
SETS WITH CONSTANT NORMAL IN CARNOT GROUPS:

PROPERTIES AND EXAMPLES
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Abstract. We analyze subsets of Carnot groups that have intrinsic constant normal, as
they appear in the blowup study of sets that have finite sub-Riemannian perimeter. The
purpose of this paper is threefold. First, we prove some mild regularity and structural
results in arbitrary Carnot groups. Namely, we show that for every constant-normal set in
a Carnot group its sub-Riemannian-Lebesgue representative is regularly open, contractible,
and its topological boundary coincides with the reduced boundary and with the measure-
theoretic boundary. We infer these properties from a metric cone property. Such a cone
will be a semisubgroup with nonempty interior that is canonically associated with the
normal direction. We characterize the constant-normal sets exactly as those that are
arbitrary unions of translations of such semisubgroups. Second, making use of such a
characterization, we provide some pathological examples in the specific case of the free-
Carnot group of step 3 and rank 2. Namely, we construct a constant normal set that,
with respect to any Riemannian metric, is not of locally finite perimeter; we also construct
an example with non-unique intrinsic blowup at some point, showing that it has different
upper and lower sub-Riemannian density at the origin. Third, we show that in Carnot
groups of step 4 or less, every constant-normal set is intrinsically rectifiable, in the sense
of Franchi, Serapioni, and Serra Cassano.
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1. Introduction

Subsets of Carnot groups whose intrinsic normal is constantly equal to a left-invariant
vector field appear both in the development of a theory à la De Giorgi for sets with locally
finite-perimeter in sub-Riemannian spaces [FSS01, FSS03, AGM15] and in the obstruction
results for biLipschitz embeddings into L1 of non-Abelian nilpotent groups [CK10]. More-
over, each such a set is calibrated and therefore minimizes the sub-Riemannian perimeter
[BSV07]. The work [FSS03] by Franchi, Serapioni and Serra-Cassano provides complete
understanding of constant-nornal sets in the case of Carnot groups with nilpotency step 2.
However, in higher step the study appears to be much more challenging, due to the more
complex underlying algebraic structure, and only in the case of filiform groups and of groups
of type (♦) we have a satisfactory understanding of sets with constant intrinsic normal, see
[BL13, LM20].

The main result of this paper, valid in arbitrary Carnot groups, is summarized by the
following claim, which provides some mild metric regularity information and some basic
topological properties, which have useful consequences.

Theorem 1.1. Every constant-normal set in a Carnot group admits a representative that
is regularly open, is contractible, and admits a cone property.

By means of explicit examples, we will see that further regularity properties (which are
for example valid in filiform groups) may fail to hold in some Carnot groups. For example,
a constant-normal set is not necessarily a set of locally finite perimeter in the Euclidean
sense: we will illustrate this in the case of the free Carnot group of step 3 and rank 2, see
Section 6.1.
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A more precise (and stronger) version of Theorem 1.1 is given in Theorem 2.37. As
immediate consequences of it, we will obtain that every constant-normal set in a Carnot
group admits a representative whose topological boundary coincides with the measure-
theoretic boundary, with the De Giorgi’s reduced boundary, and with the support of its
perimeter measure, see Proposition 3.7. Moreover, we will deduce that the density ratio
(independently of the radius) at boundary points is pinched between constants that only
depend on the group, see Proposition 3.8.

Other consequences of Theorem 2.37 related to the rectifiability of sub-Riemannian
perimeter measures have been recently obtained in the two articles [LM20, DLMV19], which
go into different directions than the present paper. The aims of [LM20] are algebraic char-
acterizations of those groups in which the only constant-normal sets are half spaces and,
as a consequence, one deduces the rectifiability (in the sense of Franchi, Serapioni, and
Serra-Cassano) of finite-perimeter sets. While, in [DLMV19] the authors obtain in every
Carnot group a weaker form of rectifiability for finite-perimeter sets. We stress that in both
[DLMV19] and [LM20] the starting point of the analysis is provided by the cone property,
the semigroup characterisation, and the topological properties obtained in Theorem 2.37.

Working again in the free Carnot group of step 3 and rank 2, we will provide an example
of constant-normal set for which there exist boundary points at which the (intrinsic) lower
density is strictly smaller than the upper density: this implies in particular that the (sub-
Riemannian) tangent cone at such points is not unique, see Section 6.2. It is natural to ask
how large the set of such boundary points can be. We answer this question in Section 7 as
a consequence of the following result: in F23 (or, more generally, in any other Carnot group
of step at most 4) constant normal sets are intrinsically rectifiable in the sense of Franchi-
Serapioni-Serra–Cassano. Indeed, we show that we only have half-spaces as blowups at
almost every point with respect to the sub-Riemannian perimeter measure (so the density
is 1/2 at almost every point).

We now explain the terminology and present the results in more detail. Let G be a
Carnot group; we refer to [LD17] for an introduction to Carnot groups and their sub-
Riemannian geometry. We denote by V1 the first layer of its stratification and by δt the
group automorphism induced by the multiplication by t on V1, which is a dilation by t with
respect to the Carnot distance. Elements of V1 are seen as left-invariant vector fields.

Let E ⊆ G be measurable set and X a left-invariant vector field on G. We say that E is
X-monotone if

(1.2) X1E ≥ 0,

in the sense of distributions, see (2.5) and Remark 2.6. We say that E is precisely X-
monotone if

(1.3) E exp(tX) ⊆ E, ∀t > 0.

We say E is a constant-normal set (resp., precisely constant-normal set) if there exists a
closed half-space W in V1 such that for all X ∈W the set E is X-monotone (resp., precisely
X-monotone). Namely, after fixing a scalar product 〈·, ·〉 on V1, there is a unique X ∈ V1

such that 〈X,X〉 = 1 and

(1.4) W = {Y ∈ V1 : 〈Y,X〉 ≥ 0}.
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In this case, we say that X is the constant normal, resp. precisely constant normal of E.

We say that a subset C ⊂ G of a Carnot group G is a cone if it is non-empty and

(1.5) δt(C) = C, ∀t > 0.

If E ⊂ G is measurable and C ⊂ G is a cone, we say that E has the C-cone property if

(1.6) E · C ⊆ E.

While it is obvious that every precisely constant-normal set has constant normal (see
Remark 2.9), it is not immediate that every constant-normal set admits a representative
that has precisely constant normal (see Remark 2.32).

In order to explain Theorem 1.1 we describe the construction of the representative and
of the cone. We shall see the theorem as a consequence of the fact that precisely constant
sets normal have a cone property and then prove that every set with this cone property has
a representative as in Theorem 1.1.

The Carnot group G is equipped with a Carnot distance, i.e., a sub-Riemannian left-
invariant distance where the tangent subbundle is induced by the first layer of the stratifi-
cation. See [LD17] for the notion of stratification. Equipped with such a Carnot distance
and with any Haar measure, the Carnot group G becomes a doubling metric measure space.
Hence the Lebesgue-Besicovitch Differentiation Theorem holds. Consequently, to every
measurable set E we associate the Carnot-Lebesgue representative of E, that is, the set of
points of (intrinsic) density 1 for E.

If W is a closed half-space in V1, we consider the semigroup SW generated by exp(W ). It
is crucial that SW is a cone that is contractible and whose interior is not empty. This last
fact is a consequence of the Orbit Theorem since the set W Lie generates the Lie algebra.

The cone in the next result is the interior CW of the semigroup SW given by the W from
the definition of the constant normal. We do not need to change representative.

Theorem 1.7. Every precisely constant-normal set has the cone property with respect to
an open contractible cone.

Regarding the next result we recall that a set is regularly open if it equals the interior of
its closure.

Theorem 1.8. If a set has the cone property with respect to an open cone, then its Carnot-
Lebesgue representative is regularly open, contractible, and with contractible complement.

In order to prove Theorem 1.1, in Theorem 2.37 we shall prove that the Carnot-Lebesgue
representative of a set with constant normal W has the cone property with respect to the
closure of SW .

Theorem 1.7 has an important counterpart. In fact, every set that has the cone property
with respect to SW has precisely constant-normal. This observation let us construct pre-
cisely constant-normal sets (all of them) as union of arbitrary translations of the semigroup:
for every set Σ ⊂ G and for every family (Ep)p∈Σ of sets that have precisely constant-normal
given by the half-space W , we have that the set

E :=
⋃
p∈Σ

pEp
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has precisely constant-normal given by the half-space W ; see Proposition 2.29. For example,
one can take as Ep either of the sets CW , SW or their closures.

For the reason that the semigroup SW play such an important role in the theory of
constant normal sets, it becomes fundamental to understand its geometry. An unexpected
result is that the semigroup generated by an open (or closed) half-space W in the horizontal
space is not open nor closed in the whole group G, in general. And moreover, the subset
exp(W ) may all be contained in the topological boundary of the semigroup.

The simplest Carnot group where one sees these pathologies is the Carnot group whose
Lie algebra is free-nilpotent of rank 2 and step 3. We call such a Carnot group F23 and we
denote by X1 and X2 the generating horizontal left-invariant vector fields, which we can
make orthogonal by a suitable choice of scalar product. Being a free-nilpotent group, any
two horizontal left-invariant vector fields differ by a Carnot automorphism. Hence, there
is no loss of generality in studying only the sets that have constant normal X2. We can
completely characterize the semigroup S generated by

exp(W ) := {exp(aX1 + bX2) : a ∈ R, b ≥ 0}.

We shall see that exp(W ) is contained in the boundary of S. Also, inside the set S there
is no open subset that is an Euclidean cone in exponential coordinates. From this fact we
are able to construct examples of precisely constant normal sets that do not have locally
finite Riemannian perimeter, see Theorem 6.2. We also construct an example with different
(intrinsic) upper and lower density at some point; see Theorem 6.3. In view of [BSV07,
Example 2.2], these examples are also subRiemannian-perimeter minimizers, and thus show
that such a minimizing property does not rule out pathologies of the type described.

Acknowledgements. The authors are grateful to Sebastiano Don and Terhi Moisala for their
constructive feedback on previous versions of this paper. Part of this work was carried out
while the first-named author was member of the Institute for Advanced Study (Princeton)
in 2013 and 2019. Both authors gratefully acknowledge the excellent research environment
and hospitality.

2. Sets with constant normal, representatives, and cone properties

The general argument that we will pursue is to consider the semigroup S = SW generated
by an open (or closed) half-space W in the horizontal layer. The subset S will be neither
open nor closed, in general. However, the set S has nonempty interior and is a cone (see
Proposition 2.26 and Corollary 2.28). Consequently, we have that S and C := Int(S) are
almost regular cones (see Definition 2.1 and Lemma 2.27); in addition, we have that the
closure S̄ equals the closure C̄ and is regularly closed (see Definition 2.1).

We shall then consider a set E that has constant normal with respect to W . We first prove
that E has a Lebesgue representative that has the S-cone property (see Corollary 2.31).
Secondly, we prove that the Lebesgue representative of E with respect to the Carnot distance
is open and has the S̄-cone property (see Lemmas 2.34 and 2.35).
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2.1. Some topological notions. Here is some topological terminology that we will use.
We shall say that a subset has interior if its interior is not empty. Fixed a topological
space G, for example a Lie group, we shall denote by Cl(E) and Int(E) the closure and the
interior, respectively, of a subset E ⊆ G within the topological space G. We may also write
Ē for Cl(E).

Definition 2.1. Let C be a subset of a topological space G. The subset C is said to be
regularly open if C = Int(Cl(C)). It is said to be regularly closed if C = Cl(Int(C)). The
subset C is almost regular if

(2.2) C ⊆ Cl(Int(C));

equivalently, if Cl(C) = Cl(Int(C)). The terminology ‘almost regular’ is not standard.

Remark 2.3.a. If C is almost regular then its closure is regularly closed, while the opposite
is not true. Indeed, if C is almost regular then

C̄ = Cl(Int(C)) ⊆ Cl(Int(C̄)) ⊆ Cl(C̄) = C̄.

Vice versa, a counterexample is given by Q ∩ [0, 1] as subset of R.

2.3.b. If C is almost regular then also Int(C) is almost regular.

2.3.c. Every almost regular cone has interior. Indeed, if the interior of such a set would
be empty, then the almost-regular assumption would imply that the set is empty. However,
by definition cones are assumed nonempty.

2.2. Lebesgue representatives. Let G be a Lie group, not necessarily a Carnot group,
endowed with a left- and right-invariant Haar measure vol, which is fixed along the conver-
sation. Given a distance ρ on G inducing the topology and a measurable set E ⊆ G, we
denote by Ẽρ the Lebesgue ρ-representative of E with respect to ρ (and vol). Namely,

(2.4) x ∈ Ẽρ ⇔ lim
r→0+

vol(Bρ(x, r) ∩ E)

vol(Bρ(x, r))
= 1,

where Bρ(x, r) := {y ∈ G | ρ(x, y) < r}. We stress that, even in Euclidean spaces, the set

Ẽ is generally neither open nor is closed.

When the distance ρ is sub-Riemannian, then the metric measure space (G, ρ, vol) is
locally doubling. Every time such a space is locally doubling, the Lebesgue-Besicovitch
Differentiation Theorem holds and in particular the sets Ẽρ and E agree up to a vol-
negligible set. Namely, we have that Ẽρ is a representative of E, where we shall say that
E′ is a representative of E if vol(E \ E′) = vol(E′ \ E) = 0

2.3. Monotone directions. In this subsection we discuss equivalent definition of mono-
tone directions and show that if E is X-monotone, then there is a representative of E that
is precisely X-monotone. In the discussion, we fix a Lie group G and a left-invariant vector
field X on G.

