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Abstract: We consider positive-(1,1) De Rham currents in arbitrary
almost complex manifolds and prove the uniqueness of the tangent cone at
any point where the density does not have a jump with respect to all of its
values in a neighbourhood. Without this assumption, counterexamples to
the uniqueness of tangent cones can be produced already in C", hence our
result is optimal. The key idea is an implementation, for currents in an
almost complex setting, of the classical blow up of curves in algebraic or
symplectic geometry. Unlike the classical approach in C", we cannot rely on
plurisubharmonic potentials.
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1 Introduction

In many problems from analysis one is naturally led to study possi-
bly non-smooth objects: W12-harmonic maps between manifolds, volume-
minimizing currents and weak solutions to equations are a few important
examples. In order to understand the behaviour of the object around a sin-
gular point, the first study that is typically done is the blow-up analysis. We
look at the object inside smaller and smaller balls B,, (z) centered at the
chosen point x and dilate to a reference size (e.g. the unit ball). For any se-
quence 1, | 0 of radii the rescaled objects converge, up to a subsequence, to
what is called a tangent (tangent maps, tangent cones...). Of course we ask
the question: will we get different tangents by choosing different sequences
of radii for the blow-up analysis? If not, then we say that the object under
investigation has a unique tangent at the chosen point. This uniqueness is
a very important regularity property, which has been widely investigated in
several problems using different techniques. Without hoping to do justice to
the vast literature, we present a short overview (see also the survey [15]).

Regarding tangent cones at a point z of a mass-minimizing current it is
known that the masses of the rescaled currents converge in a non-increasing
fashion towards the so-called density at x: the speed of convergence is called
rate of decay of the mass ratio at x. An approach often used to prove



uniqueness of the tangent cone at z is to show that this rate of decay is
fast enough (see [12] 5.4.3). In [34] B. White proved the uniqueness of
tangent cone at all points of a 2-dimensional mass-minimizing integral cycle
by showing, via a comparison method, an epiperimetric inequality, from
which the desired decay followed. In [24] D. Pumberger and T. Riviére
proved, also by showing the “fast decay property”, that at any point of a
semi-calibrated integral 2-cycle the tangent cone is unique.

In other works on (semi-)calibrated 2-cycles alternative proofs have been
given by using techniques of slicing with positive intersection: this is the case
of integral pseudo-holomorphic 2-cycles in dimension 4 (C. H. Taubes in [31],
T. Riviére and G. Tian in |25]) and integral Special Legendrian 2-cycles in
dimension 5 (the author and T. Riviére in [2], [3]).

In [26] the uniqueness for pseudo holomorphic integral 2-dimensional cy-
cles is achieved in arbitrary codimension by means of a lower-epiperimetric
inequality.

In [29] L. Simon proved that if a tangent cone to a minimal integral
current has multiplicity one and has an isolated singularity, then it is unique.
This proof applies to tangents at isolated singular points for harmonic maps
taking values into an analytic manifold and is based on the Lojaciewicz
inequality, again leading to a rate of decay (for the energy) which implies
the uniqueness. On the other hand, White showed in [35] that tangent maps
at isolated singularities of harmonic maps might fail to be unique if the
assumption of analiticity on the target manifold is dropped.

Negative answers to the uniqueness of tangent cones have also been ob-
tained in the case of non-rectifiable mass-minimizing currents: this failure
was proved for positive-(p, p) normal cycles in a complex manifold by C. O.
Kiselman in [18]. In further works, e.g. [6] and [7], necessary and sufficient
conditions on the rate of decay of the mass ratio were given, under which
the uniqueness holds (these works are closely related to the issue of tangent
maps to plurisubharmonic maps).

The problems described so far are of elliptic type, the use of blow-up
techniques goes however much further. For example in 1] the authors address
a rectifiability issue for a measure arising in the context of conservation laws
for hyperbolic PDEs and employ for the proof a delicate blow-up analysis.
Turning our attention to a parabolic problem, the classification of possible
singularities arising after finite time for a Mean-Curvature Flow is again built
upon a blow-up analysis.

In the present work, an announcement of which appeared in [4], we will
be dealing with a a first order elliptic problem: we address the issue of the
uniqueness of blow-ups for positive-(1,1) normal cycles in almost complex
manifolds. We present a new technique, which does not require the under-
standing of the rate of decay. An analogous approach can be used (see [5]) to
yield the uniqueness of tangent cones to pseudo-holomorphic integral cycles



of arbitrary dimension and codimension.
We will now describe the setting and the connections to other problems,
after which a sketch of the proof will be provided.

Setting. Let (M, J) be a smooth almost complex manifold of dimension
2n + 2 (with n € N*), endowed with a non-degenerate 2-form w compatible
with J. If dw = 0 then we have a symplectic form, but we will not need
to assume closedness. Let g be the associated Riemannian metric, g(-,-) :=
w(-, J).

The form w is a semi-calibration on M for the metric g, i.e. the comass
|lw||* is 1; recall that the comass of w is defined to be

[|lw|[* := sup{{wg, &) = * € M, & is a unit simple 2-vector at =},

where the metric that we are using on T, M is naturally g,. Then
lw|* = 1 follows from w(-,-) = g(J-,-), recalling that J is an orthogonal
endomorphism. If w is closed, then we have a classical calibration, as in [16].

Among the oriented 2-dimensional planes of the Grassmannians G(x, T, M),
we pick those that, represented as unit simple 2-vectors, realize the equality
(W, &) = 1. Define the set G(w) of 2-planes calibrated by w as

G(w) := Ugem Gy = Uger{&s € G(z, Ty M) : {wy, &) = 1}

Before turning to the main object of these work, let us recall a few facts
from Geometric Measure Theory.

Currents were first introduced by De Rham as the dual space of smooth
and compactly supported differential forms (see [8]). Some distinguished
classes of currents have, since the sixties, played a key role in Geometric
Measure Theory (see [13], [12], [23], [14] or [28]).

For De Rham currents we have the notions of boundary and mass, which
we now recall in the case of interest, i.e. a 2-dimensional De Rham current
C (the case of general dimension is completely analogous).

The boundary 9C of C is the 1-dimensional current characterized by its
action on an arbitrary compactly supported one-form « as follows:

(0C)(a) :== C(da) = 0.
The mass of C is

M(C) :=sup{C(0) : # compactly supported 2-form, ||3||* < 1}.

A De Rham current C such that M (C) and M (9C) are finite is called a
normal current. Any current C of finite mass is representable by integration
(see [14] pages 125-126), i.e. there exist

(i) a positive Radon measure ||C/|,



(ii) a generalized tangent space Cp € Ay (T M), that is defined for
|C||-a.a. points z, is ||C||-measurable and has! mass-norm 1,

such that the action of C' on any 2-form ( with compact support is
expressed as follows

amzhwﬂww.

A current with zero boundary is shortly called a cycle. We will consider
a w-positive normal 2-cycle T. Equivalent notions of w-positiveness (see
[16] or [17]) are

o T' e convex hull of G(w) |T-a.e.
o (WT)=1 ||T|-ac.

The last condition is clearly equivalent to the important equality

ﬂmszfwm=Mm. 0

Remark that for arbitrary currents M (C) := sup{C(5) : ||5||* < 1} and
in general this sup need not be achieved. Also remark that for currents of
finite mass the action can be extended to forms with non-compact support
(actually to forms with merely bounded Borel coefficients, see [14] page 127).
So T'(w) in (1) makes sense.

