result confirms that the natural notion (introduced by Franchi, Serapioni, and Serra
Cassano in [FSSC06], see also [FSSC11]) of intrinsic Lipschitz continuity to be used for
intrinsic horizontal graphs in the subRiemannian context is the one with respect to the
intrinsic Carnot-Caratheodory distance.

1.3. Acknowledgements. Both authors would like to thank ETH Zürich for its supporting
research environment while part of this work was conducted. This paper has benefited from
numerous discussions with Luigi Ambrosio, Bruce Kleiner, Raul Serapioni, Francesco Serra
Cassano, and Davide Vittone and from the anonymous reports of referees. Special thanks
go to them.

2. Proof of Theorem 1.4

2.1. Getting more monotone directions. Let E be a subset of the Engel group G that
has constant horizontal normal X ∈ Lie(G). Let Y be a vector in V1 that is orthogonal to
X. Notice that the line RY is independent from the scalar product chosen on V1. Now we
face a dichotomy: either Y is parallel to the vector X2 of the definition of the Lie algebra
representation (1.1) of Lie(G), or not. In the second case, we show that we can change the
basis of Lie(G) and assume that Y = X1.
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The case Y = X2 is easy to handle and in fact we show that E is (equivalent to) a
half-space. In the case Y = X1 instead, it is not necessarily true that E is a half-space.
Examples to this effect were first given in [FSSC03].

In both cases we are going to make use of the following property of stability of monotone
directions.

Proposition 2.1 ([AKLD09, Proposition 4.7]). Let X,Y ∈ Lie(G) and E ⊂ G. Assume
that X1E = 0 and Y 1E ≥ 0. Then (Adexp(X)Y )1E ≥ 0.

Recall that

Adexp(X)Y = eadXY = Y + [X,Y ] +
1

2
[X, [X,Y ]],

in a 3-step group.

Easy case: sets with normal X1.

Let G be the Engel group whose Lie algebra is generated by X1, X2, X3, X4 with relations
(1.1).

Lemma 2.2. Let E ⊂ G. Assume that X11E ≥ 0 and X21E = 0. Then E is a vertical
half-space.

For the definition and other characterization of half-spaces see [AKLD09].

Proof of Lemma 2.2. Applying Proposition 2.1 with X = tX2, Y = X1, and t ∈ R, we get
that the vector field

Z := Adexp(tX2)X1 = X1 + [tX2, X1] +
1

2
[tX2, [tX2, X1]] = X1 − tX3

is such that Z1E ≥ 0, for all t ∈ R. Letting t → +∞ and t → −∞, respectively, we get
that both −X31E ≥ 0 and X31E ≥ 0. Hence X31E = 0. Apply again the proposition with
X = tX3, Y = X1, and t ∈ R. Thus the vector

Z ′ := Adexp(tX3)X1 = X1 + [tX3, X1] = X1 − tX4

is such that Z ′1E ≥ 0, for all t ∈ R. Arguing as before, we conclude that X41E = 0. By the
BV characterization of vertical half-spaces, see [AKLD09, Proposition 4.4], we are done. �

Hard case: sets with normal X2.

We first argue that if the normal is not X1 then we can assume that the normal is X2.

Lemma 2.3. Let g be the Engel algebra with basis X1, X2, X3, X4 and relations (1.1). Let
X = αX1 +βX2 with α, β ∈ R and α 6= 0. Then there exists a Lie algebra strata-preserving
endomorphism ψ of g such that ψX1 = X.

Proof. Define ψ : g→ g by the property

ψX1 = αX1 + βX2 and ψX2 = X2,

and

ψX3 = αX3 and ψX4 = α2X4.
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It is straightforward 1 to check that such a ψ is an isomorphism. �

By the above lemma, the following fact is immediate.

Corollary 2.4. Let E be a subset of the Engel group G. Let X,Y ∈ V1 ⊂ Lie(G) linearly
independent. Assume X1E ≥ 0 and Y 1E = 0. Then there exists a basis X1, X2, X3, X4 of
Lie(G) with relations (1.1) such that

• either X11E ≥ 0 and X21E = 0,
• or X11E = 0 and X21E ≥ 0.

In other words, we only need to study the cases where either E has normal X1 or it has
normal X2. Since we already solved the first case, let us focus now on the second.

If one applies Proposition 2.1 to the case of constant normal equal to X2, one obtains the
following.

Lemma 2.5. Let E ⊂ G. Assume that X21E ≥ 0 and X11E = 0. Then, for all t ∈ R, the
vector

Zt := X2 + tX3 +
t2

2
X4

is such that Zt1E ≥ 0. In particular,

X41E ≥ 0 and (X2 + 2X3 + 2X4)1E ≥ 0.

2.2. Sets with constant horizontal normal are Euclidean Lipschitz domains. In
this section we will prove Theorem 1.4 by showing that the Lebesgue representative Ẽ of a
set E having constant horizontal normal X2 satisfies a “cone criterion” and is therefore an
Euclidean Lipschitz domain. Recall that we have already shown that the case of constant
horizontal normal X1 is easy to handle (Lemma 2.2), so we only need to focus on the case
of normal X2 (by Lemma 2.3).

One should notice at this point that the four vectors

Y1 := X1, Y2 := X2, Y3 := X4, Y4 := X2 + 2X3 + 2X4

obtained in Lemma 2.5 form a basis of Lie(G). Moreover, for all j = 1, . . . , 4, we proved
that Yj1E ≥ 0. These facts will permit us to conclude the proof of Theorem 1.4. Since
there is nothing special about the fact that we have a Lie algebra of dimension 4, we state
in full generality the proposition which yields the desired conclusion.

Proposition 2.6. Let G be any Carnot group. Let E ⊂ G. Let Y1, . . . , Yn be a basis of
Lie(G). Assume that Yj1E ≥ 0, for all j = 1, . . . , n. Then E is equivalent to an Euclidean
Lipschitz domain.

For the proof of Proposition 2.6 we need to choose a good representative for the set E. In
fact, we want to have an equivalent set Ẽ for which all line flows of Yj , j = 1, . . . , n, meet

Ẽ in a half-line. Such a fact will also be useful for Section 3.1, where we will write ∂Ẽ as a
graph.

1Here is the calculation: ψ[X1, X2] = ψX3 = αX3 = α[X1, X2] = [ψX1, ψX2] and ψ[X1, X3] = ψX4 =
α2X4 = α2[X1, X3] = [ψX1, ψX3].



10 COSTANTE BELLETTINI AND ENRICO LE DONNE

The good representative that we need is the Lebesgue representative of our original set: it
allows us to obtain monotonicity along every flow line on every direction Yj . Subsequently,
we show that the topological boundary of this new set is locally a Lipschitz graph.

Recall that if X is a left-invariant vector field in a Lie group G, i.e., X ∈ Lie(G), then its
flow is a right translation. Namely,

ΦX(p, t) = p exp(tX), ∀p ∈ G.

Lemma 2.7. Let G be any Carnot group. Let E ⊂ G. Let X ∈ Lie(G). Assume that
X1E ≥ 0. Then, for any t > 0, we have that (almost everywhere) it holds 1E ≤ 1E◦ΦX(·, t).
In particular, it is true that a.e.