Recall that a distribution T on C∞c (G) is said to be non-negative, and we write T ≥ 0, if
for all test functions u such that u ≥ 0 we have Tu ≥ 0. In particular, we say that, in the
sense of distributions, X1E ≥ 0 if for all u ∈ C∞c (G) with u ≥ 0, one has that

(2.5) 〈X1E , u〉 := −
∫
Ẽ
Xu dvol ≥ 0.
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Remark 2.6. It is a general fact that non-negative distributions are Radon measures, see
[EG15, Theorem 1.39]. Here is the short argument with our notation. For T ≥ 0 on G
and K ⊂ G compact, fix a function UK ∈ C∞c (G) such that UK = 1 on K and UK ≥ 0.
Let u ∈ C∞c (G) with spt(u) ⊂ K and C := ‖u‖L∞ . Then −CUK ≤ u ≤ CUK , in other
words CUK − u and u + CUK are non-negative functions in C∞c (G): by the assumptions
T (CUK − u) ≥ 0 and T (u + CUK) ≥ 0 and the linearity of T gives CT (UK) ≥ T (u) and
T (u) ≥ −CT (UK). These inequalities yield a constant AK = T (UK) ≥ 0 (depending only
on K) such that |T (u)| ≤ AK‖u‖L∞ . The distribution T extends therefore to a bounded
linear functional on C0

c (G) and it is represented by a non-negative Radon measure by Riesz’
theorem (the non-negativity is preserved in the extension).

With next result we give equivalent characterizations of the property that a set E ⊆ G
is X-monotone. It is important to recall that in every Lie group G the flow Φt

X at time t
with respect to a left-invariant vector field X is the right translation:

(2.7) Φt
X(p) = p exp(tX), ∀t ∈ R, ∀p ∈ G.

Initially, to better work with such right translations, we shall consider Lebesgue represen-
tative for some right-invariant distance. In the next result, as an example of right-invariant
doubling distance ρ one may consider any right-invariant Riemannian distance.

Proposition 2.8. Let E ⊆ G be a measurable set of a Lie group G, X a left-invariant vector
field on G, and ρ a right-invariant doubling distance for vol. The following are equivalent:

(2.8.0) in the sense of distributions, X1E is a Radon measure and X1E ≥ 0;
(2.8.1) in the sense of distributions,

X1E ≥ 0;

(2.8.2) for all t > 0 we have that

1E exp(tX) ≤ 1E , almost everywhere;

(2.8.3) the representative Ẽρ, as defined in (2.4), satisfies the set inclusion

Ẽρ exp(tX) ⊆ Ẽρ, ∀t > 0;

(2.8.4) there exists a representative E′ of E that satisfies the set inclusion

E′ exp(tX) ⊆ E′, ∀t > 0.

Proof. Obviously (2.8.0) =⇒ (2.8.1). The fact that (2.8.1) =⇒ (2.8.0) is shown in
Remark 2.6.

The implications (2.8.1) =⇒ (2.8.2) =⇒ (2.8.3) are in the previous work [BL13,

Lemma 2.7 and Lemma 2.8]. The implication (2.8.3) =⇒ (2.8.4) is obvious since Ẽρ is a
representative of E.

We are left to prove that (2.8.4) =⇒ (2.8.1). Since E = E′ a.e., then as distributions
X1E = X1E′ . To show that X1E′ ≥ 0, we perform the following calculation, for every
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smooth function u with compact support and u ≥ 0:

〈X1E′ , u〉 = −
∫
E′
Xu dvol

= −
∫
E′

lim
t→0

u(p exp(tX))− u(p)

t
dvol(p)

= − lim
t→0

1

t

(∫
E′
u(p exp(tX)) dvol(p)−

∫
E′
u(p) dvol(p)

)
= − lim

t→0

1

t

(∫
E′ exp(tX)

u(p) dvol(p)−
∫
E′
u(p) dvol(p)

)

= − lim
t→0

1

t

(
−
∫
E′\E′ exp(tX)

u(p) dvol(p)

)
≥ 0,

where the limit and the integral could be swapped by the Dominated Convergence Theorem,
since u(p exp(tX)) is smooth both in p and in t, and has compact support. �

Remark 2.9. To justify the previous proposition, we stress that the implication (2.8.4)
=⇒ (2.8.1) rephrases with the statement that every precisely constant-normal set has
constant normal. Regarding the opposite implication we refer to Remark 2.32 below.

2.4. Cone property. We next assume that G is a Carnot group. In the introduction we
defined the notion of cones in G in (1.5). We stress that there are no a priori assumptions
on openness or closure of cones, nor do we assume that the identity is or is not in the cone.

We rephrase condition (1.6) from the introduction saying that a set E ⊂ G has the C-cone
property, or better the inner C-cone property, if

(2.10) p ∈ E =⇒ p · C ⊆ E.

In the setting of Carnot groups, recently two cone properties have been introduced. In fact,
in [DLMV19] the following terminology is used. A set Γ ⊆ G satisfies the outer C-cone
property if

(2.11) Γ ∩ ΓC = ∅.

This property is in similarity with the inner cone property (2.10), which says E∩EC = EC.
The outer cone property is satisfied by the topological boundary Γ = ∂E whenever E
satisfies the the inner cone property with respect to an open cone. In this last paper we
should consider only the (inner) cone property (2.10).

Remark 2.12. If E has the C-cone property, then Ec := G \E has the C−1-cone property.
Indeed, by contradiction, assume that there exists p ∈ Ec such that it is not true that pC−1

is in Ec. Namely, there exists q ∈ pC−1 ∩ E. Therefore, q−1p ∈ C and so

p = qq−1p ∈ qC ⊆ E,

where at the end we used that E has the C-cone property. We reached a contradiction with
p ∈ Ec.
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Remark 2.13. The interior of a cone is a cone, unless it is empty. In particular, every
cone with interior contains an open cone. Consequently, if a a set has the cone property
with respect to a cone with interior, then it also has the cone property with respect to an
open cone.

Proposition 2.14. If a set E ⊆ G has the C-cone property with Int(C) 6= ∅, then E is
contractible.

Proof. Up to left translating, we assume 1G ∈ E. Fix an auxiliary right-invariant Carnot
distance ρ. Since C has interior, up to dilating we assume that for some q0 ∈ E we have
that the closed unit ball at q0 satisfies

(2.15) B̄ρ(q0, 1) ⊆ C.
We shall consider the following retraction: φ : G× [0, 2]→ G defined as for (g, t) ∈ G× [0, 1]

φ(g, t) := gδt(g
−1δ|g|(q0)),

where |g| := ρ(1G, g), and for (g, t) ∈ G× [1, 2]

φ(g, t) := δ2−t(δ|g|(q0)).

We observe that φ is continuous, since for t = 1

gδ1(g−1δ|g|(q0)) = δ|g|(q0) = δ2−1(δ|g|(q0)),

because δ1 is the identity map.

The map φ is a retraction. Indeed, since δ0 is the map that is constantly equal to 1G, we
have that at t = 0 the map φ is the identity on G and at t = 2 it is constantly equal to 1G.

We check now that if g ∈ E, then φ(g, t) ∈ E for all t ∈ [0, 2]. Assume first that t ∈ [0, 1].
We claim that

(2.16) φ(g, t) ∈ gC ⊆ E, for t ∈ [0, 1],

where the last containment holds since E has the C-cone property. Regarding the inclusion
(2.16), proving that gδt(g

−1δ|g|(q0)) ∈ gC is equivalent to

(2.17) δ|g|−1(g−1δ|g|(q0)) ∈ C,
where we have used that C is a cone. We shall show this last inclusion using (2.15). Indeed,
using right-invariance we have

ρ(q0, δ|g|−1(g−1δ|g|(q0))) = ρ(q0, δ|g|−1(g−1)q0)

= ρ(1G, δ|g|−1(g−1))

= |g|−1ρ(1G, g
−1) = |g|−1ρ(g, 1G) = 1.

Hence (2.16) and (2.17) are proved.

Assume then t ∈ [1, 2]. Since C is a cone and q0 ∈ E, we immediately have that

φ(g, t) = δ2−t(δ|g|(q0)) ∈ C ⊆ E,
where at the end we used that 1G ∈ E.

Hence, the map φ is a (continuous) retraction of E onto 1G. �
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Most probably, one may improve the above result and show that the interior of such a set
is homeomorphic to an open ball. We do not go in this direction. However, we suggest to use
a criterion by Stallings [Sta62]: a contractible open subset of Rn that is simply connected
at infinity is homeomorphic to Rn. Recall that X ‘simply connected at infinity’ means that
for each compact K of X there is a larger compact L such that the induced map on π1 from
X \ L to X \K is trivial.

We will not make use of the next remark, which can be used to directly prove that sets
with precisely constant normal sets are connected. The reason is that in Theorem 2.37 we
shall prove more: they are contractible.

Remark 2.18. If C is an open cone and K ⊆ G is a bounded set, then ∩g∈KgC 6= ∅.
Here is the simple proof. Fix p ∈ C. Since C is open, the set p−1C is a neighborhood
of the identity element of G. Since K is a bounded set, for every fixed Carnot distance
ρ there exists R > 0 such that for all g ∈ K we have ρ(1, g) < R < 0. Choose ε > 0
such that δεBρ(1, R) ⊆ C−1p. Consequently, for every g ∈ K we have δεg ∈ C−1p, which
implies p ∈ (δεg)C. We deduce that the point δ 1

ε
p is in δ 1

ε
((δεg)C) = gδ 1

ε
C = gC, the latter

equality uses that C is a cone. Therefore, we infer that δ 1
ε
p ∈ gC for every g ∈ K.

2.5. Semigroups. In the paper, we use the standard terminology and say that a subset of
a group is a semigroup (a better term is semisubgroup) if it is closed under multiplication.
It is evident that every subset is contained in a semigroup with the property of being the
smallest semigroup containing the set.

We next provide some basic results about semigroups in Carnot groups.

Remark 2.19. Both the closure and the interior of a semigroup in a topological group are
semigroups. Indeed, if S is a semigroup and pn, qn ∈ S are sequences such that pn → p,
qn → q then pnqn is a sequence in S such that pnqn → pq. So Cl(S) is a semigroup. If
instead we take p, q ∈ Int(S) then there exists U open set with q ∈ U ⊆ S. Therefore, the
set pU is a neighborhood of q and is contained in S. So Int(S) is a semigroup

Remark 2.20. If S is a semigroup, then we trivially have

(2.21) p ∈ S =⇒ p · S ⊆ S.
This implies that, if in addition S is a cone, then S has the S-cone property.

Along this section, we shall say that a set is a conical semigroup if it is a semigroup and
a cone. From Proposition 2.14 we know that if S is a conical semigroup with interior, then
it is contractible. Next lemma says that for semigroups the statement is true regardless of
having interior.

Lemma 2.22. In Carnot groups every conical semigroup is contractible.

Proof. Let p, q ∈ S. The curve t 7→ δtq for t ∈ (0, 1] extends by continuity at t = 0 with
value the identity of the group. Moreover, since S is a cone, every point δtq for t > 0 lies
in S. Consider the curve t 7→ p(δtq), which maps into S by the semigroup property, since
p ∈ S and δtq ∈ S. This curve, extended by continuity at t = 0, is continuous and maps to
p for t = 0 and to pq for t = 1. Reversing the roles of p and q we obtain a curve t 7→ (δtp)q
(extended by continuity at t = 0) that lies in S and connects q to pq. Composing the first
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curve with the reverse of the second, we obtain a curve from p to q. Such a curve from p to
q depends continuously on q. Hence, we defined a contraction of S onto p. �

Let W be a family of left-invariant vector fields on a Lie group G. We denote by SW the
semigroup generated by exp(W ). With abuse of terminology, we shall say that SW is the
semigroup generated by W . The set SW can be described as

(2.23) SW :=
∞⋃
k=1

(exp(W ))k,

where

(2.24) (exp(W ))k := {Πk
i=1 exp(wi) | w1, . . . , wk ∈W}.

We stress that it may happen (see for example Section 5.1) that SW 6= (exp(W ))k, for each
integer k.

We will prove the following results in a larger generality. However, our main interest is
when W is what we shall call a horizontal half-space in a Carnot group, that is, after fixing
a scalar product on the first stratum V1 and given X ∈ V1, we consider W = WX to be the
set of vectors in V1 with nonnegative scalar product with X, i.e., (1.4).

Remark 2.25. We observe that if W is a subspace of the Lie algebra of a Carnot group
and is invariant with respect to positive dilations, i.e., δλ(W ) = W , for all λ > 0, as
for example is the case of half-spaces in V1, then the semigroup SW is a cone. Indeed,
since each δλ is a group homomorphism, if Πk

i=1 exp(wi) is an arbitrary point of SW , then
δλ(Πk

i=1 exp(wi)) = Πk
i=1 exp(δλ(wi)) is also a point of SW .

The fact that semigroups generated by sets that are Lie bracket generating have interior
is standard in geometric control theory, where such semigroups are called attainable sets.
We refer the reader to [AS04, Chapter 8, Theorem 8.1 and Proposition 8.5]. However, since
the proof is short, we include a self contained one without claiming any originality. In the
next statements, we shall denote by R+ the set of positive real numbers: R+ := (0,+∞).

Proposition 2.26. Let G be a Lie group and W be a subset of its Lie algebra Lie(G)
such that R+W = W . If there is no proper subalgebra of Lie(G) containing W , then the
semigroup SW has interior.

Proof. Denote by ∆ the left-invariant subbundle such that ∆1G = span(W ). Hence, the
assumption on W rephrases as the fact that ∆ is completely nonholonomic.

Take X1 ∈ W . Then M1 := exp(R+X1) is a 1-manifold contained in SW . Unless G has
dimension 1, there exists p ∈ M1 such that ∆p * TpM1. Since TpM1 is a vector space, we
get that (dLp)(W ) * TpM1. Hence there exists X2 ∈ W such that (dLp)(X2) /∈ TpM1. We
deduce that the map

(t1, t2) ∈ R+ × R+ 7→ exp(t1X1) exp(t2X2)

range inside SW and it is an immersion near some point (t̄1, t̄2). We have constructed a
2-manifold M2 in SW .