In the case when w is closed, from (1) one also gets the important fact
that a w-positive T is (locally) homologically mass-minimizing (see [16]).
In the case of a non-closed w, the same argument shows that a w-positive
cycle T is locally an almost-minimizer of the mass (also called A-minimizer).
When the normal cycle is actually rectifiable (see [12] or [14] for definitions)
a common term used, instead of w-positive, is w-(semi)calibrated.

In the case we are investigating there is a useful equivalent character-
ization for the fact that a unit simple 2-vector at x is in G, i.e. it is
wy-calibrated. Indeed, testing on w; A we such that w; and wy are unit
orthogonal vectors at x for g, and recalling that J is an othogonal endomor-
phism of the tangent space we get

wr(wi Awa) =15 gp(Jp(wr),wa) =1 < Jp(wr) = wa. (2)

Thus a 2-plane is in G, if an only if it is Jy-invariant or, in other words,
if an only if it is Jp-holomorphic.

So an equivalent way to express w-positiveness is that || T[-a.c. T belongs
to the convex hull of J-holomorphic simple unit 2-vectors, in particular T

!The mass-norm for 2-vectors is defined in duality with the comass on two-forms. The
unit ball for the mass-norm on A2R?"*2 is the convex envelope of unit simple 2-vectors.



itself is J-invariant. For this reason w-positive normal cycles are also called
positive-(1,1) normal cycles?. Remarkably the (1,1)-condition only de-
pends on J, so a positive-(1,1) cycle is w-positive for any J-compatible
couple (w, g). This fact will turn out to be a key ingredient in our argument.

Positive cycles satisfy an important almost monotonicity property: at
. . M(TL By(x0)) - . . .
any point xp the mass ratio ——2  ~ 1san almost-increasing function
of r, i.e. it can be expressed as a weakly increasing function of r plus an

infinitesimal of r. The precise statement can be found in Section 2.

Monotonicity yields a well-defined limit

M(TL B, (z0))

v(zp) := lim 5

r—0 r
This is called the (two-dimensional) density of the current T" at the point xg
(Lelong number in the classical literature, see [20]). The almost monotonicity
property also yields that the density is an upper semi-continuous function.

Consider a dilation of T around zq of factor » which, in normal coordi-

nates around xg, is expressed by the push-forward of T under the action of
T — X0 .

the map
r

Tt B0 = [(222) 7] o) = 7 (o (22 ).
®)

The current 717, , is positive for the semi-calibration
P *
Waor 1= r—z(r(x —x0))*w,

with respect to the metric

a0 (6, Y) = 50 (5 = 20))2 X, (2 = 20)).).

We thus have the equality M (Ty, L B1) = M

are computed respectively with respect to g, , and g.
M(TL B (x
The fact that w

r
gives that, for r < ro (for a small enough rg), we are dealing with a fam-
ily of currents {7}, ,L By} that satisfy the hypothesis of Federer-Fleming’s

, where the masses

is monotonically almost-decreasing asr | 0

*We are using the term dimension for a current as it is customary in Geometric Measure
Theory, i.e. the dimension of a current is the degree of the forms it acts on. Remark
however that in the classical works on positive currents and plurisubharmonic functions,
e.g. [20] or [30], our 2-cycle in C™*! would actually be called a current of bidimension
(1,1) and bidegree (n,n).



compactness theorem (see [14] page 141) with respect to the flat metric (the
metrics g, converge, as r — 0, uniformly to the flat metric go).
Thus there exist a sequence 7, — 0 and a boundaryless current T, such
that
Teorn - B1 — Tio.

This procedure is called the blow up limit and the idea goes back to De
Giorgi [10]. Any such limit T turns out to be a cone (a so called tangent
cone to T at zp) with density at the origin the same as the density of T" at
. Moreover Ty, is wg,-positive.

The main issue regarding tangent cones is whether the limit T, depends
or not on the sequence r, | 0 yielded by the compactness theorem, i.e.
whether T, is unique or not. It is not hard to check that any two sequences
r, — 0 and p, — 0 fulfilling a < % < b for a,b > 0 must yield the
same tangent cone, so non-uniqueness can arise for sequences with different
asymptotic behaviours.

The fact that a current possesses a unique tangent cone is a symptom of
regularity, roughly speaking of regularity at infinitesimal level. It is generally
expected that currents minimizing (or almost-minimizing) functionals such
as the mass should have fairly good regularity properties. This issues are
however hard in general.

The uniqueness of tangent cones is known for some particular classes of
integral currents, namely for mass-minimizing integral cycles of dimension 2

([34]) and for general semi-calibrated integral 2-cycles (|24]).

Passing more generally to normal currents, things get harder. Many
examples of w-positive normal 2-cycles can be given by taking a family of
pseudoholomorphic curves and assigning a positive Radon measure on it
(this can be made rigorous). However w-positive normal 2-cycles need not
be necessarily of this form, as the following example shows.

Ezample 1.1. In R* =2 C?, with the standard complex structure, consider the
unit sphere S3 and the standard contact form + on it.

The 2-dimensional current C supported in S? and dual to v, i.e. defined
by C1(8) == [gsv A B dH?, is positive-(1,1) and its boundary is given by
0C (o) = f53 dy A o dH3, i.e. the boundary is the 1-current given by the
uniform Hausdorff measure on S and the Reeb vector field.

Now consider the positive-(1,1) cone C with vertex at the origin, ob-
tained by assigning the uniform measure ﬁHQ on CP!, i.e. C is obtained by
taking the family of holomorphic disks through the origin and endowing it
with a unifom measure of total mass 1. The current Cq := C'L(R*\ B}(0))
has boundary 0Cy = —9C1, therefore C 4+ Cs is a positive-(1,1) cycle.

This construction shows that a w-positive normal 2-cycle T is not very
rigid and it is not true that, restricting for example to a ball B, the current



TL B is the unique minimizer for its boundary (which is instead true for
integral cycles). Indeed it is not even the unique w-positive normal current
with that boundary. This can be interpreted as a lack of unique continuation
for these currents.

This issue reflects (as will be shown in Section 6) into the fact that the
uniqueness of tangent cones to w-positive normal 2-cycles fails in general,
already in the case of the complex manifold (C", Jy), where Jy is the stan-
dard complex structure: this was proven by Kiselman [18]. Further works
extended the result to arbitrary dimension and codimension (see [6] and |7],
where conditions on the rate of convergence of the mass ratio are given,
under which uniqueness holds).

While in the integrable case (C",.Jy) positive cycles have been studied
quite extensively, there are no results avaliable when the structure J is almost
complex.

In this work we prove the following result:

Theorem 1.1. Given an almost complex (2n + 2)-dimensional manifold
(M, J,w, g) as above, let T be a positive-(1,1) normal cycle, or equivalently
a w-positive normal 2-cycle.

Let x¢ be a point of positive density v(xg) > 0 and assume that there is
a sequence Ty, — xg of points ry, # xo all having positive densities v(xy,)
and such that v(x,,) — v(xg).

Then the tangent cone al xo is unique and is given by v(xg)[D] for a
certain Jy,-invariant disk D.

The notation [D] stands for the current of integration on D. Our proof
actually yields the stronger result stated in Theorem 2.1.

In the integrable case (C™, .Jy), Siu [30] proved a beautiful and remarkable
regularity theorem, which in our situation states the following: given ¢ > 0,
the set of points of a positive-(1,1) cycle of density > ¢ is made of analytic
varieties each carrying a positive, real, constant multiplicity. Therefore, in
the integrable case, Theorem 1.1 follows from Siu’s result.

In the non-integrable case, on the other hand, there are no regularity
results avaliable at the moment. The proofs of Siu’s theorem given in the
integrable case, see [30], [19], [21], [9], strongly rely on a connection with
a plurisubharmonic potential for the current, which is not avaliable in the
almost complex setting.