1E exp(X) ≤ 1E .

Proof. Since X is a divergence free vector field on the manifold G, endowed with a Haar
measure volG, we can prove that: if u ∈ L1

loc(G) satisfies Xu ≥ 0 in the sense of distributions,
then, for all t > 0, u ◦ΦX(·, t) ≥ u volG-a.e. in G. The statement of the lemma then follows
immediately.

What we need to show is that, for any nonnegative g ∈ C1
c (G), the map t 7→

∫
G gu ◦

ΦX(·, t) d volG is increasing in t. Indeed, the semigroup property of the flow, and the fact
that X is divergence-free yield∫

G
g u ◦ ΦX(·, t+ s) d volG−

∫
G
g u ◦ ΦX(·, t) d volG

=

∫
G
u g ◦ ΦX(·,−t− s) d volG−

∫
G
u g ◦ ΦX(·,−t) d volG

=

∫
G
u g ◦ ΦX(ΦX(·,−s),−t) d volG−

∫
G
u g ◦ ΦX(·,−t) d volG

= −s
∫

G
uX(g ◦ ΦX(·,−t)) d volG +o(s)

= s

∫
G

(g ◦ ΦX(·,−t))Xud volG +o(s),

which, recalling that Xu ≥ 0, yields that t 7→
∫

G g u ◦ ΦX(·, t) d volG is (weakly) increasing
in t. �

Lemma 2.8. Let G be any Carnot group. Let E ⊂ G. Let Y1, . . . , Yk ∈ Lie(G). Assume

that Yj1E ≥ 0, for all j = 1, . . . , k. Then there exists Ẽ such that volG(E∆Ẽ) = 0 and, for
all p ∈ G and j = 1, . . . , k, there exists T ∈ [−∞,+∞] such that

{t ∈ R : p exp(tYj) ∈ Ẽ}
equals (T,+∞) or [T,+∞).

Proof. In a Carnot group, such as G, Haar measures are both left- and right-invariant. In
this proof we will make use of the fact that volG is right-invariant. Flows of left-invariant
vector fields are right translations, thus isometries for any right-invariant distance. The
balls Br considered in this proof are to be understood with respect to a fixed right-invariant
Riemannian metric.
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Let Ẽ be the Lebesgue representative of E, i.e., the set of points having density 1:

x ∈ Ẽ ⇔ lim
r→0

volG(Br(x) ∩ E)

volG(Br(x))
= 1.

By the Lebesgue-Besicovitch Differentiation Theorem, Ẽ and E agree volG-a.e. We claim
that Ẽ fulfils the requirements of Lemma 2.8. Indeed, what we need to prove is: let p ∈ Ẽ, X
a left-invariant vector field such that X1E ≥ 0: then for any t > 0 the point y = p exp(tX)

belongs to Ẽ.

The vector field X is smooth and the flow ΦX(·, t) is an isometry for the right-invariant
metric, so it sends balls to balls of the same size. In the following denote by y the point

ΦX(·, t)(p). We assume p ∈ Ẽ, so lim
r→0

volG(Br(p) ∩ E)

volG(Br(p))
= 1. By the invariance of volG along

the flow we have volG(Br(p)∩E) = volG(Br(y)∩E exp(X)) and volG(Br(p)) = volG(Br(y)).
With the aid of Lemma 2.7, we then have volG(Br(p) ∩ E) ≤ volG(Br(y) ∩ E). Altogether
we can write

volG(Br(y) ∩ E)

volG(Br(y))
≥ volG(Br(p) ∩ E)

volG(Br(p))
.

Therefore we have

lim
r→0

volG(Br(p) ∩ E)

volG(Br(p))
= 1 =⇒ lim

r→0

volG(Br(y) ∩ E)

volG(Br(y))
= 1,

and the lemma is proved. �

Remark 2.9. If Y1, ..., Yk form a basis of Lie(G), then the set Ẽ is actually open. Indeed,
let q be a point on the topological boundary of E and let us show that the upper density of E
at q is strictly less than one. Any direction in the convex envelope of some given monotone
directions is in turn monotone, thus the whole cone Ŷ obtained as convex envelope of
Y1, . . . , Yk is made of monotone directions. Under the assumption that Y1, . . . , Yk form a
basis of Lie(G), this cone has nonempty interior. The complement of E is also a set with
constant horizontal normal and contains a sequence of points qn converging to q.

By means of Lemma 2.8, the cone qn exp(−Ŷ ) is all contained in the complement of E.

Hence, since qn → q, we have that the interior of q exp(−Ŷ ) is in the complement of E.

Since Ŷ is an Euclidean cone with nonempty interior, the density of q exp(−Ŷ ) at q is
strictly positive. Therefore, the upper density of E at q must be strictly less than 1.

Hence, by Lemma 2.5, every set in the Engel group that has normal X2 has a represen-
tative that is open and satisfies the conclusion of Lemma 2.8.

Proof of Proposition 2.6. By Lemma 2.8 and the remark right after it, we can assume the
following: let E ⊂ G, where G is a Lie group, let Y1, . . . , Yn be a basis of Lie(G) such that
for all p ∈ ∂E and j = 1, . . . , k, we have that

{t ∈ R : p exp(tYj) ∈ E} = (0,+∞).

We want to show that ∂E is locally a Lipschitz graph.
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Fix p0 ∈ ∂E. For all p ∈ G consider the open set

Cp :=

p exp

 n∑
j=1

αjYj

 : αj > 0

 .

Fix a (smooth) coordinate chart ϕ : U → Rn from a compact neighborhood of p0. Since ϕ is
smooth and Cp change smoothly in p, then, for all p ∈ U , the set ϕ(Cp) changes smoothly.
Thus one can find a fixed Euclidean cone C ⊆ Rn of the form

C :=


n∑
j=1

αjvj : αj > 0

 ,

for some basis v1, . . . , vn of Rn, such that

ϕ(∂E) ∩ (x+ C) = ∅, ∀x ∈ ϕ(∂E).

Note that consequently we also have that ϕ(∂E) ∩ (x − C) = ∅. By a standard argument,
e.g., see [AFP00, Theorem 2.61, page 82], one can write ϕ(∂E) as a graph in any direction
v ∈ C with respect to any hyperplane Π such that Π ∩ (C ∪ −C) = ∅. �

Observation 2.10. As a byproduct we get of course that the set E has rectifiable boundary.

3. Further regularity in a model of the Engel group

3.1. Theorem 1.5: entire Lipschitz graphs in coordinates of the second kind.
We devote this section to the proof of Theorem 1.5, which states that a set with constant
horizontal normal is, after a suitable choice of exponential coordinates of the second kind,
the upper-graph of an entire Lipschitz function. Recall that, by Lemma 2.2, if the normal is
X1 we have a vertical half-space, hence Theorem 1.5 is immediate in this case. We are thus
left with the harder case of normal X 6= X1. By Lemma 2.3 we can assume, up to a Lie
algebra isomorphism, that the normal is X2. After this endomorphism has been performed,
we choose exponential coordinates of the second kind as we are about to describe.