By induction, assume we have a k-manifold Mk in SW . If dimG = k, then Mk is an open
set of G. and we are done. If dimG < k, then Mk is a proper submanifold and since ∆ is
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completely not holonomic, we find a vector X3 ∈ W such that its associated left invariant
vector field is transverse to Mk. Analogously as above, flowing from Mk with respect to X3

at positive times we get a subset of SW that contains a (k+1)-manifolds. By induction, we
conclude. �

Lemma 2.27. If S ⊆ G is a conical semigroup with interior in a Carnot group G, then S
is almost regular.

Proof. Fix p ∈ Int(S). Take an arbitrary c ∈ S. Since S is a cone, each point δtp is in
Int(S), for all t > 0. Thus, since S is a semigroup, each point cδtp is in Int(S), for all t > 0.
Since cδtp→ c as t→ 0, then c ∈ Cl(Int(S)). �

With what just observed in Remark 2.25, Proposition 2.26, and Lemma 2.27, we imme-
diately deduce the following result.

Corollary 2.28. Let G be a Carnot group. Let SW be the semigroup generated by a hori-
zontal half-space W . Then SW is a cone with interior and it is almost regular.

The link between the semigroups that we are considering and the theory of constant
normal sets is given in the following results. The first one is immediate and relates the
precise monotonicity with the cone property with respect to the generated semigroup.

Proposition 2.29. In a Carnot group G, let W ⊆ Lie(G) be such that R+W = W . A set
E ⊆ G has the SW -cone property if and only if E is precisely X-monotone, for all X ∈W.

In particular, we have the following consequences:

a) The set SW is precisely X-monotone, for all X ∈W ;
b) If A is an arbitrary set and (Eα)α∈A is a family of sets that are precisely X-

monotone, for all X ∈ W , then E :=
⋃
αEα is precisely X-monotone, for all

X ∈W ;
c) Every set E that is precisely X-monotone, for all X ∈W , satisfies

E =
⋃
p∈E

pSW ,

if either E is open or if 1G ∈ SW .

Recall that in our convention R+ does not contain 0 so the set W may not contain 0;
hence, the identity element 1G may not be in the semigroup SW .

Proof of Proposition 2.29 and its consequences. Since Πk
i=1 exp(wi) is an arbitrary point in

SW , for some k ∈ N, and w1, . . . , wk ∈ W, it is enough to observe that E · SW ⊆ E if and
only if E exp(w) ⊆ E for all w ∈ W . Since R+W = W , we also have that E exp(X) ⊆ E if
and only if E exp(tX) ⊆ E, for all t > 0, which is the definition of precisely X-monotone.

Regarding the consequence a), just recall Corollary 2.28 and Remark 2.20. Regarding b),
Eα · SW ⊆ Eα for all α then taking unions we get (

⋃
αEα) · SW =

⋃
α(Eα · SW ) ⊆

⋃
αEα.

Finally, c) is trivial since if 1G ∈ SW then E ⊆
⋃
p∈E pSW ⊆ E. The case E open is

similar. �
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Proposition 2.30. Let G be a Carnot group, E ⊆ G measurable, and W ⊆ Lie(G) a subset
such that R+W = W . If for all X ∈ W the set E is X-monotone, then there exists a
representative Ẽ of E such that Ẽ has the SW -cone property (one may take the one in (2.4)
with respect to any right-invariant doubling distance ρ);

Proof. Assume X1E ≥ 0 for all X ∈W and take Πk
i=1 exp(wi) an arbitrary point in SW , for

some k ∈ N, and w1, . . . , wk ∈ W. Then Proposition 2.8 implies Ẽρ exp(w1) · · · exp(wk) ⊆
Ẽρ, which is the SW -cone property. �

We rephrase the previous result in case W is a horizontal half-space.

Corollary 2.31. Let G be a Carnot group and E ⊂ G a measurable set. Fix a scalar
product on the first stratum V1 of the Lie algebra of G. Given X ∈ V1, set W = WX to be
the orthogonal space to X in V1. Let SW be the semigroup generated by W . The following
are equivalent:

(1) E has constant normal equal to X,

(2) E has a representative Ẽ such that Ẽ · SW ⊆ Ẽ.

Remark 2.32. As a consequence of Corollary 2.31 and Proposition 2.29, we have that if a
set has constant normal, then it is has a representative that has precisely constant normal.
One such representative is obtained when in (2.4) one takes any right-invariant doubling
distance ρ.

2.6. Topological consequences of the cone property. In the following, for a set E in
a Carnot group G, we say that its Carnot-Lebesgue representative is the set given by (2.4)
where one chooses as ρ a Carnot (left-invariant) distance. Namely, the Carnot-Lebesgue
representative of E is the set

(2.33) Ẽ = ẼCarnot :=

{
x ∈ G : lim

r→0+

vol(Bρ(x, r) ∩ E)

vol(Bρ(x, r))
= 1

}
.

Lemma 2.34. If a set E has the C-cone property with respect to an open cone C, then its
Carnot-Lebesgue representative Ẽ is open and has the C-cone property.

Proof. We shall show that for each point p /∈ Int(Ẽ) the density of E at p is not 1 and

so p /∈ Ẽ. We first claim that E ∩ pC−1 is empty. Indeed, by contradiction, suppose
that q ∈ E ∩ pC−1. On the one hand, since q ∈ E and E has the C-cone property, then
qC ⊆ E. On the other hand, since q ∈ pC−1, then p ∈ qC ⊆ E. This implies that p is in an
open set contained in E. Thus p ∈ Int(E), which is a contradiction with p /∈ Int(Ẽ) since

Int(E) ⊂ Int(Ẽ). We deduce that E ∩ pC−1 is empty.

As a consequence we claim that the density of E at p with respect to the Carnot distance
ρ is strictly less that 1. Indeed, using left invariance and homogeneity, we have

vol(Bρ(p, r) ∩ E)

vol(Bρ(p, r))
=

vol(Bρ(p, r) ∩ E ∩ pC−1) + vol(Bρ(p, r) ∩ E ∩ (pC−1)c)

vol(Bρ(p, r))

≤ vol(Bρ(p, r) ∩ (pC−1)c)

vol(Bρ(p, r))
=

vol(Bρ(1G, 1) ∩ (C−1)c)

vol(Bρ(1G, 1))
= 1− vol(Bρ(1G, 1) ∩ C−1)

vol(Bρ(1G, 1))
< 1,
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where in the last inequality we used that C−1 has non-empty interior. We showed that at
every point p /∈ Int(Ẽ) the density of E is strictly less that 1. Therefore the set Ẽ is open.

Regarding the C-cone property of Ẽ, for p ∈ Ẽ let pj → p, pj ∈ E (such a sequence
exists since the density of E at p is 1). Because of the C-cone property of E, we get that
pjC ⊂ E. Consequently, since pjC is open and therefore in this set the density of E is 1,

we have pjC ⊂ Ẽ. Therefore ∪j∈NpjC ⊂ Ẽ; note moreover that ∪j∈NpjC ⊃ pC because pC

is open. These two inclusions show the cone property of Ẽ with respect to C. �

For the next result recall that a distance on a topological space is called admissible if
it gives the given topology. In particular, we can take Riemannian or sub-Riemannian
distances on our Carnot group, without assuming a particular invariance. The key property
is that for the Lebesgue representative Ẽ of a set E with respect to any such a distance,
one has Int(E) ⊆ Ẽ.

Lemma 2.35. Let C ⊆ G be a cone in a Carnot group G and E ⊆ G a set with the C-cone
property. Let Ẽ be a Lebesgue representative of E with respect to some admissible distance.
If Ẽ is open and C is almost regular, then Ẽ has the C̄-cone property.

Proof. Fix p ∈ Ẽ and c̄ ∈ C̄. We want to show that pc̄ ∈ Int(E). Since C is almost

regular, there exists a sequence cj ∈ Int(C) converging to c. Since Ẽ is open there exists

an open neighborhood U of p contained in Ẽ. Since Ẽ is a Lebesgue representative of E,
then necessarily E ∩ U is dense in U .

Notice that since cj → c̄ then pc̄c−1
j → p. Hence, since U is a neighborhood of p, we have

that for j large enough pc̄c−1
j is in U ; equivalently, we have that Ucj is a neighborhood of

pc̄. Fix one such j and take an open neighborhood V of cj such that V ⊆ C and UV is a
neighborhood of pc̄.

We now focus on the set UV , which we claim to be equal to (U ∩ E)V . Regarding the
nontrivial containment of this equivalence, take uv with u ∈ U and v ∈ V. Since V is open
and U ∩E is dense in U there exists u′ ∈ U ∩E close to u such that (u′)−1uv ∈ V . Thus for
some v′ ∈ V , we have uv = u′v′ ∈ UV . Hence, the equivalence UV = (U ∩ E)V is proved.

Since E has the C-cone property and V ⊆ C, we that that

UV = (U ∩ E)V ⊆ E.
We infer that UV is an open set containing pc̄ that is contained in E. Therefore pc̄ ∈ Int(E).

Consequently, we come to the conclusion that pc̄ ∈ Ẽ. �

Lemma 2.36. Let C ⊆ G be a cone in a Carnot group G and E ⊆ G a set with the C-cone
property. If E and C are open, then E is regularly open.

Proof. Since E is open we have E ⊆ Int(Cl(E)). To prove the opposite inclusion, take
p ∈ Int(Cl(E)). Then there exists an neighborhood U of p such that U ⊂ Cl(E). Since C is
open, so is C−1, and since E is dense in U , we can take q ∈ U ∩ pC−1 ∩ E. By the C-cone
property we conclude that

p ∈ qC ⊂ E.
Therefore, we get E = Int(Cl(E)). �
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2.7. Proofs of Theorems 1.1, 1.7, and 1.8. Here we complete the proofs of Theo-
rems 1.7, 1.8, and 1.1, respectively.

Proof of Theorem 1.7. We claim that the proof follows from Proposition 2.29. Indeed, if
E is a precisely constant-normal set with respect to some closed half-space W ⊂ V1, then
Proposition 2.29 implies that E has the cone property with respect to the semigroup SW
generated by W . From Corollary 2.28 we have that SW is a cone with interior. In Re-
marks 2.13 and 2.19, we observed that interior of a conical semigroup with interior is an
open conical semigroup. Obviously we also have that E has the cone property with respect
to the interior Int(SW ). Being Int(SW ) a conical semigroup, from Lemma 2.22 we have that
it is contractible. �

Proof of Theorem 1.8. By Lemma 2.34 we have that if a set E has the cone property with
respect to an open cone C, then its Carnot-Lebesgue representative Ẽ is open and has
the C-cone property. From Lemma 2.36 we have that Ẽ is regularly open, since Ẽ and
C are open. In Remark 2.12 we noticed that consequently we have that the complement
Ẽc of Ẽ has the cone property with respect to C−1, which is also an open cone. From
Proposition 2.14 we infer that both Ẽ and Ẽc are contractible. �

We shall next prove a stronger version of Theorem 1.1.

Theorem 2.37. Let E be a subset in a Carnot group that has constant normal with respect
to a horizontal half-space W . Let SW be the semigroup generated by W , which is a conical
semigroup with interior. Then the Carnot-Lebesgue representative of E has the Cl(SW )-cone
property, is regularly open, is contractible, and its complement is contractible.

Proof of Theorem 2.37 and hence of Theorem 1.1. In this proof we shall consider two rep-
resentatives of the given set E. When applying Proposition 2.30 we shall take a represen-
tative Ẽright of E obtained when in (2.4) one takes any right-invariant doubling distance ρ;

successively, we shall consider the Carnot-Lebesgue representative ẼCarnot as in (2.33).

From Remark 2.32 (see also Proposition 2.30 and Corollary 2.31) we have that, since

E has constant normal, then Ẽright has the cone property with respect to the semigroup
SW generated by some half-space W ⊂ V1. Let CW := Int(SW ). From Corollary 2.28, and
Remarks 2.13 and 2.19, recall that we have that both SW and CW are conical semigroups and
they have interior, that is CW 6= ∅. From Lemma 2.34 we deduce that, since Ẽright has the
cone property with respect to the open cone CW , then the Carnot-Lebesgue representative
ẼCarnot is open and has the CW -cone property. In Lemma 2.27, we proved that both SW
and CW are almost regular. We claim that ẼCarnot has the cone property with respect to
the closure of SW . Indeed, from Lemma 2.35 we have that ẼCarnot has the cone property
with respect to the closure of CW . Since SW is almost regular, then

Cl(SW ) = Cl(Int(SW )) = Cl(CW ).

Then ẼCarnot has the Cl(SW )-cone property. Applying Theorem 1.8 with the fact that

ẼCarnot has the CW -cone property, we get the rest of the claimed properties. �
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3. Consequences on density and boundaries

Let G be a Carnot group with a fixed Haar measure vol and a fixed Carnot distance ρ.
As it is standard in Geometry Measure Theory, given a measurable set E ⊆ G we define
the lower density and upper density of E at x, respectively as
(3.1)

Θ∗(x,E) := lim inf
r→0+

vol(Bρ(x, r) ∩ E)

vol(Bρ(x, r))
and Θ∗(x,E) := lim sup

r→0+

vol(Bρ(x, r) ∩ E)

vol(Bρ(x, r))
.

If E ⊆ G, as it is usual in the literature, in Section 3.1 we define the measure theoretic
boundary ∂mtE, also called essential boundary, and the De Giorgi’s reduced boundary ∂DGE,
also denoted by FE.

The aim of this section is to show that if E is the Carnot-Lebesgue representative of a
constant normal set, then the are global density estimates (see Proposition 3.8) and these
boundaries coincide with the topological boundary (see Proposition 3.7).

3.1. Various kinds of boundaries.

Definition 3.2 (∂mtE). The measure theoretic boundary of E is the set of points where the
volume density of E is neither 0 nor 1. Namely,

∂mtE := {x ∈ G : Θ∗(x,E) 6= 1 or Θ∗(x,E) 6= 0}.

In what follows, given a measurable subsets E of a Carnot group G, we denote by 1E
its characteristic function, which is in the space L1

loc(G) of locally integrable functions. We
denote by M(G) the space of Radon real-valued measures on G.