In addition to the interest for tangent cones themselves, Theorems 1.1
and 2.1 are a first step towards a regularity result analogous to the one in [30],
this time in the non-integrable setting (they can be seen as an infinitesimal
version of that). The quest for such a regularity result is strongly motivated
by several geometric issues, problems where the structure must be perturbed
from a complex to almost complex one, in order to ensure some transversality



conditions. Some of these are discussed in [11], [25], [32], [33]. We give here
an example related to the study of pseudo-holomorphic maps into algebraic
varieties, as those analyzed in [25]. Indeed, if u : M* — CP! is pseudoholo-
morphic and locally strongly approximable as in [25], with M* a compact
closed 4-dimensional almost-complex manifold, denoting by w the symplec-
tic form on CP', then the 2-current U defined by U(8) := [, u*w A Bis a
positive-(1,1) normal cycle in M*. As explained in [25], as a consequence of
the fact that such a map is stationary harmonic, the singular set of u is of
zero H2-measure and coincides with the set of points where the density of U
is > ¢, for a positive € depending on M* (this is a so-called e-regularity result,
see |27]). Then we would be reduced, in order to understand singularities of
u, to the study of points of density > € of U. Knowing that such a set is
made of pseudoholomorphic subvarieties, together with the fact that it is 72-
null, would imply that the singular set is made of isolated points, the same
result achieved in [25] with different techniques. Let us now go a bit further
in this example and roughly describe how we can also face compactness is-
sues. Consider a sequence {u,} of maps as in [25] and assume u, — us
weakly in W12, For the associated currents Uy, (8) := [}, uw A 3 we have
the convergence U, — U, where U is a positive-(1, 1) current but it does not
necessarily hold that U(8) = [},4 u%,@ A3 because bubbling phenomena can
occur. Indeed we will have a concentration set (where bubbling occurs) and
the limiting map us is a priori not necessarily stationary harmonic (from
the general theory of harmonic maps). This failure of stationarity is due to
the possible appearance of topological singularities for us.. However topo-
logical singularities must be the boundary of the concentration set and the
concentration set is characterized as the set of points where the density for
U is > e. Then a result analogous to Siu’s would give that the concentration
set is a cycle, thus ruling out the appearence of topological singularities and
yielding that us is also stationary harmonic.

The strategy might then be applied to other dimensions. Positive-(1,1)
cycles, or more generally other calibrated currents, might also serve for other
kind of problems, in which e-regularity results play a role, for example when
dealing with some Yang-Mills fields for high dimensional Gauge Theory (see
for example the case of anti-self-dual instantons in Section 5 of the survey

[33]).

Sketch of the proof. The key idea for the proof of our result is to
realize for our current a sort of “algebraic blow up”.

This is a well-known construction in Algebraic and Symplectic Geometry,
with the name “blow up”. To avoid confusion we will call it algebraic blow up,
since we have already introduced the notion of blow up as limit of dilations, as
customary in Geometric Measure Theory. We now briefly recall the algebraic
blow up in the complex setting (see figure 2).

Algebraic blow up (or proper transform), (see [22]). Define C" to be



the submanifold of CP" x C"*! made of the pairs (¢, (zq,...z,)) such that
(20, ..-2n) € L.

C"*1 is a complex submanifold and inherits from CP" x C"*! the stan-
dard complex structure, which we denote Iy. The metric gy on C"*! is
inherited from the ambient CP" x C™*!, that is endowed with the product
of the Fubini-Study metric on CP" and of the flat metric on Ctl. Let
® : C*! — C™! be the projection map (¢, (20,...2n)) — (20,...2n). @
is holomorphic for the standard complex structures Jy on C™1 and Iy on
C"*! and is a diffeomorphism between C**1\ (CP" x {0}) and C"*!1\ {0}.
Moreover the inverse image of {0} is CP" x {0}.

C™*! is a complex line bundle on CP" but we will later view it as an
orientable manifold of (real) dimension 2n + 2. The transformation &1
(called proper transform) sends the point 0 # (20, ...25) € C™*! to the point
([20, ---2n]; (20, ...2n)) € C™1 C CP™ x C**!. With the almost complex
structures Jy and Iy, the Jp-holomorphic planes through the origin are sent
to the fibers of the line bundle, which are Iy-holomorphic planes.

Outline of the argument. We have a positive-(1,1) normal cycle T in
C"*1) at the moment with reference to the standard complex structure Jp,
and we want to to understand the tangent cones at the origin, that we
assume to be a point of density 1. By assumption we have a sequence of
points z,, — 0 with densities converging to 1. Take a subsequence z,,, such
that ——&. — y for a point y € IB;.

|xmk|
We can make sense (section 4) of the proper transform ((Ifl) I, although

the map ®~! degenerates at the origin, and prove that (q)*l)*T is a positive-
(1,1) normal cycle in (C"*1, Iy, go).

The densities of points different than the origin are preserved under the
proper transform (see the appendix), therefore the current (@‘1)*T has a

sequence of points converging to a certain yo (that lives in CP"x {0} C crl
and the densities of these points converge to 1. More precisely yo = H(y),
where H : §?"*t1 — CP" is the Hopf projection.

(q)_l)*T is a positive-(1,1) cycle in (((NZ”“,IO,gO), so by upper semi-
continuity of the density yq is also a point of density > 1.

Turning now to a sequence Tj ., of dilated currents, with a limiting cone
T, we can take the proper transforms (@‘1)*T07Tn and find that all of
them share the features just described, with the same yo (because radial
dilations do not affect the fact that there is a sequence of points of density 1
whose normalizations converge to y). But going to the limit we realize that
((I>_1)*T0M weakly converge to the proper transform (@‘1)*Too, which is
also positive-(1,1).

The mass is continuous under weak convergence of positive (or calibrated)
currents, therefore gy is a point of density > 1 for (@fl)*Too. This limit,
however, is of a very peculiar form, being the transform of a cone. Recall that



the fibers of C"*! are holomorphic planes coming from holomorphic planes
through the origin of C"*1. Since Ty, is a positive-(1, 1) cone, it is made of a
weighted family of holomorphic disks through the origin, as described in (4),
and the weight is a positive measure. Then (@fl)*Too is made of a family

of fibers of the line bundle C"*! with a positive weight. Then the fact that
1o has density > 1 implies that the whole fiber LY at yq is counted with a
weight > 1. Transforming back, T, must contain the plane ®(LY) with a
weight > 1.

But the density of T" at the origin is 1, so there is no space for anything
else and T, must be the disk ®(L¥) with multiplicity 1. Since we started
from an arbitrary sequence r,, the proof is complete, and it is also clear that

H Q%&) cannot have accumulation points other than yyg.

In the almost complex setting we need to adapt the algebraic blow up,
respecting the almost complex structure.

In the next section we recall some facts on monotonicity and tangent
cones for w-positive cycles and state the stronger Theorem 2.1.

In Section 3 we construct suitable coordinates, used in Section 4 for the
almost complex implementation of the algebraic blow up. In Section 4 we
also face the hard analysis aspects of our technique, namely we prove that
the proper transform actually yields a current of finite mass and without
boundary. Appendix B contains two lemmas: pseudo holomorphic maps
preserve both the (1, 1)-condition and the densities. With all this, in Section
5 we conclude the proof. In Section 6 we revisit some essential aspects of
the construction in [18] by means of our blow up technique, which sheds new
light on the geometry of Kiselman’s counterexample.
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2 Tangent cones to positive-(1,1) cycles.