On R4 with coordinates x1, x2, x3, x4, we consider the following vector fields:

X1 = ∂1,

X2 = ∂2 + x1∂3 +
x21
2
∂4,(3.1)

X3 = ∂3 + x1∂4,

X4 = ∂4.

Such vector fields form a Lie algebra which is 4-dimensional. Their only nontrivial brackets
are

(3.2) [X1, X2] = X3, [X1, X3] = X4.

Therefore, such an algebra is isomorphic to the Engel Lie algebra. Using the general theory
of (nilpotent) Lie groups one can prove that there exists a (unique) product on R4 for which
the vector fields X1, X2, X3, X4 are left-invariant (and therefore a basis of the Lie algebra).
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The coordinates for the Engel group that we are using are called the exponential coor-
dinates of the second kind. Namely, if X1, X2, X3, X4 are a basis of the Lie algebra that
satisfies (3.2), then the map

(x1, x2, x3, x4) 7→ exp(x4X4) exp(x3X3) exp(x2X2) exp(x1X1)

is a diffeomorphism between R4 and the Engel group. Moreover, the vectors X1, X2, X3, X4

are pulled back to R4 to the vector fields as defined in (3.1).

Recall that in a Lie group G there is a differential geometric interpretation for the product
between an element p ∈ G with the image exp(tX) of a multiple of a left-invariant vector
field X via the exponential map. Indeed, one has the formula

(3.3) p · exp(tX) = Φt
X(p),

where Φt
X(p) denotes the flow of X after time t starting from p.

With the discussion at the beginning of this subsection in mind, the aim is now to study
those sets (in the model (3.1)) that are invariant in the direction of X1 and are monotone
in the direction of X2. Namely, let E ⊆ R4 be an open set (we always take the Lebesgue
representative), we say that E is X2-calibrated if the following two properties holds:

X1-invariance: if p ∈ E then, for any t ∈ R, p exp(tX1) ∈ E;
X2-monotonicity: for all p ∈ R4, the set {t ∈ R : p exp(tX2) ∈ E} is an open half-line

of the form (T,+∞) for some T ∈ {−∞} ∪ R ∪ {+∞}.
Therefore, if E is an X2-calibrated set then E has constant normal equal to X2, i.e.,

X21E ≥ 0 and X11E = 0. Vice versa, by Lemma 2.8 and Remark 2.9, any set E with
normal X2 admits an X2-calibrated set Ẽ that is equivalent to E.

By formula (3.3), we can calculate a product p · exp(tX) without knowing an explicit
formula for the product. Let us consider the two cases when X is X1 or X2 as above.

Regarding the flow of X1, we need to solve the ODE

(3.4)

 γ(0) = p

γ̇(t) = (X1)γ(t).

Writing γ = (γ1, γ2, γ3, γ4) and using the definition of X1, the second inequality becomes
(γ̇1(t), γ̇2(t), γ̇3(t), γ̇4(t)) = ∂1 = (1, 0, 0, 0). Integrating, we have

γ1(t) = p1 + t, γ2(t) = p2, γ3(t) = p3, γ4(t) = p4.

Thus,

p · exp(tX1) = (p1 + t, p2, p3, p4).

Regarding the flow of X2, we consider the ODE

(3.5)


γ(0) = p

γ̇(t) = (X2)γ(t) = (0, 1, γ1(t), (γ1(t))
2/2).

Integrating, we have

γ1(t) = p1, γ2(t) = p2 + t, γ3(t) = p3 + p1t, γ4(t) = p4 + p21t/2.
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Thus,

(3.6) p · exp(tX2) = (p1, p2 + t, p3 + p1t, p4 + p21t/2).

Thus we replace the previous definition:

Definition 3.7 (X2-calibration). An open set E ⊆ R4 is called X2-calibrated if

i) : if p ∈ E then, for any t ∈ R, p+ (t, 0, 0, 0) ∈ E;
ii) : for all p ∈ R4 there exists T ∈ {−∞} ∪ R ∪ {+∞} such that

{t ∈ R : p+ (0, t, p1t, p
2
1t/2) ∈ E} = (T,+∞).

Since the set E is assumed to be open, condition ii) is equivalent to the following condition:

ii’) :

p ∈ E, t > 0 =⇒ pt := p+ (0, t, p1t, p
2
1t/2) ∈ E

Example 3.8. Let g : R → R be a nonincreasing and upper semicontinuous function.
Consider the set

E := {x ∈ R4 : x2 > g(x4)}.
Since g is assumed upper semicontinuous, then E is an open set. Then we claim that the set
E is X2-calibrated. Indeed, such a fact can be seen as a consequence of Theorem 3.17 from
next section in which we give a characterization of sets with constant normal. However, we
present here a direct and detailed proof of such a claim. Property i) is obvious, for such an
E, since in the definition of E the variable x1 does not appear.

Let us show property ii’). If p ∈ E, then p2 > g(p4). Now, if t > 0, we have that p2+t > p2
and g(p4 + p21t) ≤ g(p4), being g nonincreasing. Thus, p2 + t− g(p4 + p21t) ≥ p2 − g(p4) > 0
and so p+ (0, t, p1t, p

2
1t) ∈ E. QED

Now we provide some intermediate steps that will be needed to complete the proof of
Theorem 1.5.

Lemma 3.9. Consider R4 endowed with the vector fields (3.1). Let E ⊂ R4 be an open
X2-calibrated set. Denote by R̄ the extended real line, i.e., R := {−∞} ∪ R ∪ {+∞}. Then
there exists an upper semicontinuous function G : R2 → R such that

E = {x ∈ R4 : x2 > G(x3, x4)}.

Proof. For each x3, x4 ∈ R, define G(x3, x4) := inf{x2 : (0, x2, x3, x4) ∈ E}. Here inf{∅} =
+∞. Whenever such an infimum is finite, then it is not realized, since E is open. Since E
is X2-monotone and (0, x2, x3, x4) · exp(tX2) = (0, x2 + t, x3, x4), we have that

E ∩ ({0} × R× {x3} × {x4}) = {0} × (G(x3, x4),+∞)× {x3} × {x4}.

For any x ∈ R4, since E is X1-invariant, we have that

x ∈ E ⇐⇒ (0, x2, x3, x4) ∈ E ⇐⇒ x2 > G(x3, x4).

The upper semicontinuity of G follows because E is open. �
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Lemma 3.10. Let G be the Engel group in exponential coordinates of second kind with Lie
algebra as in (3.1). Let E ⊂ G be an open X2-calibrated set. Assume that there exists p̃ ∈ E
such that p̃+ (0,R, 0, 0) ∈ E. Then

{x ∈ R4 : x3 6= p̃3, x4 > p̃4} ⊆ E.

Proof. Let x ∈ R4 with x3 6= p̃3 and x4 > p̃4. Set s := x3 − p̃3, which is nonzero, and

t :=
s2

x4 − p̃4
, which is positive. By the particular assumption on p̃, we have

(p̃1, x2 − t, p̃3, p̃4) ∈ E.
By X1-invariance,

(s/t, x2 − t, p̃3, p̃4) ∈ E.
By X2-monotonicity, (

s

t
, x2 − t+ t, p̃3 +

s

t
t, p̃4 +

s2

t2
t

)
∈ E.