Definition 3.3 (Sets of locally finite perimeter). A Borel subsets E ⊂ G of a Carnot group
G has locally finite perimeter if X1E ∈ M(G) is a Radon measure for any X ∈ V1. Fixing
a basis X1, . . . , Xm of V1 we can define the Rm-valued Radon measure

(3.4) D1E := (X11E , . . . , Xm1E).

We call the total variation1 |D1E | of D1E the perimeter measure of E.

Definition 3.5 (∂DGE). Let E ⊆ G be a set of locally finite perimeter of a Carnot group G.
We define the De Giorgi’s reduced boundary ∂DGE of E as the set of points x ∈ supp |D1E |
where:

(i) the limit νE(x) = (νE,1(x), . . . , νE,m(x)) := lim
r↓0

D1E(Br(x))

|D1E |(Br(x))
exists;

(ii) |νE(x)| = 1.

1Recall that the total variation |µ| of an Rm-valued measure µ = (µ1, . . . , µm) with µi ∈ M(G) is the
smallest nonnegative measure ν defined on Borel sets of G such that ν(B) ≥ |µ(B)| for all bounded Borel
set B; it can be explicitly defined by

|µ|(B) := sup

{
∞∑
i=1

|µ(Bi)| : (Bi) Borel partition of B, Bi bounded

}
.
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Remark 3.6. If E ⊂ G is a constant-normal set with normal X, then D1E(Br(x))
|D1E |(Br(x)) is equal to

X for every x ∈ supp |D1E | and for every r. In particular we have, for every x ∈ supp |D1E |,
that νE exists (equal to X) and |νE(x)| = 1.

Proposition 3.7. Let E ⊂ G be measurable subset of a Carnot group G.

(1) we have ∂mtE ⊂ ∂E and ∂DGE ⊂ ∂E.
(2) If E has the C-cone property with Int(C) 6= ∅, then ∂E = ∂mtE.
(3) If E is the Carnot-Lebesgue representative (as in (2.33)) of a constant normal set,

then ∂E = ∂DGE = ∂mtE = supp |D1E |.

Proof. Part 1 is straightforward. Regarding part 2, the C-cone property immediately gives
the missing inclusion ∂E ⊂ ∂mtE.

To prove part 3, we recall that by Theorem 2.37 this representative has a cone property,
hence by part 2 we have ∂E = ∂mtE. Regarding De Giorgi’s reduced boundary, recall that
(Definition 3.5) for an arbitrary set E we have ∂DGE ⊆ supp |D1E |. For sets of constant
normal, the reverse inclusion is given by Remark 3.6. Hence ∂DGE = supp |D1E |. Together
with parts 1 and 2 this gives supp |D1E | = ∂DGE ⊂ ∂E = ∂mtE. For the reverse inclusion
let x ∈ ∂mtE, then in any neighbourhood U of x both E ∩ U and U \ E have positive
measure. This implies that E must have positive perimeter in U . The arbitrariness of U
gives x ∈ supp |D1E |, so supp |D1E | ⊃ ∂mtE and part 3 is proved. �

3.2. Global density estimates. In this subsection we deduce density estimates that are
know to hold for locally for sets of finite perimeter. In fact, we get global estimates, i.e.,
for all radii, for constant-normal sets.

Proposition 3.8. If a subset E ⊂ G of a Carnot group G has C-cone property with Int(C) 6=
∅, then there is a constant 0 < lC ≤ 1/2 such that for all x ∈ ∂E we have

lC vol(Bρ(x, r)) ≤ vol(Bρ(x, r) ∩ E) ≤ (1− lC) vol(Bρ(x, r)) ∀r ∈ (0,∞).

In particular, for all x ∈ ∂mtE the density is pinched, in the sense that

0 < lC ≤ Θ∗(x,E) ≤ Θ∗(x,E) ≤ (1− lC) < 1.

Moreover, if E ⊂ G has constant normal, then lC can be chosen to depend only on G.

Proof. Regarding the existence of lC , consider the following quotients and use the fact that
if x ∈ E then xC ⊆ E and get

vol(Bρ(x, r) ∩ E)

vol(Bρ(x, r))
≥ vol(Bρ(x, r) ∩ xC)

vol(Bρ(x, r))
=

vol(Bρ(1G, r) ∩ C)

vol(Bρ(1G, r))
=

vol(Bρ(1G, 1) ∩ C)

vol(Bρ(1G, 1))
=: lC ,

where we used left invariance and that C is a cone. Since C has interior we get lC > 0.
The existence of the upper bound is analogue thanks to Remark 2.12. The consequence
about the pinched densities is immediate from the definition of densities. Regarding the
last statement, it is enough to show that

(3.9) 0 < inf{lSW : W ⊂ V1 horizontal half-space}.
To prove this claim we shall use the notion of free Carnot groups, see [VSCC92, p. 45] or
[Var84, p. 174]. If the Carnot group G has rank m and step s then there is a surjective
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Carnot morphism π : F → G between the free Carnot group F = Fm,s of rank m and step
s onto G. Moreover, we equip F with a Carnot distance that makes π a submetry: for all
p ∈ F and all r > 0, we have

(3.10) π(BF(p, r)) = BG(p, r) := Bρ(p, r).

Since F is a free Carnot group, then the action of GL(V F
1 ) on the first layer V F

1 of F
extends to an action by Carnot morphisms of F. Moreover, fixing coordinates on V F

1 so
that it becomes isometric to Rm, the orthogonal group O(m) acts by isometries of F and
acts transitively on the space of horizontal half-spaces. Namely, fixed a horizontal half-
space W0, we have that for every horizontal half-space W there exists A ∈ O(m) such that
A(W0) = W and therefore A(SF

W0
) = SF

W , where the latter ones are semigroups generated
in F. Therefore, we get

lSW vol(BG(1G, 1)) = vol(BG(1G, 1) ∩ SW )

= vol(π(BF(1F, 1)) ∩ π(SF
W ))

≥ vol(π(BF(1F, 1) ∩ SF
W ))

= vol(π(BF(1F, 1) ∩A(SF
W0

))),

where in the second equality we used (3.10) and that π(SF
W ) = SW , by identifying via π the

horizontal spaces. On the one hand, the quantity vol(π(BF(1F, 1)∩A(SF
W0

))) when A varies
in the compact set O(m) must have a minimum. On the other hand, this minimum, say
realized by some A′, cannot be zero since the horizontal half-space W ′ := A′(W0) generates
a semigroup with interior; say there is a ball B(p, r) ⊆ BF(1F, 1)∩SF

W ′ , for some p ∈ F and
r > 0. Therefore, we get

vol(π(BF(1F, 1) ∩A′(SF
W0

))) = vol(π(BF(1F, 1) ∩ SF
W ′))

≥ vol(π(BF(p, r)))

= vol(BG(π(p), r)) > 0.

In conclusion, we proved (3.9).

Regarding the upper bound with the term (1− lc), we pass to the complement of E and
refer to Remark 2.12. �

Proposition 3.11. For every Carnot group G there exist positive constants kG,KG such
that if E ⊂ G is a constant normal set, then for all x ∈ ∂mtE we have

kG
vol(Bρ(x, r))

r
≤ |D1E |(Bρ(x, r)) ≤ KG

vol(Bρ(x, r))

r
, ∀r ∈ (0,∞).

Proof. The Poincaré inequality is true in Carnot groups, so [Amb01, Remark 3.4] and
Proposition 3.8 give (here Q denotes the Hausdorff dimension of G)

|D1E |(Bρ(x, r)) ≥ CG min
{

(vol(E ∩Bρ(x, r)))
Q−1
Q , (vol(E ∩Bρ(x, r)))

Q−1
Q

}
≥ CGl

Q−1
Q

C rQ−1

for every r > 0 and for all x ∈ ∂mtE.

For the upper bound, we note that we can repeat the proof of [FSS03, Lemma 2.31] with
r0 =∞ and for x arbitrary in ∂mtE. Indeed, the choice of r0 in [FSS03] is needed to ensure
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[FSS03, (2.32)]; in our case, Remark 3.6 guarantees [FSS03, (2.32)] for all r and for all
x ∈ ∂mtE (more precisely, it gives that [FSS03, (2.32)] is an equality, without the factor 2
on the right-hand-side). We then conclude (using Proposition 3.8 for the second inequality)

|D1E |(Bρ(x, r)) ≤
volρ(E ∩Bρ(x, 2r))

r
≤ (1− lC)2Q

volρ(Bρ(x, r))

r
.

�

4. Euclidean cones and wedges of semigroups

In this section, with the aim of writing precisely constant normal sets as Hölder upper-
graphs, we consider the largest cone inside the semigroup generated by a horizontal half-
space. We shall show that such a cone shares several properties, which are referred to
as being a Lie wedge. Consequently, we deduce that there are several half one-parameter
subgroups in the semigroup. Our viewpoint is highly inspired by [HN93, Chapters 1-3].

Let G be a Carnot group. Recall that the exponential map exp from the Lie algebra g of
G to G is a global diffeomorphism, whose inverse we denote by log.

Remark 4.1. We claim that if S ⊆ G is a semigroup, then

(4.2) eadX log(S) = log(S), for all X such that ±X ∈ log(S).

Indeed, this is a simple algebraic computation using the conjugation map (Cg(x) := gxg−1)
and the adjoint representation (Ad(g) := (Cg)∗), see [Var84]. In fact, we have

eadX log(S) = Adexp(X) log(S) = logCexp(X)(S) = log(exp(X)S exp(−X)) ⊆ log(S),

where in the last containment we used that, by assumption, the set S is a semigroup and
exp(±X) ∈ S. Since the inverse map of eadX is ead−X then by symmetry we also have the
other inclusion in (4.2).

In particular, if S is the semigroup generated by a horizontal half-space W , then for the
set s := log(S̄), where S̄ = Cl(S)), we have

eadX s = s, for all X ∈W ∩ (−W ).

Notice that W ∩ (−W ) is the hyperplane in V1 that is the boundary of W within V1.

In the following discussions, a subset c of the Lie algebra g is said to be a cone (or, more
precisely, an Euclidean cone) if

tc = c, for all t > 0.

This notion should not be confused with the one (1.5) of cones as subsets of the Carnot
group G.

Definition 4.3. To every semigroup S ⊆ G we associate the set

(4.4) wS := {X ∈ g : R+X ⊆ log(S)}.
We shall refer to this set as the wedge tangent to S.

Actually, the notion of (Lie) wedge is present in the literature, see [HN93, Section 1.4],
and agrees with the one of this paper. For an abstract viewpoint, we recall here the standard
notion. Let g be a Lie algebra. A subset w ⊆ g is said to be a Lie wedge if
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• w is a closed convex cone
• eadXw = w, for all X ∈ w ∩ (−w).

Next lemma clarifies that the wedge wS tangent to a closed semigroup S is a Lie wedge.
The proof is not original, see for example [HN93, Proposition 1.4].

Lemma 4.5. If S ⊆ G is a closed semigroup, then the wedge wS tangent to S, defined in
(4.4), satisfies the following properties:

(1) wS is the largest cone in log(S);
(2) wS is closed and convex;
(3) wS is invariant under eadX for each X ∈ log(S) ∩ (− log(S)), i.e.,

(4.6) eadXwS = wS , for all X such that ±X ∈ log(S).

Proof. Set s := log(S). By construction, an element X is in wS if and only if R+X ⊆ s.
Thus wS is the largest cone in s. Since s is closed, then the closure of wS is a cone in s. By
maximality of wS , we deduce that it is closed.

To check that wS is convex, since wS is a cone, it is enough to show that for all X,Y ∈ wS

we have X + Y ∈ wS . Recall the formula [Var84, Corollary 2.12.5], which holds in all Lie
groups,

(4.7) exp(X + Y ) = lim
n→∞

(
exp

(
1
nX
)

exp
(

1
nY
))n

.

Since R+X,R+Y ⊆ log(S), then exp( 1
nX), exp( 1

nY ) ∈ S, for all n ∈ N. Consequently, since

S is a semigroup, we have
(
exp( 1

nX) exp( 1
nY )

)n ∈ S. Being S closed by assumption, we
get from (4.7) that exp(X + Y ) ∈ S.

Regarding (4.6) take X such that ±X ∈ s, so by Remark 4.1 we have eadX s = s. Conse-
quently, since the map eadX is linear, it sends cones in s to cones in s. In particular, this
map fixes the largest cone, i.e., it fixes wS . �

Remark 4.8. If S is a semigroup and ±X,Y ∈ log(S), then we have that
(4.9)

exp(Adexp(X) Y ) = exp((Cexp(X))∗Y ) = Cexp(X)(exp(Y )) = exp(X) exp(Y ) exp(−X) ∈ S,

where we have used that Adg is by definition the differential of Cg and that exp intertwines
this differential with Cg and finally that S is a semigroup.

Every horizontal half-space W is a cone inside the semigroup SW that it generates.
Therefore, the set W is a subset of the wedge wS̄W

tangent to S̄W . The next result infers
how one can gets the knowledge of the presence of more elements in this wedge.

Proposition 4.10. Let SW be the semigroup generated by a horizontal half-space W . If
±X ∈ log(SW ) and R+Y ⊂ log(SW ), then

Adexp(X) Y ∈ wS̄W
.

In particular, we have

(4.11) Adexp(X) Y ∈ wS̄W
, ∀X ∈W ∩ (−W ),∀Y ∈W.
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Proof. By assumption, for all t > 0 we have that ±X, tY ∈ log(SW ). Consequently, by
(4.9) we get exp(tAdexp(X) Y ) = exp(Adexp(X) tY ) ∈ S. The second part is immediate since
W ⊂ log(SW ) and W is a cone. �

We have evidence that in groups of step ≤ 4, the intersection exp(wS̄W
)∩ Int(SW ) is not

empty; see Remark 5.14. We wonder if this is the case in general.

Conjecture 4.12. For every horizontal half-space W in every Carnot group G, we have

exp(wS̄W
) ∩ Int(SW ) 6= ∅.