Given an almost complex (2n + 2)-dimensional manifold (M, J,w, g), let
T be a w-positive normal 2-cycle. Tangent cones are a local matter, it suffices
then to work in a chart around the point under investigation.

10



One of the key properties of positive currents is the following almost
monotonicity property for the mass-ratio. The statement here follows from
proposition B.1 in the appendix, which is in turn borrowed from [24].

Proposition 2.1. Let T be a w-positive normal cycle in an open and bounded
set of R>"2 | endowed with a metric g and a semicalibration w. We assume
that g and w are L-Lipschitz for some constant L > 1 and that %]I < g <ol
where I is the identity matriz, representing the flat metric.

Let By (xo) be the ball of radius r around xo with respect to the metric gz,
and let M be the mass computed with respect to the metric g. There exists
ro > 0 depending only on L such that, for any zq and for r < ro the mass ra-
tio W s an almost-increasing function inr, i.e. WI_—BJ(M =
R(r) + 0,(1) for a function R that is monotonically non—mcreas?gg asrT |0
and a function o,(1) which is infinitesimal of r.

Independently of xq, the perturbation term o,(1) is bounded in modulus
by C - L-r, where C is a universal constant.

The fact that rg and C do not depend on the point yield that the density
v(z) of T is an upper semi-continuous function; the proof is rather standard.

Another very important consequence of monotonicity is that the mass
is continuous and not just lower semi-continuous under weak convergence
of semicalibrated or positive cycles. Basically this is due to the fact that
computing mass for a w-positive cycle amounts to testing it on the form
w, as described in (1); testing on forms is exactly how weak convergence is
defined. This fact is of key importance for this work and will be formally
proved when needed (see (27) in Section 5).

Let us now focus on tangent cones. If we perform the blow up procedure
around a point of density 0, then the limiting cone is unique and is the zero-
current. So in this situation there is no issue about the uniqueness of the
tangent cone.

We are therefore interested in the limiting behaviour around a point xg
of strictly positive density v(zg) > 0.

From [6] we know that any normal positive 2-cone in C"*! is a posi-
tive Radon measure on CP". Combining® this with the fact that a tangent
cone Ty, at zg to a w-positive cycle is wy,-positive and has density v(z¢) at
the vertex, we get that Ty, is represented by a Radon measure, with total
measure v(xg), on the set of wy,-calibrated 2-planes. Precisely, there exists
a positive Radon measure 7 on CP" such that, denoting by DX the J,,-
holomorphic unit disk in B?"2(0) corresponding to X € CP", the action of
T on any two-form f is expressed as

3As explained in [18] and [6], the family of possible tangent cones at a point xo must
be a convex and connected subset of the space of wg,-positive cones with density v(zo).

11



)= [ {[ 0.5%afarx) ()

Let xy be a point of positive density v(xg) > 0 and assume that there is
a sequence x,, — xqo of points of positive density v(x,,) > k > 0 for a fixed
k > 0. By upper-semicontinuity of v it must be v(zg) > k.

Blow up around xg for the sequence of radii |z,,—x|: up to a subsequence
we get a tangent cone T,. What can we immediately say about this cone?

With these dilations, the currents T, ... 5, always have a point y, :=
% on the boundary of B; with density v(y,,) > k. By compactness we
can assume y,,, — y € 0B1. By monotonicity, for any fixed § > 0, localizing
to the ball Bs(y) we find, using (1) and recalling from (3) that Tt and Ty,

are positive respectively for wa, := w(zo) and wg,,r == 5 (r(z — 20))* (W),

M{(Too L B5(y) = Too (X5 We0) = B T —a0) (X5 ) 0) =

XBs(y)
|Zm — 20/
= ]i%nM(Txm‘xm,xd LB(S(y)) Z :‘Q?T(SQ,

liﬂrln Tw0,|xmf:r0| (“rm - xO‘(x - wo))* Wi =

which? implies that y has density v(y) > k.

Therefore Ty, “must contain” k[D], where D is the holomorphic disk
through 0 and y; i.e. Too — K[D] is a wg,-positive cone having density
v(zg) — k at the vertex.

More precisely, what we have just shown the following well-known lemma.
In the sequel H : 8?1 — CP” denotes the standard Hopf projection.

Lemma 2.1. Let x¢ be a point of positive density v(xg) > 0 and assume
that there is a sequence L., — Tg, Tm F To, of points of positive density
v(zm) > k> 0 for a fited k > 0. Let {ya}taca be the set of accumulation

points on CP™ for the sequence Yy, == H ( Lol ) Let D, be the Jg,-

[zm—o
holomorphic disk in Ty, M containing 0 and H = (y,). Then for every o € A
there is at least a tangent cone to T at xy of the form k[Dy] + Ty, for a
Wqo -positive cone Ty,.

In other words, each k[D,] “must appear” in at least one tangent cone.
What about all other (possibly different) tangent cones that we get by choos-
ing different sequences of radii?

The following result shows that any tangent cone to T' at x¢ “must con-
tain” each disk k[D,], for all a € A.

4This computation is an instance of the fact that the mass is continuous under weak con-
vergence of positive currents, unlike the general case when it is just lower semi-continuous.
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Theorem 2.1. Given an almost complex (2n + 2)-dimensional manifold
(M, J,w,g), let T be a w-positive normal 2-cycle.

Let x¢ be a point of positive density v(xg) > 0 and assume that there is
a sequence of points {xy,} such that x,, — x0, Ty # xo and the x,, have
positive densities satisfying liminf,, oo v(x,,) > K for a fized k > 0.

Let {ya}aca be the set of accumulation points on CP™ for the sequence
Ym = H <M> Let Dy, be the Jy,-holomorphic disk in Ty, M containing

|Tm—zo]
0 and H 1 (y,).
Then the points y,’s are finitely many and any tangent cone T to T at
xq s such that Too — ®ak[Da], is a wy, -positive cone.

Remark 2.1. Tt follows that the cardinality of the y,’s is bounded by LV(IO)J .

In particular, Theorem 1.1 follows from this result.

3 Pseudo holomorphic polar coordinates

T is w-positive 2-cycle of finite mass in a (2n + 2)-dimensional almost
complex manifold endowed with a compatible metric and form, (M, J,w, g);
T is shortly called a positive-(1,1) normal cycle.

Since tangent cones to T  at a point z are a local issue it suffices to work in
a chart. We can assume straight from the beginning to work in the geodesic
ball of radius 2, in normal coordinates centered at xq; for this purpose it
is enough to start with the current T already dilated enough around x.
Always up to a dilation, without loss of generality we can actually start with
the following situation.

T is a w-positive normal cycle in the unit ball BS”H(O), the coordinates
are normal, J is the standard complex structure at the origin, w is the
standard symplectic form wq at the origin, |w — onCQYV(BSnH) and |[|J —
J0||CQ,V(B§n+2) are small enough.

The dilations needed for the blow up are expressed by the map z forr >0
r

(we are in a normal chart centered at the origin). So in these coordinates we
need to look at the family of currents

x

Ty, = (—) T.
T/ %

It turns out effective, however, to work in coordinates adapted to the
almost-complex structure, as we are going to explain in this section.

With coordinates (20, ...z,) in C*""! we use the notation (¢ is a small
positive number)

8. = {(z0,21,20) € BE2 C O 2 (a1, za)| < (L4 €)|0l}. (5)

13



We have a canonical identification of X = [z, 21, ..., 2,] € CP" with the
2-dimensional plane DX = {((z0, 21, ..., 2n) : ¢ € C}, which is complex for
the standard structure Jj.