Explicitly,(
s

t
, x2, p̃3 + s, p̃4 +

s2

t

)
=

(
s

t
, x2, p̃3 + x3 − p̃3, p̃4 + s2

x4 − p̃4
s2

)
=
(s
t
, x2, x3, x4

)
∈ E.

By X1-invariance,
(x1, x2, x3, x4) ∈ E.

�

Observation 3.11. The previous lemma is saying that the function G describing E has
the property that the closure of the level set G−1(−∞) is a half-space orthogonal to x4.
With an analogous argument we can actually prove the stronger statement: if (pn1 , p

n
3 , p

n
4 )→

(p1, p3, p4) as n→∞ and G(pn1 , p
n
3 , p

n
4 )→ −∞ then on the half-space {x4 > p4} the function

G must take the value −∞. We skip the proof of this statement, since it will easily follow
from the properties of the set C described in Example 3.31.

Definition 3.12 (Partially Lipschitz map). Let G : Rk → R, v ∈ Rk, and L > 0. We say
that G is partially L-Lipschitz along v if, for all t > 0 and x ∈ Rk, one has

G(x+ tv) ≤ Lt+G(x).

Notice that in the above definition we only have a condition for positive t and also for
the difference G(x+ tv)−G(x), not for the absolute value. Example of partially Lipschitz
maps are the monotone maps. Indeed, every nonincreasing function G : R→ R is partially
L-Lipschitz along v, for all L > 0 and all v > 0.

Lemma 3.13. Let G : R2 → R be such that the set E = {x ∈ R4 : x2 > G(x3, x4)} is
X2-monotone. Then G is partially 1-Lipschitz along any vector (a, a2/2), with a ∈ R.

Proof. Fix x3, x4 ∈ R. Assume G(x3, x4) 6= +∞, otherwise there is nothing to prove. Take
x2 > G(x3, x4). Thus (a, x2, x3, x4) ∈ E. Since E is X2-monotone, we have that, for all
t > 0,

(a, x2 + t, x3 + at, x4 +
a2

2
t) ∈ E.
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So x2 + t > G(x3 + at, x4 + a2t/2), for all t > 0. Letting x2 → G(x3, x4), we get

G(x3, x4) + t ≥ G(x3 + at, x4 + a2t/2),

which ends the proof. �

As a consequence we get the following corollary, which concludes the proof of Theorem 1.5.
Indeed, recall that (as discussed in the beginning of this subsection) the case of normal
X = X1 is easily handled, while for the case of normal X 6= X1 we have chosen coordinates
of the second kind (3.1) in such a way that the normal is X2.

Corollary 3.14. There exist coordinates in which the set E of constant normal X2 can be
expressed as upper-graph of a globally Lipschitz function of R3.

Proof. From the previous lemma, for any direction v = (v1, v2) in R2
x3,x4 with |v| = 1 and

v2 > 0, the function G is (v1)2

2v2
partially Lipschitz along v. So at every point y on the graph

of G there is a cone-shaped domain y+ {(x1, x2, x3, x4) : x4 ≥ 0, x2 >
(x3)2

2x4

√
x23 + x24} that

is contained in the upper-graph of G.

Remark that the cone is independent of the point y on the graph of G, it is just moved
via (Euclidean) translations. By suitably rotating coordinates, we can make therefore E to
be the upper-graph of a globally Lipschitz function: namely we have to choose a graphing

direction that lies in the interior of the set {(x1, x2, x3, x4) : x4 ≥ 0, x2 >
(x3)2

2x4

√
x23 + x24}.

�

3.2. Analytic characterization and examples of sets with normal X2. We present
in this subsection a characterization (as well as some examples) of sets with normal X2 in
the model (3.1) of the Engel group that we have used above. Recall again that there is no
loss of generality in restricting to this particular case, since any set with constant horizontal
normal X 6= X1 can be brought to this case (while for sets with normal X1 we have a much
easier characterization, since they are half-spaces by Lemma 2.2).

We recall a few facts on BV functions, with reference to [GMS98, pages 354-379].

Let u be an L1
loc function on Rn; the subgraph SU of u, i.e., the set {(x, y) ∈ Rn × R :

y < u(x)}, is a set of locally finite (Euclidean) perimeter if and only if u is BVloc (Thm. 1
page 371).

Let u : Rn → R be L1
loc. Define the approximate lim sup and lim inf at x ∈ Rn respectively

as follows, where for any t ∈ R we use the notation Ut,u := {x ∈ Rn : u(x) > t} and
Lt,u := {x ∈ Rn : u(x) < t}:

u+(x) := sup{t ∈ R : the n-dim. density of the set Lt,u at x is 0},

u−(x) := inf{t ∈ R : the n-dim. density of the set Ut,u at x is 0}.
When u+(x) = u−(x) we say that x is a point of “approximate continuity” for u. The

set J of points where the strict inequality u+(x) > u−(x) holds is the “jump set” of u.
Then we have (see [GMS98, pages 355]): the set J is Hn−1-measurable and countably
Hn−1-rectifiable.
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The term “jump set” is justified by the result we are about to recall. Denote, for x ∈ Rn

and νx ∈ Sn−1, the half-space {y ∈ Rn : 〈y − x, ν〉 > 0} by E+(x, ν). Analogously denote
the half space {y ∈ Rn : 〈y − x, ν〉 < 0} by E−(x, ν).

For Hn−1-a.e. x in J there exists a (unique) νx ∈ Sn−1 such that it holds:

aplimy→x,y∈E+(x,ν)u(y) = u+(x) and aplimy→x,y∈E−(x,ν)u(y) = u−(x).

The notion of approximate limit here (see [GMS98, pages 210]) is meant as follows:

for all ε > 0 the set {y ∈ E+(x, ν) : |u(y)−u+(x)| ≥ ε} has n-dim. density 0 at the point
x. Analogously for all ε > 0 the set {y ∈ E−(x, ν) : |u(y)− u−(x)| ≥ ε} has n-dim. density
0 at the point x.

Then we can improve our knowledge of J with the following statement ([GMS98, pages
355]): the set J is Hn−1-measurable and countably Hn−1-rectifiable; moreover on J we have
that the approximate tangent space (in the sense of geometric measure theory) exists for
Hn−1-a.e. x and is given by the orthogonal to νx.

Regarding the distributional derivative Du of the BVloc function u : Rn → R, we know
that it is a locally finite vector-valued measure (by definition). Its components will be

denoted by ∂1u, ...∂nu. Setting D(j)u := Du J and D̃u := Du − D(j)u we are going to
use the splitting Du = D̃u + D(j)u. The measures D(j)u and D̃u are mutually singular.
For the partial derivatives, i.e., the components of the vector Du, we will make use of the

corresponding notations D(j)u =
(
∂
(j)
1 u, ..., ∂

(j)
n u

)
and D̃u =

(
∂̃1u, ..., ∂̃nu

)
. There exists

(see [AFP00] or [GMS98]) a further splitting of D̃u into an absolutely continuous (w.r.t.
Lebesgue measure) part and a “Cantor part”, but we are not going to need it for our

purposes. The measure D(j)u is just (u+(x)− u−(x))(H1 J)⊗ νx.