Recall that on the one hand, we have Int(SW ) = Int(S̄W ) 6= ∅ and that this interior is
meant within G. On the other hand, we have exp(wS̄W

) ⊇ exp(W ) 6= ∅. However, in some
Carnot groups exp(W ) ∩ Int(SW ) = ∅, for example in the group considered in the next
section.

Proposition 4.13. If there exists Z ∈ wS̄W
∩ Int(SW ), then every set that has precisely

constant normal with respect to W is a upper-graph in the Z-direction with respect to a
Hölder function (in Euclidean coordinates).

Proof. If p is a point of the boundary of such a precisely constant normal set E, then the
cone pSW is in the set. By assumption, the half line p exp(R+Z) does not intersect ∂E.
Hence, each leaf of the foliation {p exp(RZ)}p∈G meets ∂E in one point, that is, ∂E is a
graph in the Z-direction and E is the upper-graph. Moreover, the half line p exp(R+Z)
belongs to the interior of SW and the semigroup SW is a cone with respect to the intrinsic
dilation. Since every such cone is an upper-graph in the Z-direction of a Hölder function
(in Euclidean coordinates), then the same conclusion must hold for the graphing function
of E. �

In fact, the graphing function of the above proposition satisfies a Lipschitz intrinsic
condition, similarly as in [FS16]. However, it is important to stress that in our case the
graphing direction may not be a horizontal one.

5. The free Carnot group of rank 2 and step 3

In this section we shall focus our attention on a specific Carnot group where many patholo-
gies appear. Such a group is denoted by F23 and is called the free Carnot group of rank 2
and step 3, because any other Carnot group of rank 2 and step 3 is a quotient of it.

The Lie algebra of F23 is 5 dimensional and it is generated by two vectors, which we call
X1 and X2. A basis of the Lie algebra is completed to X1, . . . , X5 for which the only non
trivial bracket relations are:

X3 = [X2, X1], X4 = [X3, X1], X5 = [X3, X2].

The Lie group F23 is the simply connected Lie group with such a Lie algebra. Moreover,
the Lie algebra has a natural stratification where the first layer is V1 := span{X1, X2}. See
[LD17] for an introduction to Carnot groups and stratifications.

Since F23 is a free Carnot group of rank 2 then there is an action of the general linear group
GL(2R) by Lie automorphisms induced by the standard action of GL(2R) on span{X1, X2}.
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Consequently, any pair of linearly independent horizontal vectors X,Y ∈ V1 are equivalent
to X1, X2 up to an automorphisms that preserves the stratification. For our purposes, this
means that it is not restrictive to only study sets that have constant normal equal to X2.

We shall work in some specific coordinate system for F23. These are called exponential
coordinates of the second kind with respect to the chosen bases. Namely, an arbitrary point
of F23 is uniquely represented as exp(x5X5) exp(x4X4) · . . . ·exp(x1X1) for (x1, . . . , x5) ∈ R5.
We use such identification of F23 with R5. Using the Baker-Campbell-Hausdorff formula
one computes (see Section 5.2) the group law:

(5.1) Lx(y) = x · y = (x1 + y1, x2 + y2, x3 + y3 − x1y2,

x4 + y4 − x1y3 +
1

2
x2

1y2, x5 + y5 + x1x2y2 +
1

2
x1y

2
2 − x2y3).

The left-invariant vector fields X1, X2 in these coordinates are

(5.2) X1 = ∂1 and X2 = ∂2 − x1∂3 +
x2

1

2
∂4 + x1x2∂5.

The other elements of the basis will not be needed. For completeness, we say that they
have the following form:

X3 = ∂3 − x1∂4 − x2∂5, X4 = ∂4, X5 = ∂5.

5.1. Semigroups generated. In this section we shall study the semigroup SW , as defined
in (2.23), for the following three options for W :

W1 := {aX1 + bX2 : a ∈ R, b ≥ 0}, W2 := {aX1 + bX2 : a ∈ R, b > 0},

(5.3) and W3 := {aX1 : a ∈ R} ∪ {bX2 : b > 0}, .

Namely, the first is a closed horizontal half-space, the second one is an open horizontal
half-space, and the third is the union of a line and a semi-line. The properties that we shall
prove are summarized in the following list:

i) Each among SW1 , SW2 , and SW3 is not open and not closed. Indeed, each one does
not contain exp([X1, X2]) which is in the closure, and it contains exp(R+X2) but
not in the interior. Actually, we have

(5.4) exp(V1) ∩ Int(SWi) = ∅.

ii) No point exp(X) with X ∈ V1 is in their interior.
iii) With the notation (2.24), we have that for k > 6 we have SW1 = (exp(W1))k and

SW2 := (exp(W2))k. Nonetheless, there is no k ∈ N such that SW3 = (exp(W3))k

iv) For k = 3 we have that (exp(W1))k has interior but it is not equal to SW1 . Still
Cl(SW1) = Cl((exp(W1))3).

We shall give a precise expression for SW1 . However, a consequence is the following
containment. Define the polynomial

(5.5) P (x) := x3
2x4 − 2x2

2x
2
3 − 6x2x3x5 − 6x2

5,
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which is homogeneous of degree 6 with respect to the intrinsic dilations. The semigroups
satisfies

{P (x) > 0, x2 > 0} ⊆ SW2 ⊆ SW1 ⊆ {P (x) ≥ 0, x2 ≥ 0}.
This containment will show that there are no horizontal vectors in the interior of the semi-
groups, i.e, (5.4) holds. In particular, the set {P (x) > 0, x2 > 0} provides an example of a
precisely constant normal set that is not a continuous graph in any horizontal direction.

We also point out that the closure of the three sets SWi , i = 1, 2, 3, is the same. Indeed,
this is due to the fact that any point in SW1 is obtained as the end point of a piecewise linear
curve where each piece has derivative in W1. However, every such piece can be approximated
(uniformly) by a piecewise linear curve with derivatives in W3. Hence, the closure of SW3

contains SW1 . Since SW3 ⊆ SW2 ⊆ SW1 , we get Cl(SW3) = Cl(SW2) = Cl(SW1).

Case W = W1. We first focus on characterizing the semigroup generated byW := {exp(aX1+
bX2) : a ∈ R, b ≥ 0}.

Using the group law (5.1) (or alternatively integrating the relevant ODE of the vector
fields (5.2)) we have

(5.6) exp(t(aX1 +X2)) =

(
at, t,−1

2
at2,

1

6
a2t3,

1

3
at3
)
.

Using this formula, we shall compute the coordinates of the point

exp(t1(a1X1 +X2)) exp(t2(a2X1 +X2)),

where a1, a2 ∈ R and t1, t2 > 0; in other words, we are performing a zig-zag, starting at 0
and flowing first for time t1 along a1X1 +X2 and then (from the point exp(t1(a1X1 +X2))
just reached) flowing for time t2 along a2X1 + X2. Clearly, every point reached by any
number of such zig-zags is in the semigroup.

The computation of
(
a1t1, t1,−1

2a1t
2
1,

1
6a

2
1t

3
1,

1
3a1t

3
1

)
·
(
a2t2, t2,−1

2a2t
2
2,

1
6a

2
2t

3
2,

1
3a2t

3
2

)
gives

(
a1t1 + a2t2, t1 + t2,−

a1t
2
1

2
− a1t1t2 −

a2t
2
2

2
,
a2

1t
3
1

6
+
a2

1t
2
1t2

2
+
a1a2t1t

2
2

2
+
a2

2t
3
2

6
,

a1t
3
1

3
+ a1t

2
1t2 +

a1t1t
2
2

2
+
a2t1t

2
2

2
+
a2t

3
2

3

)
.

Since X1 = ∂1, we know that the semigroup is invariant in x1 and we can therefore
neglect the first coordinate obtained (since we are interested in characterizing the points
in R5 that can be reached by zig-zags, given a point in the image we can change the
first coordinate fixing the others by flowing along X1); moreover, using the fact that the
semigroup is invariant under subRiemannian dilations, and noticing that the only point in
the semigroup with 0 second coordinate are those other form (x1, 0, . . . , 0), we can fix the
second coordinate to be 1. (This forces the choice t2 = 1 − t1; to reach such a point, we
need to correctly scale the zig-zag.) We therefore have a map from R2 × [0, 1] to R5, where
the point (a, b, c) in the domain is mapped to the point in R5 that is reached by the above
zig-zag (we can fix the first coordinate to be 0 by the additional flow along X1) choosing
a1 = a, a2 = b, t1 = c, t2 = 1−c (by the choices made, this point will lie in the 3-dimensional
plane {x1 = 0, x2 = 1}, and we identify this with the target R3).
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After substituting the variables and simplifying, the map G : R2 × [0, 1] → R3 thus
obtained reads

G(a, b, c) =(
1

2

(
a(c− 2)c− b(1− c)2

)
,
1

6

(
a2(3− 2c)c2 + 3abc(c− 1)2 − b2(c− 1)3

)
,

1

6

(
b(c3 − 3c+ 2)− ac(c2 − 3)

))
.

The Jacobian matrix of G is
(c−2)c

2 − (c−1)2

2
a(c−2)−2b(c−1)+ac

2
3bc(c−1)2+2a(3−2c)c2

6
3a(c−1)2c−2b(c−1)3

6
−2c2a2+2(3−2c)ca2+3b(c−1)2a+6abc(c−1)

6

− c(c2−3)
6

c3−3c+2
6

−2ac2−a(c2−3)+b(3c2−3)
6


The Jacobian determinant of G can be computed to be 1

72(c − 1)4c3(a − b)2. This shows

that the map G is a diffeomorphism on (R2 × (0, 1)) \ {(a, b, c) : a = b}.
Restricting to the set of critical points, we compute the image via G of the surfaces
{(a, b, 0)}, {(a, b, 1)}, {(a, a, c)} and obtain respectively the curves in R3 expressed (para-
metrically) by

(− b
2
,
b2

6
,
b

3
) , (−a

2
,
a2

6
,
a

3
) , (−a

2
,
a2

6
,
a

3
),

i.e., the curve {y = −xz} ∩ {2x + 3z = 0} in all three cases, using coordinates (x, y, z) in
the target R3.

For (x, y, z) arbitrary, solving the system G(a, b, c) = (x, y, z) (inverting G) yields the
solution

a = − 2(2x3−9xy−9yz)
3(2x2+6xz−y+6z2)

b = −3(4x4+8x3z−12x2y−36xyz−3y2−18yz2)
2(2x+3z)3

c = −3(2x2+6xz−y+6z2)
2x2+6xz+3y

,

which is well-defined as long as the denominators do not vanish and as long as the third
fraction is in the interval [0, 1] (since we restricted c ∈ [0, 1] in the definition of G). We
already characterized the image of points with c = 0 or c = 1, so regarding c we only need
to understand when the third fraction is in (0, 1).

Algebraic manipulation shows that

−3(2x2 + 6xz − y + 6z2)

2x2 + 6xz + 3y
=

3P̂

3P̂ + 2(2x+ 3z)2
,

where P̂ is the polynomial

P̂ = P̂ (x, y, z) := y − 2x2 − 6xz − 6z2,

therefore c ∈ (0, 1) if and only if P̂ > 0. Note that P̂ is also the denominator of the

first fraction above, up to a multiplicative constant, therefore P̂ > 0 guarantees that a is
well-defined. The only constraint left is that the denominator of b be non-zero.

So far we have established that {(x, y, z) : P̂ > 0} \ {(x, y, z) : 2x + 3z = 0} is in the
image of G restricted to (R2 × (0, 1)) \ {(a, b, c) : a = b}.
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Consider the composition Q◦G, where Q(x, y, z) = 2x+ 3z. The function Q◦G vanishes
at (a, b, c) if and only if G(a, b, c) ∈ {2x+3z = 0}. On the other hand, explicit computation
gives Q◦G = −1

2(c−1)2c(a−b) and this function vanishes exactly on the set {a = b}∪{c =
0}∪{c = 1}, which is the set of critical points. We can therefore conclude that the image of

G restricted to (R2×(0, 1))\{(a, b, c) : a = b} is exactly the set {(x, y, z) : P̂ > 0}\{(x, y, z) :
2x+ 3z = 0}.

Putting all together, we have obtained that G maps R2 × [0, 1] to the set

Im(G) =
(
{(x, y, z) : P̂ > 0} \ {(x, y, z) : 2x+ 3z = 0}

)
∪ ({y = −xz} ∩ {2x+ 3z = 0}) .

This is the upper-graph of a paraboloid (P̂ > 0) from which we remove the plane {(x, y, z) :
2x+ 3z = 0} except for the curve {y = −xz}∩ {2x+ 3z = 0}, which lies on the paraboloid.

Recalling the choices made of neglecting x1 and fixing x2 = 1, the above result says
that if we embed Im(G) ⊂ R3 in {(0, 1)} × R3 ⊂ R5 and extend it invariantly in x1 and
homogeneously (in the subRiemannian sense) in x2 we obtain the set of points that can be

reached using a zig-zag consisting of at most 3 steps. We denote this set by S̃. Namely,

S̃ := {(x1, 0, λ
2x, λ3y, λ3z) : x1 ∈ R, λ > 0, (x, y, z) ∈ Im(G)}.

We next claim that the semigroup S generated by {exp(aX1 + bX2) : a ∈ R, b ≥ 0} is the
extension (invariantly in x1 and homogeneously in the subRiemannian sense in x2) of the
set

{(x, y, z) : P̂ > 0} ∪ ({y = −xz} ∩ {2x+ 3z = 0}) .
To see this, we argue by first showing that the subvariety R defined by the extension
(invariantly in x1 and homogeneously in the subRiemannian sense in x2) of {(x, y, z) : P̂ >
0} ∩ {(x, y, z) : 2x+ 3z = 0}, belongs to the semigroup. Pick any point p ∈ R and consider
pS−1: if p /∈ S then we would have that pS−1 cannot intersect S, in particular pS−1 has to
be contained in R. We know, however, that S, and a fortiori pS−1, has non-empty interior
(by the general theory or just by noticing that Im(G) has non-empty interior) and so pS−1

cannot be contained in R.