As X ranges in the open ball

V. CCP", V. :={[20,21,-s2n] : |(21, -, 2n)| < (L +€)|20|},

the planes DX foliate the sector S.. We thus canonically get a polar
foliation of the sector, by means of holomorphic disks.

Let the ball (of radius 2) B""? C R?*"*2 be endowed with an almost
complex structure J. The same set as in (5), this time thought of as a
subset of (B3"*2,.J), will be denoted by S..

We can get a polar foliation of the sector Sy, by means of J-pseudo
holomorphic disks; this is achieved by perturbing the canonical foliation
exhibited for S.. The case n = 1 is Lemma A.2 in the appendix of [25], the
proof is however valid for any n; the reader can refer to our Appendix A for
the construction in arbitrary dimension. Here is the statement as we will
need it in the sequel.

Existence of a J-pseudo holomorphic polar foliation. There exists
ag > 0 small enough such that, if ||J — JOHCQ,,,(BgnH) < agand J = Jp at
the origin, then the following holds.

There exists a C>’-map

S, — (B22) (6)

that is a diffeomorphism with its image and that extends continuously up
to the origin, with ¥(0) = 0, with the following properties (see top picture
of figure 1):

(i) W sends the 2-disk DX NS, represented by X = [2q, 21, ...z,] € CP" to
an embedded J-pseudo holomorphic disk through 0 with tangent DX
at the origin;

(i) the image of ¥ contains Sy = B2 N {|(21, ..., zn)| < |20|};

(iii) [[W — Id||¢2.v(s.) < Co, where Cp is a positive constant that can be
made as small as wished by assuming ag small enough.

The collection {W¥ (DY) : Y € V.} of these embedded J-pseudo holo-
morphic disks foliates a neighbourhood of the sector Sp; we will call it a
J-pseudo holomorphic polar foliation.

The proof (see [25]) also shows that, in order to foliate Sy, the € needed
in (6) can be made small by taking ag small enough.

14



Rescale the foliation. We are now going to use this polar foliation to
construct coordinates adapted to J.

The result in [25] actually shows that there exists ap such that for all
a € [0,a9], if ||J — JOHCQ,U(BgnH) =« and J = Jy at the origin, then there
is a map ¥, yielding a polar foliation with [[Wq — Id|c2.v(s.) < 0a(1) (an
infinitesimal of «).

We make use however only of the result for ag, as we are about to explain.
When we dilate the current 7" in normal coordinates with a factor r and look
at the dilated current in the new ball B2""2 we find that it is positive-(1,1)
for J,, where J, := (A\71)*J, ie. Jp (V) i= (A)o[J (A1) V)]

As r — 0 it holds ||J, — J0||02,,,(B§n+2) — 0. Once we have applied
the existence result of the J-pseudo holomorphic polar foliation to the ball
B3 endowed with J (assuming ||.J —Jo||c2 < ap), then we get a J,-pseudo

holomorphic polar foliation of (Bsg, J;-) just as follows.

¥
D* - (DY)

”

{ o shrink Y ! dilate

Figure 1: J-pseudo holomorphic polar foliation via ¥ and J.-pseudo holo-
morphic polar foliation via V...

Let A be the dilation (in Euclidean coordinates) x — %; we use the tilda

to remind that we are in S~5. The same dilation in normal coordinates in
U(S.) C (B2, J) is denoted by \,. Introduce the map (see figure 1)

v, S - (BgnJrQ,Jr)

i (7)
r — AoWol l(z).

W, clearly yields a J,.-pseudo holomorphic polar foliation for the ball
Bg”“ endowed with J,.. Remark, in view of (11), that ¥, can actually be
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defined on the sector A.(S.).
From the proof in [25] we get that® ¥, — Id in C'(S.) as r — 0.

Adapted coordinates. The aim is to pull back the problem on S. via
¥. Endow for this purpose S. with the almost complex structure ¥*.J.

Recall that we have in mind to look at Tp, in (Bg"”, Jr) asr — 0. So
we are going to study the family

(w71), [Tort (0:(S)]

as r — 0. For each r > 0 these currents are positive-(1,1) normal cycles
in S; endowed with the almost complex structure ¥y.J,, as proved in Lemma
B.1.

It is elementary to check that
T g, = (AT O, = (ATH 0,

80 we can equivalently look, for » > 0, at S. with the almost complex struc-
ture (A 1)*W*J. The latter is obtained from (S., ¥*.J) by dilation. Remark
that WrJ, — Jo in CY as r — 0; moreover, assuming g small enough, the
fact that DW is C%close to I yields |V (¥*J)| < 2|V.J|.

We are looking, in normal coordinates, at a sequence Tp,, := (A, )T =
(i) T — Tw. Restricting to ¥, (S.), i.e. To,, LY, (S:), we pull back

Tn

the problem on S. and look at

(0.1, (Tor, L0, (S0)) (8)

Recalling that ¥, — Id in C! and that T, 0,~, have equibounded masses
we have, for any two-form (3,

(1), (Tor, L0, (8) (8) = (1), (Tor, LW, (S2)) (8) = 0. (9)

This follows with a proof as in step 2 of lemma B.2, by writing the
difference (U, 71)*3 — Id*{ in terms of the coefficients of 3. Then from (8)
and (9) we get
lim (U;1) (TOML\I!T”(S‘E)> - <lim ()\rn)*T>LS€. (10)

n—oo n—oo

®This follows, with reference to the notation in [25], by observing that the map =, on
page 84 (associated to the diffeomorphism that we called W) satisfies 2 — Id uniformly
as ¢ — 0, by the condition that above we called (i). Then the C"” bounds there and
Ascoli-Arzeld’s theorem (applied to DV,) yield that ¥, — Id in cl.
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In the last equality we are identifying the space with the tilda and the
one without (because they can be naturally identifies after taking limits).
On the other hand by (6) we have

(@), (Tor, L0 (80)) = [(92), A, (TLO(S)) | LS

- [(XM)* (v, (TL\IJ(S‘E)H LS. (11)

What we have obtained with (10) and (11) is that, using ¥, we can just
pull back T to S. endowed with ¥*J, ¥*¢ and ¥*w and dilate with ), and
observe what happens in the limit. All the possible limits of this family are
cones, namely all the possible tangent cones to the original T, restricted to
the sector S;.

All the information we need about the family Ty, LSy can be obtained
in this way. So we are substituting the blow up in normal coordinates
with a different one, that behaves well with respect to J and has the same
asymptotic behaviour, i.e. it yields the same cones.

Remark that lemmas B.1 and B.2 tell us that (¥~1), (TL\I/(S’E)> is still
positive-(1,1) and the densities are preserved. Observe that we cannot use
the monotonicity formula for (¥~1) (TL\II(S'E)> at the origin, since 0 is

now a boundary point. However the monotonicity for T' reflects into the
following

Lemma 3.1. For the current (\I’_l)* (TI_\I/(Sg)), with respect to the flat

metric in Se, it holds

M ((\1/71)* (TLsz(S})) L(B,N&.)