By recalling Theorems 2 and 3 on page 375 of [GMS98] we will now see how to express
the distributional derivative D 1SU of the characteristic function 1SU , for u ∈ BVloc, in
terms of Du.

We split

D 1SU = D(j) 1SU +D(cont) 1SU ,

where D(j) 1SU := D 1SU (J × R) and D(cont) 1SU := D 1SU −D(j) 1SU .

Let (x, y) denote the coordinates for Rn × R. Then it holds, for D(cont) 1SU :

(
D

(cont)
i 1SU

)
(φ(x, y)) =

∫
Rn\J

φ(x, u+(x))Diu for any φ ∈ C∞c (Rn×R) and i ∈ {1, 2, ...n},

(3.15)
(
D

(cont)
n+1 1SU

)
(φ(x, y)) = −

∫
Rn

φ(x, u+(x))dx for any φ ∈ C∞c (Rn × R).

Regarding the jump part we have that in Rn × R

(3.16) D(j) 1SU = (Hn V )⊗ (νx, 0),

where V = {(x, y) ∈ Rn×R : x ∈ J, u−(x) < y < u+(x)} and the vector νx is the normal to
J in Rn.
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We are now ready to state the analytic characterization of constant normal sets in the
Engel group:

Theorem 3.17. In our model of the Engel group (3.1) a set has finite perimeter and
constant horizontal normal X2 if and only if it is of the form {x2 > G(x3, x4)} for an upper
semicontinuous function G : R2 → R with the following properties:

(i): the closure of {(x3, x4) : G(x3, x4) = −∞} is a half-space of the form {(x3, x4) :
x4 ≥ b} for some b ∈ R;

(ii): the restriction of G to the open set G := R2 \ {(x3, x4) : x4 ≥ b} \ {(x3, x4) :
G(x3, x4) = +∞} is BVloc(G);

(iii): G satisfies the following partial differential inequality on G: for all h ∈ C∞c (G)
such that h ≥ 0, it holds

(3.18) (〈∂3G, h〉)2 + 2〈∂4G, h〉〈L2, h〉 ≤ 0.

Here L2 denotes the Lebesgue measure on R2 and 〈 , 〉 denotes the pairing of distri-
butions and smooth test functions.

Observation 3.19. The inequality (3.18) can be equivalently expressed by requiring that,
for any h ∈ C∞c (G) such that h ≥ 0 and

∫
h = 1, it holds

(3.20)

(∫
G
G
∂h

∂x3

)2

≤ 2

∫
G
G
∂h

∂x4
.

Observation 3.21. The partial differential inequality (3.18) is the distributional analogue
of the inequality (∂3G)2 + 2∂4G ≤ 0 in the case that G is a smooth function. Indeed,
assuming (∂3G)2 + 2∂4G ≤ 0, for any h ∈ C∞c (G) such that h ≥ 0 and

∫
h = 1, we have∫

(∂3G)2h+ 2

∫
∂4Gh ≤ 0.

Jensen’s inequality applied with respect to the measure of unit mass h dL2 yields(∫
∂3Gh

)2

≤
∫

(∂3G)2h.

On the other hand, by assuming (3.18) and using it on a sequence of test functions hn
having unit integral and converging to the Dirac delta at a point, we pointwise obtain the
inequality (∂3G)2 + 2∂4G ≤ 0.

Before proving Theorem 3.17, we first show the following result.

Lemma 3.22. Let G : G ⊂ R2 → R be as in Theorem 3.17 and be J ⊂ R2 its jump part.
We take G to be a function of the variables x3 and x4 and we will denote by ∂3 (resp. ∂4)
the partial derivative, which is a Radon measure, with respect to the variable x3 (resp. x4).

The partial differential inequality (3.18) splits into (and actually is equivalent to)

(3.23) (〈∂̃3G, h〉)2 + 2〈∂̃4G, h〉〈L2, h〉 ≤ 0 , ∂
(j)
3 G = 0,

where we are using the notation ∂̃ and ∂(j) introduced before and h is any nonnegative test
function. The second equation in (3.23) is equivalent to saying that J has normal νx that
is parallel to the x4-direction for H1-a.e. x ∈ J .
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Proof of Lemma 3.22. We shall prove that (3.18) yields the two inequalities in (3.23).

By definition of Hn−1-rectifiable we have J = ∪∞i=1fi(Ki), where the Ki’s are compact
sets in R and fi’s are Lipschitz functions from R to G. We can assume the union ∪∞i=1fi(Ki)
to be disjoint. Fix any ε > 0: for each N we can find an open neighbourhood AN,ε of the

compact set ∪Ni=1fi(Ki) such that L2(AN,ε) ≤ ε. This is achieved by taking neighbourhoods
of each fi(Ki) having measure at most ε

2i
and taking their union from i = 1 to i = N . The

fact that we can find an open neighbourhood of fi(Ki) having arbitrarily small area is a
consequence of the fact that fi(Ki) has finite H1-measure.

Choose now, for N and ε fixed, a smooth bump function ψN,ε that is identically 1 on the
compact set ∪∞i=1fi(Ki), identically 0 outside of AN,ε and takes values between 0 and 1.

Choose any h ∈ C∞c (G). The partial differential inequality (3.18) used on the function
hN,ε := hψN,ε reads

(3.24) (〈∂̃3G, hN,ε〉+ 〈∂(j)3 G, hN,ε〉)2 +2〈∂̃4G, hN,ε〉〈L2, hN,ε〉+2〈∂(j)4 G, hN,ε〉〈L2, hN,ε〉 ≤ 0.

Keeping N fixed and letting ε→ 0, we get that

∂̃3G (AN,ε)→ ∂̃3G
(
∪Ni=1fi(Ki)

)
= 0,

where the convergence holds since ∪Ni=1fi(Ki) = ∩ε>0AN,ε, ∂̃3G is a Radon measure, and

the sets AN,ε are bounded. This, together with an analogous convergence for ∂̃4G and L2,
gives that for N fixed and ε→ 0:

〈∂̃3G, hN,ε〉 → 0 , 〈∂̃4G, hN,ε〉 → 0, 〈L2, hN,ε〉 → 0.

Let us now look at the remaining terms in (3.24), namely those involving the “jump

parts”. Denote by ν3,N the measure ∂
(j)
3 G

(
∪Ni=1fi(Ki)

)
. In the same fashion let ν4,N :=

∂
(j)
4 u

(
∪Ni=1fi(Ki)

)
. Remark that ν3,N ⇀ ∂

(j)
3 G and ν4,N ⇀ ∂

(j)
4 G, as N →∞.