In the previous argument, one can replace S with S̃, which also has non-empty interior.
Consequently, we get the extra piece of information that any point in

{(x, y, z) : P̂ > 0} ∪ ({y = −xz} ∩ {2x+ 3z = 0})
can be reached using a zig-zag consisting of at most 6 steps.

The set
P (x) := x3

2x4 − 2x2
2x

2
3 − 6x2x3x5 − 6x2

5 > 0, x2 ≥ 0,

(this is the homogeneous polynomial of degree 6 obtained by extending the above P̂ ) has
constant normal equal to X2. One way to check this, is by computing the derivative of P (x)

in the direction X2 = ∂2 − x1∂3 +
x21
2 ∂4 + x1x2∂5, which gives

A =
1

2
x3

2x
2
1 + (−10x2

2x3 − 18x2x5)x1 + (3x2
2x4 − 4x2x

2
3 − 6x3x5);

viewing this as a polynomial of degree 2 in x1, the discriminant is −6(x4x
5
2 − 2x2

3x
4
2 −

6x3x5x
3
2−6x2

5x
2
2) = −6x2

2P (x), which vanishes at P = 0 and is negative on P > 0. Therefore,
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since for x2 ≥ 0 the polynomial A goes to +∞ for x1 → ±∞, we get that A is always non-
negative when P ≥ 0, in other words the X2-monotonicity is satisfied. Also note that when
P > 0 and x2 > 0 we have A > 0, i.e., the derivative is strictly positive, which means that
the flow along X2 increases the value of P , in particular if we start from an interior point
of P ≥ 0, x2 ≥ 0, then the flow cannot converge to any point on P = 0. This implies that
the points of S that lie on the boundary of the paraboloid cannot be reached from points
in the interior.

Note that the critical curve {y = −xz} ∩ {2x + 3z = 0} extended invariantly in x1 and
homogeneously in x2 is a subvariety Z of (topological) dimension 3 and coincides with
exp(W ) exp(RX1): indeed, for the critical points c = 0 or c = 1 then we are choosing
one of t1, t2 to be 0, i.e., we are only flowing once (for time 1) along aX1 + X2 (for some
choice of a). For the critical points a = b we are flowing twice along the same vector
aX1 +X2, equivalently we are flowing along aX1 +X2 for time 1. Recalling that with G we
had restricted x2 = 1 and neglected x1, the previous observations say that Z corresponds
to the points reached by a flow along a vector in W followed by a flow along X1, i.e.,
Z = exp(W ) exp(RX1) as claimed.

What is left to prove, in order to complete the characterization of S, is that no other
point with P = 0, other than the points on Z, is in S. We established that if we start from
an interior point then the flow will not converge to a boundary point, so the only way to
reach a point on P = 0 is to flow from a point that lies on P = 0; this means, in view
of the characterization of Im(G) above, that we must start from a point in Z. However,
exp(W ) exp(RX1) is invariant for the flow, so the argument is complete.

We summarize our conclusions with the following statement.

Proposition 5.7. In the free group F23 equipped, as above, with exponential coordinates of
the second kind, the semigroup S generated by W := {exp(aX1 + bX2) : a ∈ R, b ≥ 0} is

S = {x ∈ R5 : P (x) := x3
2x4 − 2x2

2x
2
3 − 6x2x3x5 − 6x2

5 > 0, x2 > 0} ∪ exp(W ) exp(RX1).

The set exp(W ) exp(RX1) has the coordinate expression

{P = 0} ∩ {x2 ≥ 0} ∩ {x2
2x4 = −x3x5} ∩ {2x2x3 + 3x5 = 0}.

Every element in S can be written as the product of 6 elements in W , i.e., W 6 = S. The
set W 3 is a set with interior that is different than S, but its closure is S.

Case W = W2. Regarding the case W := {exp(aX1 + bX2) : a ∈ R, b > 0}, we clearly
obtain a semigroup SW that is contained in the previous semigroup SW1 . Nonetheless, the
set exp(W ) exp(RX1) is in such semigroup, but it is not in the interior, since it is not in the
interior of SW1 . We therefore understand that, also in this case, the set SW is not open in
the Carnot group, even if W is open in V1. We expect that in fact SW = SW1 \ exp(RX1).

Case W = W3. Since we are in a free group, instead of studying the semigroup generated
by W3 from (5.3) we may study the one generated by

W := {aX1 : a ∈ R} ∪ {b(X1 +X2) : b > 0}.
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We are going to show that the point exp(X2) is in the closure of SW , but not in any
(exp(W ))k, with k ∈ N. Consequently, we have strict inclusions

(exp(W ))k ( SW , ∀k ∈ N.

Since the sets (exp(W ))k are increasing, we can clearly restrict to even values of k. Then,
for k ∈ N, an arbitrary point in (exp(W ))2k has the form

(5.8) q := exp(a1X1) exp(b1(X1 +X2)) . . . exp(akX1) exp(bk(X1 +X2)),

with aj ∈ R and bj > 0, for j = 1, . . . , k.

We now check that this point q differs from exp(X2) in the coordinates. Using the group
law (5.1) and the calculation in (5.6), we get that when a point p = (p1, . . . , p5) is right
multiplied by exp(t(X1 +X2)) then the first and fourth components of the point obtained
are respectively

(p exp(t(X1 +X2)))1 = p1 + t,

(p exp(t(X1 +X2)))4 = p4 +
(p1 + t)3

6
− p3

1

6
.

If t > 0, we can bound

(p exp(t(X1 +X2)))4 = p4 +
1

2
t(p1 +

t

2
)2 +

1

24
t3 ≥ p4 +

1

24
t3.

Recall that instead p exp(aX1) = (p1 +a, p2, . . . , p5). We deduce that the point q from (5.8)
satisfies

q2 = b1 + . . .+ bk

q4 ≥
1

24
(b31 + . . .+ b3k).

Now, if q is close enough to exp(X2) = (0, 1, 0, . . . , 0), then there exists some j such that
bj >

1
2k , since the bi’s are positive. Consequently, q4 ≥ 1

24( 1
2k )3. We found a bound away

from 0 of q4. Therefore there is no sequence of q’s accumulating to exp(X2).

5.2. Exponential coordinates (of first kind). We next rephrase the previous results
in the standard exponential coordinates. The purpose is to calculate the wedge of the
semigroup S, which we calculated in Proposition 5.7 using exponential coordinates of the
second kind.

Recall that the Baker-Campbell-Hausdorff formula for step-3 groups reads as

expX expY = exp

(
X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]]

)
.

Using this formula, we compute the products in exponential coordinates of first kind:

exp(a1X1 + . . .+ a5X5) · exp(b1X1 + . . .+ b5X5) =

= exp

(
(a1 + b1)X1 + (a2 + b2)X2 + (a3 + b3 +

a2b1 − a1b2
2

)X3

(5.9) + (a4 + b4 +
a3b1 − a1b3

2
+
a1(a1b2 − a2b1)

12
+
b1(a2b1 − a1b2)

12
)X4
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+(a5 + b5 +
a3b2 − a2b3

2
− a2(a2b1 − a1b2)

12
+
b2(a2b1 − a1b2)

12
)X5

)
.

Consequently, we relates the exponential coordinates of first kind to the exponential
coordinates of second kind: If x1, . . . , x5 are the coordinates of second kind and a1, . . . , a5

are the coordinates of first kind, then the change of coordinates are the following:

exp(x5X5) exp(x4X4) · . . . · exp(x1X1) = exp (a1X1 + a2X2 + a3X3 + a4X4 + a5X5)

if and only if 

a1 = x1

a2 = x2

a3 = x3 + x1x2
2

a4 = x4 + x1x3
2 +

x21x2
12

a5 = x5 + x2x3
2 − x1x22

12 ,

or, equivalently, 
x1 = a1

x2 = a2

x3 = a3 − a1a2
2

x4 = a4 + 1
6a

2
1a2 − 1

2a1a3

x5 = a5 + 1
3a1a

2
2 − 1

2a2a3.

In other words, the above two systems define the change of coordinates. Notice that, using
this formulas together with (5.9), one obtains (5.1).

5.3. The semigroup in exponential coordinates and its wedge. In Proposition 5.7
we calculated the semigroup S generated by W := {exp(aX1 + bX2) : a ∈ R, b ≥ 0} in
exponential coordinates of the second kind. Using the above change of variables we claim
that in exponential coordinates (of first kind) the semigroup is

S = {a ∈ R5 : −1

2
a2

2a
2
3 + a3

2a4 − a1a
2
2a5 − 6a2

5 > 0, a2 > 0} ∪ exp(W ) exp(RX1).

Indeed, one just has to verify that the polynomial P (x) := x3
2x4 − 2x2

2x
2
3 − 6x2x3x5 − 6x2

5

from Proposition 5.7 in these other coordinates (a1, a2, a3, a4, a5) becomes

(5.10) P̃ (a) = −1

2
a2

2a
2
3 + a3

2a4 − a1a
2
2a5 − 6a2

5.

Recall from Proposition 5.7 that exp(W ) exp(RX1) ⊆ {P̃ = 0}.
With these expression above, it is easy to calculate the wedge of the semigroup according

to Definition 4.3. In fact, we claim that the wedge is

(5.11) wS̄ := {a5 = 0, a2 = 0} ∪ {a5 = 0, a2 > 0, 2a2a4 ≥ a2
3}.

Indeed, first observe that log(S̄) = {P̃ ≥ 0, a2 ≥ 0} and so if X ' (a1, a2, a3, a4, a5) is such
that R+X ⊆ log(S̄) then

P̃ (ta) = −1

2
t4a2

2a
2
3 + t4a3

2a4 − t4a1a
2
2a5 − 6t2a2

5 ≥ 0, ∀t > 0.
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Hence,

0 ≤ lim
t→0+

1

t2
P̃ (ta) = −6a2

5,

which implies a5 = 0. The polynomial in (5.10) when a5 = 0 becomes −1
2a

2
2a

2
3 + a3

2a4 ≥ 0.

If a2 = 0 that we have no extra condition. Instead, when a2 > 0, then we get 2a2a4 ≥ a2
3.

Hence, one inclusion in (5.11) is proved. Regarding the other inclusion, just observe that
the right-hand side of (5.11) is a cone in log(S̄). Hence (5.11) is proved.

We shall now verify that wS̄ ∩ Int(S) 6= ∅, and verify Conjecture 4.12 in F23. Indeed, in
exponential coordinates this intersection is

wS̄ ∩ Int(S) = ({a5 = 0, a2 = 0} ∪ {a5 = 0, a2 > 0, 2a2a4 ≥ a2
3}) ∩ ({P̃ (a) > 0, a2 > 0})

= {a5 = 0, a2 > 0, 2a2a4 > a2
3}.

Remark 5.12. One pathology of the above semigroup S is that exp(W ) is contained in its
boundary. Even worst, we claim that the set Adexp(RX1)(RX1 + R+X2), which is in wS̄W

by
Proposition 4.10 is not in the intersection wS̄ ∩ Int(S). Indeed, for all a, b ∈ R and c > 0,
we have

Adexp(aX1)(bX1 + cX2) = bX1 + cX2 + [aX1, bX1 + cX2] +
1

2
[aX1, [aX1, bX1 + cX2]]

= bX1 + cX2 − acX3 +
1

2
a2cX4

= (b, c,−ac, 1

2
a2c, 0).

This point is not in the interior of S since for this point we have

P̃ (a) = −1

2
a2

2a
2
3 + a3

2a4 = −1

2
c2(−ac)2 + c3(

1

2
a2c) = 0.

Nonetheless, the point X2 +Adexp(X1)(X2) = 2X2−X3 + 1
2X4 = (0, 2,−1, 1/2, 0) is the sum

of two elements in wS̄ and so it is in wS̄ , and, moreover, it is in the interior of log(S) since

the value of P̃ is −1
222(−1)2 + 23 1

2 = −2 + 4 = 2 > 0.

More explicitly, one can check that the point exp(X2 +Adexp(X1)(X2)) is in S since it can
be written as

(5.13) exp(X2 + Adexp(X1)(X2)) = exp(1
2X2) exp(X1) exp(X2) exp(−X1) exp(1

2X2).

Moreover, the point exp(X2 + Adexp(X1)(X2)) is in the interior of S since the map

(ε1, . . . , ε5) 7→ exp((1
2+ε1)X2) exp((1+ε2)X1) exp((1+ε3)X2) exp((−1+ε4)X1) exp((1

2+ε5)X2)

is a submersion at 0. Indeed, a calculation gives that the images under the differential at
0 of such a map of the basis vectors ∂ε1 , . . . , ∂ε5 are the left-pushed forward by exp(X2 +
Adexp(X1)(X2)) of

X2 +X5, X1 − 3
2X3 +X4 − 9

8X5, X2 −X3 + 1
2X4 − 1

2X5, X1 − 1
2X3 − 1

8X5, X2.

These last 5 vectors are a basis of the Lie algebra. Hence there is a neighborhood of the
point (5.13) that is inside S.
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Remark 5.14. A similar calculation can be also done in the free-nilpotent group of rank
2 and step 4. Indeed, in the Carnot group F24 the point

exp(2X2 + Ad
exp(−1

2X1)
(2X2) + Ad

exp(
1
2X1)

(X2))

= exp(X2) exp(−1
2X1) exp(X2) exp(X1) exp(X2) exp(−X1) exp(X2) exp(1

2X1) exp(X2)

lies in wS̄W
∩ Int(SW ), where W is the horizontal half space with normal X2. We omit the

calculation, being similar to the one done above in the case of F23.

5.4. Some examples of constant normal sets. We provide in this section some examples
of constant-normal sets in F23, with normal X2. In doing so, we also point out some sufficient
conditions for a set to satisfy the constant-normal condition.

Example 5.15. For α, β ≥ 0, the set

Cα,β :=
{
x ∈ R5 : x2 ≥ 0, (α x3 + β x5)2 ≤ 2 x2 x4 (α+ β x2)2

}
.

is a constant-normal set with normal X2.