2

) <K (12)
with a constant K independent of r.

proof of lemma 3.1. We denote, only for this proof, by C the current
(w1, (Tup(s;)). Since [DW — I| < er” (where I = D(Id) is the identity
matrix) and g = go + O(r?) (where go is the flat metric), we also get ¥*g =
g0 + O(r").
Comparing the masses of C' with respect to go and ¥*g we get
My, (CL(B, N &.)) < (14067 M-y (CL(B,NS)).

where B, is always Euclidean. Now recall that, by the positiveness of
the currents,

M-, (CL(BT N 5;)) - <CL(BT N s;)) (T*w) = M, (TL\IJ(BT N SE)) .
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The condition |¥ — Id| < er™* implies that (B, NS.) C B,y et NSe.
In S: coordinates are normal, so, putting all together:

M,, (CL(BT N 5}))

14+v\2
: < (11 o)) LT My (TL By erir)

r2 (r +critv)2z 7

r

which is equibounded in r by almost monotonicity (Proposition 2.1).
U

So we restate our problem in the following terms, where we drop the
tildas and the pull-backs (resp. push-forwards) via ¥ (resp. W~!), since
there will be no more confusion arising. It is also clear that we can take
€ = 0 and just work in § := & rather than S;, which will make the notation
lighter and the exposition easier to follow.

New setting: pseudo holomorphic polar coordinates.
Endow S := Sy C Bi"*%(0) with a smooth almost complex structure J
such that, denoting by Jy the standard complex structure,

e there is @ > 0 such that for any 0 < r < 1, |[J — JO‘CO(SQBT) <Q-r
and |VJ| < @ (and @ can be assumed to be small);

e the 2-planes DX (for X € V :=V),) foliating the sector S are J-pseudo
holomorphic.

Let w and g be respectively a compatible non-degenerate two-form and
the associated Riemannian metric such that |lw — wolcosnp,) < @ - r and
g — gollco(snp,) < @ -7, where wy and go are the standard ones.

Let T be a positive-(1,1) normal cycle in S.

Study the asymptotic behaviour as  — 0 of the family (\,), T, where
A = % in Euclidean coordinates. More precisely we can restate Theorem
2.1 as follows; in Theorem 2.1 we can assume, up to a rotation and passing

to a subsequence, that y,, = % — (1,0,...,0).

Proposition 3.1. With the assumptions just made on J and T, assume
that there exists a sequence x,, — 0, 0 # x,, € S, of points all having
densities satisfying Uminf,, .o v(zy) > k for a fired K > 0 and such that
Ym 1= é:‘ — (1,0,...,0). Then any limit

lim (A,), T

T —
is a positive-(1,1) cone (for Jy) of the form K[DWO O 4T, where T is also
a positive-(1,1) cone for Jo (T possibly depending on {r,}).

Remark 3.1. As observed in (12), our new T satisfies, with respect to the

M(T|_(B,
,,,2

flat metric, ns) < K for a constant independent of r.

18



4 Algebraic blow up

The classical symplectic (or algebraic) blow up was recalled in the in-
troduction (maps ® and ®~' in figure 2). More details can be found in
[22]. C™™! is a complex line bundle over CP", that we view as an embedded
sumbanifold in CP" x C"*!. We use standard coordinates on CP" x C"t!
coming from the product, so we have 2n “horizontal variables” and 2n + 2
“vertical variables”. The standard symplectic form on CP" x C"*! is given
by the two form Ycpn + Uent1, where Uopn is the standard symplectic form®
on CP" extended to CP" x C"*! (so independent of the “vertical variables”)
and Ygnt1 is the symplectic two-form on C"*!) extended to CP" x C™*! (so
independent of the “horizontal variables”). To Ycpn + Jcn+1 we associate the
standard metric, i.e. the product of the Fubini-Study metric on CP" and
the flat metric on C"*!. The associated complex structure is denoted .

As a complex submanifold, C™*! inherits from the ambient space a com-
plex structure, still denoted Iy, and the restricted symplectic form 9y :=
E* (Ucpr 4 Ygn+1), where £ is the embedding in CP" x C"*1. Let further go
denote the ambient metric restricted to C"*!: g is then compatible with I
and 190, i.e. 190(-, ) = go(-, _IO')-

We now turn to the almost complex situation and will adapt the previous
construction by building on the results of Section 3.

Implementation in the almost complex setting. We make use of
the notation

S =8y ={(20,21,...2n) € B%n+2 c cntl . |(21, s 2n)| < |20|}

‘ 2

as in (5). Also recall that V =V, := {Zn 1z

The inverse image ®~1(S) is given by {({,z) € VxC" : 0 < |2| < 1}.
The union ®~1(S) U (V x{0}) will be denoted by A.
A is an open set in C™! but we will endow it with other almost complex

structures, different from Iy, so A should be thought of just as an oriented
manifold and the structure on it will be specified in every instance.

We will keep using the same letters ®~! and ® to denote the restricted
maps

L S |

o: A—-SU{0} (13)

5In the chart C" = {20 # 0} of CP", the form J¢pn is expressed, using coordinates
Z =(Z1,..., Zn), by 00f, where f = %log(1+ |Z|*) (see [22]). The metric grs associated
to Yepn and to the standard complex structure is called Fubini-Study metric and it fulfils
11 < grs < 4T when we compare it to the flat metric on the domain {|Z] < 1}.
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also when we look at these spaces just as oriented manifolds (not complex
ones). We will make use of the notation

8P :=8NB"* and A? := d1(SP) U (V x{0}).

-1
@

Figure 2: Blowing up the origin. The maps ® ! :S — A and ® : A —
Su{0}.

Define on A \ (CP™ x {0}):
e the almost complex structure [ := ®*J, i.e. I() := (@_1)*J<I>*(‘),

e the metric g(+,-) := % (go(+s-) + 8oL+ 14)),

e the non-degenerate two-form 9(-,-) :=g(I-,-) = % (go(I+,-) —go(+, I+)).
The triple (I, g, ) is smooth on A\ (CP" x {0}) and makes it an almost
Hermitian manifold. We do not know yet, however, the behaviour of (I, g, )

as we approach V x{0}.

Lemma 4.1 (the new structure is Lipschitz). The almost complex struc-
ture I fulfils

[T = Io|(-) < edistg, (-, CP" x {0}),

forc=C-Q, where C' is a dimensional constant and Q) is as in the hypoth-
esis on J (paragraph “new setting”, just before Proposition 3.1). The almost
complex structure I can thus be extended continuously across V x{0}.
Analogously we have |g—go|(+) < cdistg, (-, CP" x{0}) and |9 —19](-) <
cdistg, (-, CP™x{0}). The triple (I,g,9) can be extended across CP" x {0}
to the whole of A by setting it to be the standard (1y, go,%9) on CP™ x {0}.
The structures I,g,9 so defined are globally Lipschitz-continuos on A, with
Lipschitz constant L+C'-Q, where L > 0 is an upper bound for the Lipschitz
constants of Iy, go and ¥y (with respect to Euclidean coordinates on V x D?).
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proof of lemma 4.1. Recall that ® is holomorphic for the standard struc-
tures Jy and Iy. With respect to the flat metric on S, we can choose an
orthonormal basis at any point ¢ # 0 made as follows:

{le JO(Ll)a Lo, JO(L2)7 coey L, JU(LTL)a w, JO(W)}7

where W and Jo(W) span the Jy-complex 2-plane through the origin and q.
The map (@), is holomorphic and sends this basis to one at (®71)(q) €
A, sending W and Iy(W) to a pair of vectors spanning the fiber through
((I>_1)(q). On the vertical vectors (q)_l)* is length preserving, while for the
others [(®1) L;| = [(®71), Jo(Ly)| = \%I’ as one can compute from the
explicit expression of the Fubini-Study metric?.

Reversing this construction we can choose two basis, respectively at p
and ¢ = ®(p), as follows:

{Hy,Io(H1), ..., Hp, Io(Hy), V, In(V)}

made of gp-unit vectors with scalar products w.r.t. go bounded by |g|, and

1 1 1 1
7Kl) 7J0(K1)> ceey 7Kn7 7J0(Kn)7 W) JO(W)} ’
{Iql lq] lal " gl

orthonormal at ¢ = ®(p), such that:
(i) K; :=®,H; and W := ®,V;

(ii) V and Io(V) are vertical, i.e. they span the vertical fiber through p:
by (i), W and Jo(W) span the Jy-complex 2-plane through the origin
and q.