Moreover, for a fixed N , we get (recall that ψN,ε = 1 on ∪Ni=1fi(Ki)) that, as ε→ 0:

〈∂(j)3 G, hN,ε〉 → 〈ν3,N , h〉 , 〈∂(j)4 G, hN,ε〉 → 〈ν4,N , h〉.
So we can send (3.24) to the limit for ε→ 0 and get

(3.25) (〈ν3,N , h〉)2 ≤ 0,

which holds for every h ≥ 0. Using the convergence of measures ν3,N ⇀ ∂
(j)
3 G, as N →∞,

we obtain that ∂
(j)
3 G = 0, as in (3.23). This equivalently means that J has a normal ν

always parallel to the x4 direction.

In order to get the first inequality in (3.23) we can use an analogous argument, this time
using 1− ψN,ε instead of ψN,ε. �

Observation 3.26. The condition on the shape of J is actually equivalent to

H1 (J \ ∪∞i=1Bi) = 0,

where each Bi is a Borel subset of a line parallel to x3.

Observation 3.27. It is easily seen that, for G ∈ BVloc, equations (3.23) are actually
equivalent to (3.18).
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Proof of Theorem 3.17. As we saw in Lemma 3.9, every set having locally finite horizontal
perimeter and constant horizontal normal equal to X2 is the uppergraph of a function
G : R2 → R of the variables (x3, x4). Such G is upper semicontinuous and by Lemma 3.10
the closure of the level set at −∞ is a (closed) half-space in the direction x4. Such a G will
then be L1

loc on the open set G (see Observation 3.11).

We have moreover seen that E has Lipschitz boundary (in the Euclidean sense) when we
choose suitable coordinates (Lemma 3.13). This makes it a set of locally finite Euclidean
perimeter. Thus, since being of locally finite Euclidean perimeter is a notion that is inde-
pendent of coordinates, going back to the original coordinates the function G must be BVloc
on G.

We thus need to prove that, for G as in assumptions (i) and (ii), the set E := {x ∈ R4 :
x2 > G(x3, x4)} is X2-monotone if and only if G satisfies (3.18).

Regarding X2-monotonicity, we split the derivatives ∂xj1E in the “approximately contin-
uous part” and the “jump part”.

We can compute, on the “approximately continuous part” (R3
x1,x3,x4 \ (Rx1 × J)) × Rx2 ,

the horizontal normal to 1E as follows: for any nonnegative h ∈ C∞c (R4) it holds (from
(3.15)) [(

∂2 + x1∂3 +
x21
2
∂4

)cont

1E

]
(h) =

(3.28)

=

∫
R3
x1,x3,x4

\(Rx1×J)
h (x1, G(x3, x4), x3, x4)

[
1− x1(∂3G)(x3, x4)−

x21
2

(∂4G)(x3, x4)

]
.

We now consider J × R and (recall (3.16)) here we have ∂21E = 0. Let further (a, b) be
the vector (∂31E , ∂41E). Then

(3.29)

(
∂2 + x1∂3 +

x21
2
∂4

)(j)

1E = x1(u
+ − u−)a(H1 J) +

x21
2

(u+ − u−)b(H1 J).

Altogether, summing the two expressions in (3.28) and (3.29), we get the expression for
the X2-derivative of 1E . The condition of X2-monotonicity, i.e.,[(

∂2 + x1∂3 +
x21
2
∂4

)
1E

]
(h) ≥ 0,

for any h ≥ 0 and for any x1, is fulfilled if and only if2, for any h ≥ 0, the polynomial in x1∫
h dL2 − x1〈(∂3G)(x3, x4), h〉 −

x21
2
〈(∂4G)(x3, x4), h〉

2Indeed the two measures in (3.28) and (3.29) are mutually singular and the inequality[(
∂2 + x1∂3 +

x21
2
∂4

)
1E

]
(h) splits in the two corresponding inequalities for the two measures(

∂2 + x1∂3 +
x21
2
∂4

)cont

1E and

(
∂2 + x1∂3 +

x21
2
∂4

)(j)

1E . This is proved using bump functions as done in

the proof of Lemma 3.22.
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is always positive and (
x1a+

x21
2
b

)
≥ 0.

The first is in turn equivalent, since such a polynomial has value 1 for x1 = 0, to the
discriminant (∂3G(h))2 + 2∂4G(h)〈L2, h〉 being nonpositive.

The second is satisfied if and only if a = 0, b ≥ 0. The vector (a, b) is, on the other
hand, the normal ν to the jump set J ⊂ R2 of G: so the X2-monotonicity is equivalent to
J being a countably H1-rectifiable set with constant normal in the direction x4, as in the
assumptions. �

We give now some explicit examples of sets having locally finite horizontal perimeter and
constant horizontal normal equal to X2 in our model of the Engel group. The first one is a
generalization of Example 3.8.

Example 3.30. Let g : R→ R be a nonincreasing and upper semicontinuous function. Take
K ∈ (0,∞) and a nondecreasing function f : R → R Lipschitz continuous with Lipschitz
constant ≤ 2

K2 . The set

E := {x ∈ R4 : x2 > f(Kx3 − x4) + g(x4)}

is X2-calibrated. We can easily see this fact as a consequence of Theorem 3.17 by computing

((∂3G)(x3, x4))
2 = K2(f ′(Kx3 − x4))2, (∂4G)(x3, x4) = −f ′(Kx3 − x4) + ∂4g(x4)

so that

((∂3G)(x3, x4))
2 + 2(∂4G)(x3, x4) = (K2f ′(Kx3 − x4)− 2)f ′(Kx3 − x4) + 2∂4g(x4)

≤ 2∂4g(x4) ≤ 0

by the condition on the Lipschitz constant of f and by the monotonicity of g.

Example 3.31. The set

C :=

{
x ∈ R4 : x2 > 0, x4 > 0, x2 >

x23
2x4

}
is X2-calibrated. In this case we have G = +∞ for x4 ≤ 0 and G =

x23
2x4

for x4 > 0.

Again, making use of Theorem 3.17, we can compute, for x4 > 0:

((∂3G)(x3, x4))
2 + 2(∂4G)(x3, x4) =

x23
x24
− x23
x24

= 0.

We remark here that we get 0 because C is a sort of “extreme case”, in the sense that,
taken any X2-calibrated set E, if p ∈ ∂E then we shall prove that p + C must lie in the
interior of E. This fact will be discussed in detail and play an important role in a subsequent
work.

Let us prove the previous claim. Assume that E is X1-invariant and X2-monotone and
let p = (p1, p2, p3, p4) ∈ E. Then the whole line ` = {(p1 + a, p2, p3, p4) : a ∈ R}, belongs
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to E. Now the X2-monotonicity means that we can flow from any point in ` for positive
times t along X2 and we remain in E. Writing this down explicitly we get

(p1 + a, p2, p3, p4) +

(
0, t, (p1 + a)t,

(p1 + a)2

2
t

)
∈ E for any t ≥ 0, a ∈ R.

By using X1-invariance again we get that

(p1, p2, p3, p4) +

(
0, t, (p1 + a)t,

(p1 + a)2

2
t

)
∈ E for any t ≥ 0, a ∈ R.