This two-parameter family of examples provides an interpolation between the two cones
C0,1 = {x : x2 ≥ 0, x2

5 ≤ 2x3
2x4}, which will be important in Sections 6.1 and 6.2, and

C1,0 = {x : x2 ≥ 0, x2
3 ≤ x2x4}, which is the lift of the cone in the Engel group, as analysed

in [BL13, Example 3.31], recalling that the Engel group is naturally a quotient of F23.

To check the condition, we compute the derivative of the polynomial P (x) = 2 x2 x4 (α+

β x2)2 − (α x3 + β x5)2 in the direction X2 = ∂2 − x1∂3 +
x21
2 ∂4 + x1x2∂5, which gives

d(x) = 2x4(α+βx2)2+4βx2x4(α+βx2)+2αx1(αx3+βx5)+x2
1x2(α+βx2)2−2βx1x2(αx3+βx5).

We will check that d(x) is non-negative on the set P (x) ≥ 0. Viewing the expression for
d(x) as a polynomial of degree 2 in x1, the discriminant is given by

D = (αx3 + βx5)2(α− βx2)2 − 2(α+ βx2)3x2x4(α+ 3βx2).

We claim that D ≤ 0 on the set {P ≥ 0}: this concludes the proof because the coefficient
of x2

1 in d(x) is non-negative (x2 ≥ 0 and the only cases in which the coefficient may vanish
correspond to E being equivalent to the empty set) so that the X2-flux starting from a
point in Cα,β must always remain (for positive times) in Cα,β. To check the claim, note that
P ≥ 0 implies

D ≤ 2 x2 x4 (α+ β x2)2(α− βx2)2 − 2(α+ βx2)3x2x4(α+ 3βx2)

so we only need to check that (α − βx2)2 ≤ (α + βx2)(α + 3βx2). This is immediate by
expanding the terms and using α, β, x2 ≥ 0.

The remainder of this section provides further examples of regular sets with constant
normal, pointing out some methods to construct them. It is not necessary for the sequel of
the paper: the reader interested in the pathological examples may skip to Section 6.

Remark 5.16. All constant normal sets in rank 2 are represented, in exponential coor-
dinates of II type, by upper-graphs of functions that are independent of the x1-variable.
More precisely, assuming without loss of generality that the normal is X2 and choosing a
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representative E that is precisely X2-monotone and open (this exists by Theorem 2.37),
then

E = {x2 > G(x3, . . . , xn)},
with G upper-semi-continuous.

To prove this, notice that X2|{x1=0} = ∂2 and thus (0, x2, x3, . . . , xn) exp(tX2) = (0, x2 +

t, x3, . . . , xn); the precise X2-monotonicity implies that the function G : Rn−2 → R defined
by G(x3, . . . , xn) := inf{x2 : (0, x2, x3, . . . , xn) ∈ E} (with the convention inf{∅} = +∞)
has the property that E ∩{x1 = 0} is given by {0}× {x ∈ Rn−1 : x2 > G(x3, . . . , xn)}. The
X1-invariance (notice that X1 = ∂1) gives that E = {x2 > G(x3, . . . , xn)}. Since E is open,
G is upper-semi-continuous.

Example 5.17. We give here a sufficient condition on a function G : R3 → R ∪ {+∞}, to
ensure that the set E ⊂ F23 defined, in exponential coordinates of II type, by

E = {x2 ≥ G(x3, . . . , xn)}
is a precisely constant-normal set with normal X2. The sufficient condition entails that the
set {G = +∞} is of the form {x4 ≤ a} for some a ∈ R, G is of class C1 on {G 6= +∞} and
G satisfies, on the same set, the partial differential inequality

(∂3G−G ∂5G)2 + 2 ∂4G ≤ 0.

The example C0,1 = {x : x2 ≥ 0, x2
5 ≤ 2x3

2x4} given above in Example 5.15 is of this type,

choosing G(x3, x4, x5) = 3

√
x25
2x4

for x4 > 0 and G(x3, x4, x5) = +∞ for x4 ≤ 0. We will

check this fact in Example 5.19 below.

As before, we compute (on {G 6= +∞}) the derivative of P (x) = x2−G(x3, x4, x5) in the

direction X2 = ∂2 − x1∂3 +
x21
2 ∂4 + x1x2∂5, which gives

d(x) = 1 + x1∂3G−
x2

1

2
∂4G− x1x2∂5G.

Note that ∂4G ≤ 0 by assumption, so the coefficient of x2
1 is non-negative. If it vanishes,

i.e. if ∂4G = 0 at (x3, x4, x5) then the PDI gives ∂3G = G∂5G, therefore in this case d = 1
on {(x1, G(x3, x4, x5), x3, x4, x5) : ∂4G = 0} for any choice of x1. We now consider the case
∂4G < 0 and view d(x) as a polynomial of degree 2 in x1, with positive coefficient for the
quadratic term. Its discriminant is given by

D = (∂3G− x2 ∂5G)2 + 2 ∂4G

and the PDI assumption gives D ≤ 0 when x2 = G. This implies that, if D < 0 at
(x3, x4, x5) then d > 0 everywhere on the line (x1, G(x3, x4, x5), x3, x4, x5); in the case D = 0
at (x3, x4, x5), then d > 0 everywhere on the line (x1, G(x3, x4, x5), x3, x4, x5) except for the

point corresponding to x1 = ∂3G−G ∂5G
∂4G

= ±
√

2√
−∂4G

, at which d = 0. The condition d > 0 at

(x1, G(x3, x4, x5), x3, x4, x5) implies that theX2-flow starting at (x1, G(x3, x4, x5), x3, x4, x5)
enters the upper-graph: by continuity of G, the flow stays in the closed upper-graph in a
neighbourhood of (x1, G(x3, x4, x5), x3, x4, x5) also at the point where d = 0.
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In conclusion, at all points (x1, G(x3, x4, x5), x3, x4, x5) where G < ∞ we have ensured
that the X2-flow starting at that point is contained in {x2 ≥ G} for an interval of time
[0, ε) with ε > 0 (at this stage, ε may depend on the point). We now consider any X2-flow
starting at some point on (x1, G(x3, x4, x5), x3, x4, x5) (with G <∞) and denote by t0 > 0
the infimum of times for which the flow is outside {x2 ≥ G}. The aim is to ensure that
t0 = +∞. If that were not the case, then the X2-flow at t0 would yield a point that is
either on (x1, G(x3, x4, x5), x3, x4, x5) or in the domain where G =∞. The first alternative
is impossible by the previous discussion, since we ensured that the X2-flow from any point
(x1, G(x3, x4, x5), x3, x4, x5) stays in {x2 ≥ G} for some time. The second alternative is also
impossible, by the assumption on {G = ∞}: the coordinate expression of X2 shows that
the x4-coordinate is non-decreasing along the X2-flow and we have started the flow from a
point with x4 ≥ a. This concludes the proof of the precise X2-monotonicity of {x2 ≥ G}.
Remark 5.18. In [BL13] we showed that E is a precisely constant-normal set in the Engel
group if and only if, in exponential coordinates of the second kind, E is the upper-graph of
a BV -function G that satisfies a partial differential inequality, in which the partial deriva-
tives (that are Radon measures) appear in duality with non-negative test functions (in the
case in which G is C1, the PDI in [BL13] bears similarities to the one in example 5.17). As
pointed out in Remark 5.16, it remains true in arbitrary Carnot groups that (in exponen-
tial coordinates of the second kind) any precisely constant-normal set E can be written as
{x : x2 > G} for some function G. Therefore one could investigate the possibility of a char-
acterization via PDI of constant normal sets in F23, in analogy with [BL13, Theorem 3.17].
We do not pursue this direction, and provide here a brief discussion of the issues involved.

It seems reasonable to expect the following: if G : R3 → R is BVloc and satisfies a
distributional analogue of the PDI in example 5.17 then (adapting the arguments in [BL13,
Theorem 3.17]) the upper-graph of G is a constant-normal set. However, this cannot provide
a characterization of constant-normal sets in F23. In fact, we will show in the Section 6.1
that, in sharp contrast with the case of the Engel group, in F23 the function G may fail to
be in BVloc. If we wanted to characterize the property of having constant normal in F23

by a PDI for G, then we would have to allow G /∈ BVloc in a distributional generalization
of the PDI in example 5.17. Understanding if this is possible requires a careful analysis,
since the multiplication of G by ∂5G would have to be well-defined (if ∂5G is an arbitrary
distribution then the general theory only allows multiplication by a smooth function).

Example 5.19. If F : R2 → (0,+∞], with coordinates (x4, x5) on R2, is such that F = +∞
on a set of the form {x4 < a} for a ∈ [−∞,∞] and F is C1 on {x4 > a} and satisfies on
this set the PDI

(∂5F )2 + 6 ∂4F ≤ 0,

then
E = {x ∈ R5 : x2 >

3
√
F (x4, x5)}

is a precisely constant-normal set with normal X2 (with the convention 3
√

+∞ = +∞).

This follows from Example 5.17; in fact, setting G = 3
√
F (x4, x5), the PDI for G from

Example 5.17 is equivalent to 1
9F 2/3

(
(∂5F )2 + 6 ∂4F

)
≤ 0.

Choosing a = 0 and F (x4, x5) =
x25
2x4

(note that F > 0 on {x4 > 0}), we have (∂4F )2 +

6∂4F = (x5x4 )2− 3(x5x4 )2 ≤ 0. We thus recover the example C0,1 given above in Example 5.15.
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Example 5.20. Constant-normal sets of the type in example 5.19 are abundant. In fact,
let g : R → R be a non-negative and non-increasing function and, for C ∈ (0,∞), let
f : R→ R be a non-negative and non-decreasing Lipschitz function with Lipschitz constant
≤ 6

C2 . Then

E :=
{
x ∈ R5 : x2 >

3
√
f(Cx5 − x4) + g(x4)

}
is a constant-normal set with normal X2.

If f, g are C1, then we are in the setting of Example 5.19. Set F (x4, x5) = f(Cx5 −
x4) + g(x4). The validity of the PDI from example 5.19 is easy to check: indeed, we get
(∂5F )2 + 6 ∂4F = C2(f ′)2 − 6f ′ + 6g′ = f ′(Cf ′ − 6) + 6g′ ≤ f ′(C2f ′ − 6) ≤ 0, where we
used g′ ≤ 0 and 0 ≤ f ′ ≤ 6

C2 .

As mentioned in Remark 5.18, one could write an analogous PDI for BV functions, which
would allow F (x4, x5) = f(Cx5−x4) + g(x4). For this specific example, however, it suffices
to observe that smoothing f and g by convolution we preserve the sign and monotonicity
properties, as well as the Lipschitz constant for f . We then obtain (smooth) constant-normal
sets En that converge to E (in L1) and the cone property passes to E.

6. Examples with pathologies

In this section, first we construct a constant normal set that does not have locally finite
perimeter with respect to any Riemannian metric, see Theorem 6.2. Second, we construct
an example with non-unique blowup at some point, showing that it has different upper and
lower sub-Riemannian density at the point, see Theorem 6.3. In doing so, we implicitly
show that such pathologies can arise for subRiemannian-perimeter minimizers.

6.1. Lack of the Caccioppoli set property in the Euclidean sense. This section is
devoted to the construction of a set with constant normal that does not have locally finite
Euclidean perimeter. The result is in Theorem 6.2. Before proving it, we construct some
auxiliary sets.

We consider a Cantor setK ⊂ [0, 1] withH1(K) > 0, constructed as follows. Let a0, a1, . . .
be a sequence of positive real numbers such that

∞∑
j=0

aj < 1

and

lim
n→∞

2na2
n = +∞.

(For example, one can take a tail of the sequence 1/n2.) We construct K by induction. We
start with the set [0, 1] and remove the open segment of length a0 and center in 1/2. We
are left with two closed segments, say I0,1 and I0,2. At step n we have 2n closed segments
In−1,1, . . . , In−1,2n . From each In−1,k we remove the open segment Jn,k centered at the
center of In−1,k and of length

|Jn,k| = an/2
n.
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Hence, we are left with 2n+1 segments In,1, . . . , In,2n+1 of length

|In,k| =
1−

∑n
j=0 aj

2n+1
.

Let K be the set of points a ∈ [0, 1] such that, for all n ∈ N , there exist k for which a ∈ In,k.
It is straightforward that K is a Cantor set with positive measure.

For µ > 0, we consider the set

Wµ := {(x, y) ∈ R2 : (x− t)2 ≤ µy3, for some t ∈ K}.

Lemma 6.1. Let µ > 0, and let K and Wµ be as above. There exists a (Hölder) function
fµ : R→ [0,∞) such that

• Wµ = {(x, y) ∈ R2 : y ≥ fµ(x)};
• fµ is not BVloc(R).

Proof. Define

fµ = inf
t∈K

gt(x), where gt(x) =
1

µ1/3
(x− t)2/3.

We will drop the subscript µ within the proof, so we will write W = Wµ andf = fµ. Clearly
f ≥ 0. For x ∈ R, if y < f(x) then y < gt(x) for all t ∈ K, i.e., (x− t)2 > µy3 for all t ∈ K,
in other words (x, y) /∈ W . If y > f(x) then y > gt(x) for some t ∈ K, i.e., (x− t)2 < µy3

for some t ∈ K, in other words (x, y) ∈ W . The function f is Hölder continuous since for

every t ∈ K we have − 1
µ2/3
|x− y|2/3 ≤ gt(x)− gt(y) ≤ 1

µ2/3
|x− y|2/3. By continuity of f we

have W = {(x, y) ∈ R2 : y ≥ f(x)} and ∂W = graph(f).

We will next show that f fails to be differentiable at every point in K (with K contained
in the domain of f). This will guarantee the second conclusion of the lemma in view of the
fact that a BV function of 1 variable is the sum of two monotone functions and is therefore
(classically) differentiable almost everywhere (we chose K of positive measure).