By the assumption that J is close to Jy in By we can write the action of
J on Kj as

J(E) = (L+ NJo(K1) + > i+ g Jo(Kj)+
j=1 j=2

+[qleW1 + |q|6Jo(W1).

(14)

"Recall that the Kahler form associated to the Fubini-Study metric on the complex
manifold CP" in the chart zo # 0 is

S d2? NdF #Zm 2%m 7 A d2™
‘z,‘Q - n 2.2 2°
J2of? (14 S5y ) a<hmen faolt (14 )y 1228)

By SU(n + 1)-invariance it is enough to work on the complex line corresponding to
[1,0,...,0] € CP" in order to compute [(®~") L;| and |[(®~") Jo(L;)|. On this line the

form reads W and thus the lengths of the vectors L; and Jo(L;) get multiplied

by ﬁ under the map (@71).
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Here A, p15, fi;, 0 and & are functions on § depending on J — Jy, evaluated
at ¢, so their moduli are bounded by |J — Jp|(q) < Qlq].

Let us write the action of I on H; explicitly: by definition of I, using
(14),

I(Hy) = (271),J®.(H) = (971), T (K1) =

= ((14\) o ®)Io(Hy) + Z o<I>H+Z 0 ®)Io(K;)+
7=1

+lgl(o 0 <I>)V1 + |g|(6 0 @) Io(V1).

(15)

Similar expressions are obtained for the actions on H; and Io(H;) for all
7. Now

J(W) = oW + (14 6)Jo(W),

since the 2-plane spanned by W and Jy(W) is J-pseudo holomorphic by
hypothesis.

Here o and & are functions on S depending on J — Jp, evaluated at g,
and their moduli are bounded by |J — Jp| < Q|q|.

So the action of I on V is explicitly given by

I(V):=(®71) Jo. (V) = (7)) J(W) =
=(co®) (@), W)+ ((1+5)0®)(27"), Jo(W)

*

= (0B + ((1+5) 0 ®)Iy(V). (16)

So we have, from (15) and (16) that there exists ¢ = C - @ (for some
dimensional constant C) such that (I — Iy) at the point p = (®71)(g) has
norm < c|g| = c distg, (-, CP™ x {0}).

The analogous estimates on g and 1 follow by their definition. So we can
extend the triple (I, g, ) across CP" x {0} in a Lipschitz continuous fashion.

From (15) and (16) we also get that I is, globally in A, a Lipschitz
continuous perturbation of Iy, and the same goes for g and J: indeed the
Lipschitz constants of A, p;, fij, o and ¢ are controlled by C - Q, for some
dimensional constant C' (which can be taken the same as the C we had above,
by choosing the larger of the two).

O

Remark 4.1. The importance of working with coordinates adapted to J, as
chosen in Section 3, relies in the fact that this allows to obtain the Lip-
schitz extension across CP™ x {0}, which could fail on the vertical vectors if
coordinates were taken arbitrary.
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The aim is now to translate our problem in the new space (A, I, g,9).
The trouble is that the push-forward of T via ®~! can only be done away
from the origin and the map ®~! degenerates as we get closer to 0.

For any p > 0 we can take the proper transform of TL(S\ S”) by pushing
forward via ®~!, since this is a diffeomorphism away from the origin:

P,= (7)), (TL(S\S)).

What happens when p — 0 7 The following two lemmas yield the an-
swers.

Lemma 4.2. The current P :=lim, .o P, =lim,_ (&) (TL(S\S?)) is
well-defined as the limit of currents of equibounded mass to be a current of
finite mass in A.

The mass of P, both with respect to g and to gg, is bounded by a dimen-
stonal constant C' times the mass of T.

Lemma 4.3. The current P := lim, o P, = lim,_o (®71)_(TL(S\S"))
is a ¥-positive normal cycle in the open set A (¥ is a semi-calibration with
respect to g).

A little notation before the proofs. For any p consider the dilation
Ap(+) := 5, sending By, to By, and the map

Ay AP — A, Ay i=3 o), 00, (17)
which in the coordinates of CP" x C"*! (the ambient space in which A
is embedded) reads A, (¢, 2) = (é, %)
proof of Lemma 4.2. The map ®~! is pseudo holomorphic with respect
to J and I by definition of I; thus each P, = (®71) (TL(S\S?)) is ¢-
positive by construction (see lemma B.1), so M(P,) = P,(¥), where the
mass is computed here with respect to g, the metric defined before Lemma
4.1. The currents P, and P, for p > p/, coincide on A\AP, therefore
for any two sequences p; — 0 and pj — 0 such that P, and PP% have
limits, these limits must coincide (as currents). So we will prove that P,
have equibounded masses and thus the compactness theorem will yield the
existence of a unique limit P for the whole family P, as p — 0.

We use in A standard coordinates inherited from CP" x C"*!, ie. we
have 2n horizontal variables (from CP") and 2n + 2 vertical variables.

The standard symplectic form g is E*(Jepn +Icn+1), as in the beginning
of Section 4. We want to estimate M (P,) = P,(0) = P,(Yy) + P,(Y — Vo).

Now let us first consider |P,(¢ — ¥y)|. Thanks to the Lipschitz control
from Lemma 4.1, i.e. [0 — Jg|(-) < edistg, (-, CP™ x {0}), the two-form
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(q)_l)*(ﬁ —1p) in S has comass < % < ‘%, where |z| is the distance from

the origin and C is a dimensional constant (¢ can be assumed to be smaller
than 1).

We can then decompose & = UjZ(A;, where 4; = SN (Bi_ \ B 1+1>
27 27
As observed in Remark 3.1 it holds M (T'L A;) < KQ% On the other hand
the comass of (q)_l)*(ﬁ — ) in A; is < C 291,
Therefore summing on all j’s we can bound

[P0 = do)] = |(TL8) (@) (0 - )| <

© 1 00 ‘
+1 _ 1-5 _
<KCY 9 22]._Kc§j2 I =4KC, (18)
=0 =0

s0 | P,(¥ — )| is equibounded independently of p.

Let us next deal with P,(E*9cpn) = Tp,L(S\ S?)((®~1)"E*Icpn). Us-
ing the chart zy # 0 on V C CP” we find that the map Eo®™!: S — A

z z
has the coordinate expression (zg,...zn) — <<1 ,n> ,(zo,...zn)> €
20

20 ’
Y xCntl
Using the explicit expression of Jcpr (see [22]| or the beginning of this
section) we can write in the domain S, where zg # 0,

|25

—1\* ox __E o) o
(7)€" (Wepn) = — 500 log 1+Z’ZO‘2

Jj=1

This two-form is explicitly computed to be (ﬁ’gt, where wq is the stan-

dard Kihler form of C™*! restricted to S, (wo)¢ := %J (dr A wp) denotes its
tangential part (as in [16], [24]) and |#| is the distance from the origin. This

can be seen by explicitly computing the 99 log (1 +200 ;Z E) which gives
S de A dE TN 2EadE Adem
22 122"
|20/ (1 + 2 |zJT\2> 1<jm<n |zo[1 (1 +30 }Z):z)

Evaluating this expression on the 2-plane {z; = ... = z, = 0} we get

" dd ANdF .
Zj_1| 2 , so that (<I>_1) E*Ocpn and (Tjogt agree on this 2-plane. The

20 z
SU(n+ 1) invariance of both (@71)*8*9@71 and (‘ngt then implies that the
z

two forms agree everywhere.