The points
(
t, (p1 + a)t, (p1+a)

2

2 t
)

with t ≥ 0 and a ∈ R describe the surface {2xz =

y2 : x > 0, z > 0} in R3. This means that whenever E contains p then it must contain

the surface p + {(x1, x2, x3, x4) : x2 =
x23
2x4

, x2 > 0, x4 > 0}. But recalling that E is
an upper-graph in the direction of the x2-coordinate we get that E contains the whole

p+ {(x1, x2, x3, x4) : x2 ≥
x23
2x4

, x2 > 0, x4 > 0}, which is exactly p+ C. QED

Remark 3.32. The same argument of the previous example shows that if E is a X2-
calibrated set and p ∈ ∂E then the p · C must lie in the interior of E. Indeed, also the set
p−1 ·E is a X2-calibrated set. By the argument above, we have that C ⊆ p−1 ·E and we are
done. Note that p ·C is the left translation (with respect to the group structure) of E at p.
Also note that, since we are in exponential coordinates, we have C−1 = −C. In addition,
if E is a X2-calibrated set, then the set R4 \ (−E) is X2-calibrated. Therefore, for p ∈ ∂E,
we have the p · (−C) lies in the interior of the complement of E.

4. Sets with constant horizontal normal as intrinsic horizontal upper-graphs

In this section we look at the expression of E (a set with constant normal X) as upper-
graph of a function when we use as “graphing direction” the flow lines of an horizontal
vector field, i.e., we want to describe E as intrinsic horizontal upper-graph in the sense of
Definition 1.7 and study the regularity of the graphing function T . A natural choice is to use
the flow of X as “graphing direction”. As we are about to explain in the next subsection,
this choice might lead to a surprising lack of regularity for T .

Recall that, in view of Lemma 2.2, the only interesting case is when the normal is not
X1. Moreover, by Lemma 2.3, we can in that case assume without loss of generality that
the normal is X2.

4.1. Intrinsic horizontal upper-graphs in the direction of the normal. Let W ⊆ R4

be the set of points with second component equal to zero,

W := {p ∈ R4 : p2 = 0}.
One can show that W is a subgroup of R4 with respect to the Engel structure given by (3.1).
Indeed, to see this, it is enough to observe the following two facts. First, the vector space
spanned by the vector fields X1, X3, X4 form a Lie sub-algebra. The second fact to notice
is that the span of such vectors is tangent to W . Thus W is a subgroup whose Lie algebra
has basis X1, X3, X4. From the algebraic viewpoint, the subgroup W is a complementary
subgroup of the one-parameter subgroup tangent to the vector field X2. From the geometric
viewpoint, for each p ∈ R4, the 3-dimensional plane W intersects the line t 7→ p exp(tX2) in
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one and only one point. Indeed, by (3.6) the second coordinate of p exp(tX2) is p2+t, which
is zero when (and only when) t = −p2. We conclude that the space R4 can be parametrized
by the following map

Ψ : W × R→ R4

(p, t) 7→ p exp(tX2).

Assume now that E ⊆ R4 is a X2-calibrated set. We plan to write E as an upper-graph of
a function. By the definition of X2-calibration there exists a map p 7→ T (p) from R4 to R
such that

{t : p exp(tX2)) ∈ E} = (T (p),+∞).

Restricting such a map T to W . We get that

E = {Ψ(p, t) : p ∈W, t > T (p)}

= {Ψ(p, T (p) + t) : p ∈W, t > 0}.

= {(p1, t, p3 + p1t, p4 + p21t/2) : p ∈W, t > T (p)}.

Let us study the map p 7→ T (p) from W to R, in the examples Example 3.8 where
E := {x ∈ R4 : x2 +g(x4) > 0}, with g nondecreasing and upper semicontinuous. The value
T (p) is the lower value T such that

T + g(p4 + p21T ) ≥ 0,

since on W we have p2 = 0. Restrict the map T to W ∩ {p1 = 0}, so

T (p) = −g(p4).

In conclusion, T : W → R is as much nonregular as g is. In particular, there are examples
of noncontinuous function T . We can summarize the last discussion in the following fact.

Theorem 4.1. For any X 6= X1 there are examples of sets E with constant horizontal
normal X and with the property that, when they are written as intrinsic horizontal upper-
graphs in the direction of X, the function for which they are upper-graphs is not continuous.

4.2. Graphs in other horizontal directions. For a set E with constant normal X2, the
previous example has shown that there can be a lack of continuity for the intrinsic graph
representing the boundary of E when we choose the flow lines of X2 as graphing directions.

We might however still look at what happens when the boundary of E is represented as
an intrinsic graph using different horizontal flow lines as graphing direction: namely let us
observe the flow lines of aX1 +X2 for a > 0.

First of all we need to write down, analogously to what was done in (3.5), the flow of
aX1 +X2 in the model of the Engel group considered so far. What we get is that the flow
line starting at (p1, p2, p3, p4) is

(4.2) Φ(p, t) :=

(
p1 + at, p2 + t, p3 + p1t+

a

2
t2, p4 +

p21
2
t+

ap1
2
t2 +

a2

6
t3
)
.

We are going to show now that this intrinsic graph might fail to be Euclidean Lipschitz.
To see this, we will consider the set in Example 3.31.
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Theorem 4.3. When the set C :=
{
x ∈ R4 : x2 > 0, x4 > 0, x2 >

x23
2x4

}
is represented as

intrinsic upper-graph in any horizontal direction aX1 + X2, the function for which it is
upper-graph is not Euclidean Lipschitz.

Proof of Theorem 4.3. The intrinsic function T (p) yielding the upper-graph is a function
T : W → R, where W := {p ∈ R4 : p2 = 0} as before. The value T (p) is the infimum of the
times t for which the flow line starting at p is inside C.

Let us restrict the attention to points in W with p1 = p3 = 0. The flow lines are then(
at, t, a2 t

2, p4 + a2

6 t
3
)

and we must see when the flow line enters the set C. The value T (p)

for p4 ≥ 0 is clearly 0, while for p4 < 0 it is the solution of the following equation in t

2t

(
p4 +

a2

6
t3
)

=
a2

4
t4 ,

with the constraint that p4 + a2

6 t
3 > 0.

Solving this equation we get a2

12 t
3 = 2|p4|, i.e., t = 3

√
24|p4|
a2

, which fulfills the constraint

p4 + a2

6 t
3 > 0. So we have that, restricting to p1 = p3 = 0 in W , the function for which

C is upper-graph is 3

√
24|p4|
a2

for p4 < 0 and identically 0 for p4 ≥ 0, so it is not Lipschitz

continuous for the Euclidean distance. �

It is therefore necessary to use nonhorizontal directions as “graphing direction” (as done in
Corollary 3.14) in order to see the Euclidean Lipschitz continuity of the function describing
the boundary of a set with constant horizontal normal.

The previous proof leaves however still open the possibility for the intrinsic graph in the
direction aX1 + X2 to be Lipschitz with respect to the intrinsic subRiemannian geometry
of G, as we are about to discuss. In particular, we shall obtain Hölder continuity of the
graphing function with respect to the Euclidean distance.

Let us recall the notion of intrinsic cones and intrinsic Lipschitz regularity for graphs in
Carnot groups. Given a group G and two subgroups W,H ⊆ G, we say that W and H are
two complementary subgroups if G = W ·H and W ∩H = {1}. Given a function f : W → H
between two subgroups, its graph is the set

Γf := {w · f(w) : w ∈W} ⊂ G.