Take a ∈ K. Let In := In,k(n) such that a ∈ In, for all n ∈ N. Let Jn+1 be the interval
removed from In in the construction of K. Let qn be the midpoint of Jn+1. Let pn be the
point in ∂In+1 that is between a and qn.

Notice that W ⊂ {(x, y) ∈ R2 : y ≥ 0} and (a, 0) ∈ ∂W . So, if f were differentiable at a
(recall that graph(f) = ∂W ) then the derivative would be 0 because f vanishes on K and
no point in K is isolated. However, we shall show that, for a suitable q′n > 0, (qn, q

′
n) ∈ ∂W

and the slope between (a, 0) and (qn, q
′
n) tends to∞. Indeed, , for q′n := µ−1/3(|Jn+1|/2)2/3,

we have the following properties. The point (qn, q
′
n) belongs to W , since, for t = pn,

(qn − t)2 = (qn − pn)2 =

(
|Jn+1|

2

)2

= µ

(
µ−1/3

(
|Jn+1|

2

)2/3
)3

= µ (q′n)3.

For t ∈ K\{pn}, we have |qn−t| ≥ |qn−pn| and so (qn−t)2 ≥ µ (q′n)3. Hence, (qn, q
′
n) ∈ ∂W .
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Regarding the slope, we can bound, for a suitable constant k (depending only on µ),

q′n
|a− qn|

≥ µ−1/3(|Jn+1|/2)2/3

|In|

≥ µ−1/3(an+1/2
n+2)2/3 2n+1

1−
∑n

j=0 aj

≥ k 2n/3(an+1)2/3,

which goes to ∞, for how the sequence an was chosen. �

We next exhibit a set in F23 that is X2-monotone however it is not a set of locally finite
perimeter in the Euclidean sense. We work in exponential coordinates of the second kind.

Theorem 6.2. Consider the set

C :=
{
x ∈ R5 : x2 ≥ 0, x4 ≥ 0, (x5)2 ≤ 2 (x2)3 x4

}
.

Let K be the Cantor set constructed before Lemma 6.1 and define the set

E :=
⋃
t∈K

Lexp(tX5)(C).

Then E is a set with constant normal, however E is not a set with locally finite Euclidean
perimeter.

Proof. The set C is the set C0,1 from Example 5.15, which we proved has precisely constant
normal with normal X2. Thanks to item (b) of Proposition 2.29, we have that E has
precisely constant normal with normal X2. It follows that E is the upper-graph of a function
G : R4 → R: to see this, note that E ∩ {x1 = 0} is the upper-graph of a function because,
for x1 = 0, the vector field X2 is just ∂2, therefore the X2 precise monotonicity gives the
conclusion for E ∩ {x1 = 0}; the X1-invariance gives the conclusion for E (note that G is
independent of x1).

To prove the theorem, note that, since X5 is in the kernel of the Lie algebra, the left
translation Lexp(tX5) is an Euclidean translation. Namely, for all t ∈ R and h ∈ R5,

Lexp(tX5)(h) = exp(tX5)h

= exp(tX5) + h

= te5 + h.

Let p1, p3 ∈ R, p4 > 0. Define the 2-dimensional plane

Π := {x ∈ R5 : x1 = p1, x3 = p3, x4 = p4}.

Consider the set

E ∩Π =
⋃
t∈K

(C + te5) ∩Π

=
⋃
t∈K
{x ∈ R5 : x1 = p1, x2 ≤ 0, x3 = p3, x4 = p4, (x5 − t)2 ≤ 2 (x2)3 x4}.
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Such a set is isometric to the set (using the notation introduced before Lemma 6.1)

W2p4 := {(a, b) ∈ R2 : a ≥ 0, (b− t)2 ≤ 2p4a
3, for some t ∈ K}.

If E were a Caccioppoli set in the Euclidean sense, then the function G : R4 → R such
that E = {x2 ≥ G(x1, x3, x4, x5)} would be BVloc(R4), see [GMS98, Theorem 1, p.371].
Then L3-almost every 1-dimensional slice in the direction of x5 would be a BVloc-function
of 1-variable by [EG15, Theorems 5.21, 5.22] .

By the characterization of E ∩ Π above, however, we see that the 1-dimensional slice at
(p1, p3, p4) is the function f2p4 , with notation as in Lemma 6.1, and therefore (by the same
lemma) it is not BVloc(R). This is the case for any choice of (p1, p3, p4) with p1, p3 ∈ R,
p4 > 0, therefore G is not BVloc(R4) and E is not a Caccioppoli set. �

6.2. Non-uniqueness of subRiemannian tangents. In this section we consider a vari-
ant of the example E given in Theorem 6.2 and analyse the blow-up limits obtained by
taking subRiemannian dilations of E at a certain point x. We obtain distinct limits (in the
sense of Caccioppoli sets) when we consider distinct sequences of dilating factors: in other
words, E does not admit a unique subRiemannian tangent at x. We also observe that the
subRiemannian lower and upper densities of E at x are distinct (Θ∗(E, x) 6= Θ∗(E, x), with
notation as in Proposition 3.8).

Theorem 6.3. There exists a set E with constant horizontal normal that admits distinct
subRiemannian blow ups at some point x. Moreover Θ∗(x,E) < Θ∗(x,E).

Proof. As mentioned above, we give an example in F23. Keeping the definition of C in
Theorem 6.2 unchanged, we consider

E :=
⋃
t∈Z

Lexp(tX5)(C),

where Z ⊂ R is a set containing 0. Recall that the fact that E is a set with constant
horizontal normal is true independently of the choice of Z, thanks to Corollary 2.31 and by
the choice of C.

We denote as usual by δr the subRiemannian dilation of factor r about 1G. Recalling that
dilations are homomorphisms of G and that C is a cone with tip at 0, we have δr(pC) = δr(p)C
and thus

δr(E) =
⋃
t∈Zr

Lexp(tX5)(C),

where Zr is the dilation of Z ⊂ R about 0 by a factor r3.

We will choose Z such that, at 0, the lower density (with respect to H1) is strictly smaller
than the upper density. In particular, we may choose Z as follows. Consider an increasing
sequence of natural numbers n1 > 1, n2, n3, ... defined recursively by nj+1 = n3

j . Define

Z = {0} ∪

 ⋃
j odd

(
1

n3
j

,
1

nj

] ∪
 ⋃
j odd

[
− 1

nj
,− 1

n3
j

) .
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Choose R` = 3

√
1

n2
2`+1

and r` = 3

√
1
n2
2`

(recall that Zr is the dilation of Z ⊂ R about 0 by

a factor r3 in R). Then ZR` ⊃
[
−n2`+1,− 1

n2`+1

)
∪ {0} ∪

(
1

n2`+1
, n2`+1

]
, which converges

(increasingly) to the whole line; on the other hand, Zr` contains {0} and is disjoint from[
−n2`,− 1

n2`

)
∪
(

1
n2`
, n2`

]
, so the blow-up of Z along r` is {0}.

We thus obtain that the blow up of E at 0 obtained using the sequence of dilations δR`
is (recall that X5 = ∂5 in exponential coordinates of the second kind)

E2 =
⋃
t∈R

(C + te5) =
⋃
t∈R

{
x ∈ R5 : x2 ≥ 0, x4 ≥ 0, (x5 − t)2 ≤ 2 (x2)3 x4

}
=

=
{
x ∈ R5 : x2 ≥ 0, x4 ≥ 0

}
.

On the other hand, using the sequence of dilations δr` the blow up obtained is (note that
the intersection of p+ C−1 with the line (0, 0, 0, 0, t) is a compact set for any choice of p)

E1 = C =
{
x ∈ R5 : x2 ≥ 0, x4 ≥ 0, x2

5 ≤ 2 (x2)3 x4

}
.

The two blow-ups E1 and E2 are distinct. Moreover, vol(Bρ(x, r)∩E1) < vol(Bρ(x, r)∩E2)
and the two quantities are independent of r, we get that Θ∗(E, x) < Θ∗(E, x). 2 �

Remark 6.4. As a consequence of the rectifiability result in Section 7, one obtains that
the behaviour in Theorem 6.3, for a set with constant horizontal normal in F23, can only
arise for x belonging to a set of vanishing D1E-measure, which, in view of [Amb01], has
vanishing H9-measure.

Remark 6.5. It is not true that every blow-up for a constant-normal set is a cone. Indeed,
we may modify the above example by choosing Z as follows. Pick an increasing sequence
of natural numbers n1, n2, n3, ... with the property that nj+1 > n3

j . Define

Z = {0} ∪

 ∞⋃
j=1

(
1

n2
j

,
1

nj

] ∪ {0} ∪
 ∞⋃
j=1

[
− 1

nj
,− 1

n2
j

) .

Choose R` = 3

√
1
n`

. When we dilate by R` we have that ZR` contains
[
−1,− 1

n`

)
∪ {0} ∪(

1
n`
, 1
]

and does not intersect (−n`,−1) ∪ (1, n`). This implies that, with this choice of Z,

the blow-up of E :=
⋃
t∈Z Lexp(tX5)(C) for the sequence of dilations δR` is

⋃
t∈[−1,1](C+ te5),

which is not a cone.

7. Intrinsic rectifiability in step at most 4

Definition 7.1 (Vertical half-spaces). We say that a measurable set H of a Carnot group
G is a vertical half-space if it has constant normal and it is Z-monotone for all Z ∈
[Lie(G),Lie(G)].

2More precisely, every blow-up of E at x must contain E1 and be contained in E2, therefore the density
ratios of E1 and E2 at 0 are respectively Θ∗(E, x) and Θ∗(E, x).
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Theorem 7.2 (De Giorgi, FSSC). Let E ⊂ G be a finite-perimeter set in a Carnot group. If
for D1E-almost every x ∈ G we have that every tangent F of E at x is a vertical half-space,
then E is intrinsically rectifiable, in the sense of [FSS03].

Proposition 7.3. Let G be a Carnot group and let E ⊆ G be a set with constant normal.
If the step of G is at most 4, then for D1E-almost every x ∈ G we have that every tangent
F of E at x is a vertical half-space. Consequently, the set E is intrinsically rectifiable.

Proof. In this proof we use the following terminology: for all vectors X in the Lie algebra
of G we say that X is a monotone direction for E if X1E ≥ 0; we say that X is an invariant
direction for E if X1E = 0. We fix a basis X1, X2, . . . , Xm of the first layer V1 of G such
that X1 is a monotone direction and X2, . . . , Xm are invariant directions.

Since for all t ∈ R and all j = 2, . . . ,m the vector tXj is an invariant direction (for E)
and X1 is a monotone direction, then by [AKL09, Proposition 4.7.(ii)], we have that the
vector

(7.4) Adexp(tXj)X1 = e
adtXjX1 = X1 + t[Xj , X1] +

t2

2
[Xj , [Xj , X1]] +

t3

3
[Xj , [Xj , [Xj , X1]]]

is a monotone direction, where we have used that the step of G is at most 4. Dividing
(7.4) by t3 and letting t→ ±∞, we deduce that [Xj , [Xj , [Xj , X1]]] is an invariant direction.
Therefore, going back to (7.4) we have that

X1 + t[Xj , X1] +
t2

2
[Xj , [Xj , X1]],

is a monotone direction for all t. Dividing by t2 and letting t → +∞, we deduce that
[Xj , [Xj , X1]] is a monotone direction for E.

By [AKL09, Lemma 5.8], we have that for D1E-almost every x ∈ G and for every tangent
F of E at x the vector [Xj , [Xj , X1]] is an invariant direction for F , for all j = 2, . . . ,m.
Recall that moreover, every such F has the same constant normal as E. Therefore, similarly
as in (7.4) we then get that

X1 + t[Xj , X1], ∀t ∈ R,

is a monotone direction for F . Letting t → ±∞, we get that [Xj , X1] is an invariant
direction. In addition, recall that every element [Xj , Xk], for j, k = 2, . . . ,m, is an invariant
direction (since invariant directions for a subalgebra, see [AKL09, Proposition 4.7.(i)]). We
therefore found a set of of invariant directions that span the second layer V2. Hence, we
have

Z1F = 0, ∀Z ∈ V2.

Fix Z ∈ V2 and i = 1, . . . ,m. Then we have Z1F = 0, Xi1F ≥ 0, and [Z, [Z,Xi]] = 0,
since we are in step at most 4. Consequently, from [AKL09, Proposition 4.7] we have that
for all t ∈ R the vector

Xi + t[Z,Xi]

is a monotone direction for F . Letting t→ ±∞, we get that [Z,Xi] is an invariant direction.
Since such vectors span V3 we get that

W1F = 0, ∀W ∈ V3.



SETS WITH CONSTANT NORMAL IN CARNOT GROUPS 39

Similarly, for W ∈ V3 and i = 1, . . . ,m we get that Xi + t[W,Xi] is a monotone direction
for F for all t, and so is [W,Xi]. Thus every vector in V4 is an invariant direction for F . In
conclusion, the set F is a half-space. �
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P.O. Box (MaD), FI-40014, Finland

Email address: enrico.ledonne@unipi.it


	1. Introduction
	2. Sets with constant normal, representatives, and cone properties
	2.1. Some topological notions
	2.2. Lebesgue representatives
	2.3. Monotone directions
	2.4. Cone property
	2.5. Semigroups
	2.6. Topological consequences of the cone property
	2.7. Proofs of Theorems 1.1, 1.7, and 1.8

	3. Consequences on density and boundaries
	3.1. Various kinds of boundaries
	3.2. Global density estimates

	4. Euclidean cones and wedges of semigroups
	5. The free Carnot group of rank 2 and step 3
	5.1. Semigroups generated
	5.2. Exponential coordinates (of first kind)
	5.3. The semigroup in exponential coordinates and its wedge
	5.4. Some examples of constant normal sets

	6. Examples with pathologies
	6.1. Lack of the Caccioppoli set property in the Euclidean sense
	6.2. Non-uniqueness of subRiemannian tangents

	7. Intrinsic rectifiability in step at most 4
	References