Definition 4.4 (Intrinsic cones). Let G be a group admitting dilations δλ, for all λ ∈ R.
Let H ⊆ G be a subgroup of G. An open set C ⊂ G is called intrinsic open cone with axis
H if C = δλ(C), for all λ ∈ R, and H ⊆ {1} ∪ C.

Definition 4.5 (Intrinsic Lipschitz graphs). Let W,H ⊆ G be two complementary sub-
groups of a group G admitting dilations. Then a function f : W → H is called intrinsic
Lipschitz (or Lipschitz in the sense of Franchi-Serapioni-SerraCassano) if there exists an
intrinsic open cone with axis H such that

Γf ∩ (p · C) = ∅, ∀p ∈ Γf
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The above definition has been introduced by B. Franchi, R. Serapioni and F. Serra Cas-
sano, see [FSSC06, FSSC11]. We phrased the definition a little bit differently, however, it
is easy to see that it is equivalent.

Theorem 4.6. When a set E with constant horizontal normal X2 is represented as intrinsic
horizontal upper-graph in any horizontal direction aX1 + X2, with a 6= 0, the function for
which it is upper-graph is intrinsically Lipschitz-continuous.

Proof of Theorem 4.6. In order to prove the theorem, we show the intrinsic cone in the
coordinates given by (3.1):

C̃ := {2x2x4 > x23}.
It is clear that C̃ is open and invariant under the group dilations:

(x1, x2, x3, x4) 7→ (λx1, λx2, λ
2x3, λ

3x4).

By (4.2), we have that

exp(t(aX1 +X2)) = Φ(0, t) =

(
at, t,

a

2
t2,

a2

6
t3
)
.

If t 6= 0, then such a point is in C̃, since

2Φ2(0, t)Φ4(0, t) = 2t
a2

6
t3 =

a2

3
t4 >

a2

4
t4 =

(a
2
t2
)2

= Φ3(0, t)
2.

Hence, if H := exp(R(aX1 + X2)), we have H ⊆ {1} ∪ C̃. So C̃ is an intrinsic open cone
with axis H.

It is important that we notice that C̃ is the cone obtained as the previous set C of
Example 3.31 together with its reflection:

C̃ = C ∪ (−C) = C ∪ C−1.

Let E be a set with normal X2. Up to replacing it by its Lebesgue representative (see
Section 2.2), we may assume that E is X2-calibrated (see Definition 3.7). By Remark 3.32,
we know that if p ∈ ∂E, then p · C ⊆ E and similarly p · (C−1) ⊆ R4 \ E. Now let W be,
as before, the set {p ∈ R4 : p2 = 0}. Let f : W → H be the function for which Γf = ∂E.
Then, if p ∈ Γf , we have Γf ∩ (p · C) = ∅. �

The above proof showed that the cone C has the property of containing the direction
aX1 +X2 in its interior, when a 6= 0. Since such a cone is an intrinsic cone, hence invariant
under inhomogeneous dilations, we can find a cusp of the form

Q := {x ∈ R4 : 〈x, v〉 ∈ (0, 1),dist(x,Rv) < K(〈x, v〉)3},
for some K > 0 and v = ae1 + e2, contained in C. Since the intrinsic graph in the direction
aX1 +X2 avoid the cusp, we can conclude that it is Hölder. Hence, we showed the following
corollary.

Lemma 4.7. When a X2-calibrated set E is represented as intrinsic upper-graph in any
horizontal direction aX1 +X2, with a 6= 0, the function for which it is upper-graph is locally
Euclidean Hölder-continuous.
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We remark that the fact that intrinsic Lipschitz graphs are locally Hölder-continuous
holds in complete generality in any stratified group. One can easily generalize our geometric
reasoning given above. A more analytic proof will be contained in [FMS12].

5. Regularity in filiform groups

A stratified group G is said to be a filiform group if the strata Vj of the stratification

Lie(G) = V1 ⊕ . . .⊕ Vs

of the Lie algebra Lie(G) are such that dimV1 = 2 and dimVj = 1, for j = 2, . . . , s. Here s
is the step of the group.

One can easily show that there exists a basis X0, . . . Xs of Lie(G) by vectors with the
following property: X0, X1 ∈ V1, Xj ∈ Vj , for j = 2, . . . , s, and

(5.1) [X0, Xj−1] = Xj , for j = 2, . . . , s.

In general there might be other nonnull brackets of elements of this basis. In [Ver70], Vergne
gave a classification of all stratified filiform groups. In fact, in [Ver70, Corollary 1, page 93],
Vergne showed that, in the case the step s is even (so the dimension of the group is odd),
then there is only one stratified group of step s and it admits a basis for which the brackets
are all null, except those in (5.1). In case s is odd (and the dimension is even), then there
are only two different filiform groups: one where, a part from (5.1), all other brackets are
null and a second one where the only other nonnull bracket relation is

[Xl, Xs−l] = (−1)lXs, for l = 1, . . . , s− 1.

We refer to this two groups as the filiform group of the first kind and the filiform group of
the second kind, respectively.

We shall show how the argument for proving the regularity of constant-normal sets in the
Engel group can be extended to any filiform group of the first kind.

Theorem 5.2. Let G be any filiform group of the first kind. Let E ⊂ G be a set with
horizontal constant normal. Then E is a Lipschitz domain.

Proof. Let X0, . . . Xs be a basis of Lie(G) satisfying (5.1). As for the Engel group, we
can assume that either X01E = 0 or X11E = 0. Consider first the case X01E = 0. By
Proposition 2.1, the vector Adexp(tX0)X1 is a monotone direction. Explicitly, by (5.1), we
have

Adexp(tX0)X1 = ead(tX0)X1 = X1 + tX2 +
t2

2
X3 + . . .+

ts−1

s− 1
Xs.

Pick s distinct numbers t1, . . . , ts. Consider the vectors

Yj = Adexp(tjX0)X1, for j = 1, . . . , s.
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We claim that the vectors Yj are linearly independent. Indeed, it is enough to show that
the matrix 

1 t1
t21
2

. . .
ts−11

s− 1
...

...
...

. . .
...

1 ts
t2s
2

. . .
ts−1s

s− 1

 .

has full rank. Equivalently we need

det

1 t1 t21 . . . ts−11
...

...
...

. . .
...

1 ts t2s . . . ts−1s

 6= 0.

We observe that we are considering a Vandermonde Matrix. Hence such a determinant is
Π1≤i<j<s(ti− tj), which is nonzero, since the tj ’s have been chosen to be distinct. Since we
found a basis of monotone directions, as for the Engel group, we conclude that the set E is
(equivalent) to a Lipschitz domain.

Let us consider now the case X11E = 0. Applying Proposition 2.1, we get that the vector
field

Adexp(tX1)X0 = X0 − tX2

is a monotone direction, for all t ∈ R. Thus X21E = 0. Iterating the use of Proposition
2.1 and using (5.1), we get that all vectors X2, . . . , Xs are invariant directions. Hence E is
half-space. �
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