The two 2-forms (wp); and w; = %_n (dr Aw) differ in L*°-norm by a
term bounded in modulus with C|z|, (for a constant C' = ||w||). Therefore
with the same diadic decomposition used in estimate (21) we can obtain that
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((wo)e — wr, T)
2|2
with a bound from above independent of p. By the monotonicity formula

is summable with respect to the measure ||T'||L (S:\B,)

w
(Proposition B.1) we know that ﬁ is summable with respect to the measure
z

|T||L(S: \B,) with a bound independent of p, therefore so is (T}Tgt This
z

means that, independently of p,

[Py (E%0cpn)| < CK. (19)

The estimate

|Py(E% i) = |To,, LS\ S?)((271) € Vent)| < K (20)

follows easily since ®~! is lenght-preserving in the vertical coordinates
and thus (€ o ®~1)* preserves the comass of Jgn+1.

Putting (18), (19) and (20) together, we obtain that M (P,) are uniformly
bounded by K times a dimensional constant C'. By compactness there exists
a current P in A such that P, — P.

So far we were taking the mass with respect to g. Since g is c-close
to gg, for a small constant ¢, an analogous bound holds, up to doubling the
constant C, for the mass of P computed with respect to go. This observation
is needed later in Section 5.

O

Our next aim is to prove that the current P just obtained is in fact a
cycle in the open set A. A priori this is not clear, for in the limit p — 0
some boundary could be created on CP"™ x {0}.

proof of Lemma 4.3. Step 1: choice of the sequence. The currents T' and
Tor == (Ar)«(TL B,) are defined in S and by Remark 3.1, i.e. by the almost
monotonicity formula, we have a uniform bound on the masses: M (Tp,) <
K. Denote by (T,|z| = r) the slice of a current 7" with the sphere 0B,.
Choose a sequence p — 0 so to ensure

o (i) T,, — T in S for a certain cone Ti,
o (ii) M((T,,,|z| = 1)) are equibounded by 4K.

This is achieved as follows: take a sequence p) fulfilling (i); Remark 3.1
tells us that M (TPL) are equibounded by a constant K independent of k. By
slicing theory (see [14])

1
[ M((Ty;, |2 = r))dr < M(T, L(B, \ By)) < K,
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thus at least half of the slices <Tp;€, |z| = r>r€[%’1

every k we can choose 3 < s; < 1 such that all the slices (T , 2| = s) exist
and have mass < 2K. Then with p, = sipj, it holds

] have masses < 2K. For

M((T,,, |2 =1)) = M ((Ak> <Tp;€,|z = s = gj“>> <2.2K
Pr/ x

k

/
and since % < pi < pj, the sequence T}, also converges to the same T.

Since (T}, , |z| = 1) = (M\p,), (T |2| = pr), condition (ii) also reads
M ((T, 2] = i) < 4K py. (21)

Step 2. We are viewing P as a current in the open set A in the manifold
C"*!, 50 the same should be done for the currents P,:= (®71) (TL(S\S?)).
Given the sequence pi — 0 chosen in step 1, we will observe the boundaries
0P, and prove that they converge to zero. It is enough to work with the
sequence chosen in step 1 in order to obtain 0P = 0 because, by the previous
lemma, we know that the limit P is well-determined, independently of the
chosen sequence py.

The boundaries 0P,, satisfy (see condition (i) in step 1), as k — oo, by
the definition (17) of A,,:

(Apk)*(appk) = _(¢_1)*<T07pk7 ‘Z| = 1) - _((I)_l)*<TOO7 |Z’ = 1>' (22)

Recall that we are viewing P, as currents in the open set A, so also
TL(S\ S”) should be thought of as a current in the open set S: this is why
the only boundary comes from the slice of T" with |z| = py.

Moreover we know (condition (ii) in step 1) that (A,, )«(0P,,) have equi-
bounded masses, since so do 9(Tpp, ) and @~ ! is a diffeomorphism on 9Bj.
The current T has a special form: it is a (1,1)-cone, so the 1-current

(T, |2z| = 1) has an associated vector field that is always tangent to the
Hopf fibers® of §27+1.

Step 3. We want to show that P is a cycle in A, i.e. that 0P, — 0 as
n — oco. The boundary in the limit could possibly appear on CP" x {0} and
we can exclude that as follows.

Let a be a 1-form of comass one with compact support in A and let
us prove that 9P, (o) — 0. Since A is a submanifold in CP" x C"*!, we
can extend « to be a form in CP™ x C"*!. Let us write, using horizontal

8Recall that the Hopf fibration is defined by the projection H : $?"*! c C"*! — CP",
H(z0,...,2n) = [20, .-, 2n]. The Hopf fibers H™*(p) for p € CP" are maximal circles in
S2"+1 namely the links of complex lines of C"*! with the sphere.
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. . 2 2
coordinates {t; }]221 on CP™ and vertical ones {s; }JZJ{ for C" o = ap+ay,

where ay, is a form in the dt;’s, o, in the ds;’s. Rewrite, viewing P, as
currents in CP" x C"+1,

-1
OPy () = [(Ap, )« (0Fy,)] (A1) ) -

The map A;kl is expressed in our coordinates by (¢1, ..., tan, 81, ...S2n42) —

(tl, veey tgn, PkS1, --'pk52n+2)7 therefore
(Ay)fa = af +af,

where the decomposition is as above and with [[af||* ~ [lap|* and
]| < prllew||*. The signs ~ and < mean respectively equality and in-
equality of the comasses up to a dimensional constant, so independently of
the index k of the sequence.

As k — oo it holds af — af° in some C*-norm, where [|a5°[|* < 1 and
a;° is a form in the dt;’s. More precisely af° coincides with the restriction of
ap, to CP™ x {0}, extended to CP" x C"™! independently of the s;-variables.
We can write

() 0P)] ()] < |14+ OFp0] (0 = )| +11(Ape)+ OFp)] (o)

and both terms on the r.h.s. go to 0. The first, since M((A,,)«(0F,,))
are equibounded (as we said in step 1) and |af — af°| — 0; the second
because we can use (22) and (®7') 9(Tw) has zero action on a form that
only has the dt;’s components, as remarked in step 1.

Moreover

— 0,

1)+ (0P5)] (o)

because (Ay, )«(0F,,) = —(®71) (T, |2| = 1) have equibounded masses
by the choice of py, while ||[a¥|* < pg|lcw||* have comasses going to 0.

Therefore no boundary appears in the limit and P is a normal cycle in

A. The fact that it is ¥-positive follows easily by the fact that so are the
currents P,, as remarked in the beginning of the proof of Lemma 4.2.

O

Summarizing, we define the current P just constructed to be the proper
transform of the positive-(1,1) normal cycle TLLS. P is a normal and 9-
positive cycle in A, where the semicalibration 9 is Lipschitz (and actually
smooth away from CP™ x {0}). Therefore the almost monotonicity formula
holds true for P. Observe that the metric g on A fulfils the hypothesis
%H < g < 5I of Proposition 2.1, because it is a perturbation of gg, which is
in turn built from the Fubini-Study metric.
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5 Proof of the result

With the assumptions in Proposition 3.1, we have to observe the family
To, = (M)«T as 7 — 0. These currents have equibounded masses by (12).

Take any converging sequence Tp,, = (A, )T — To for 1, — 0. Take
the proper transform of each Tj,, and denote it by P;. Lemmas 4.2 and 4.3
yield that Py is a ¥p-positive cycle, for a semicalibration 9 in the manifold
A. The form 9y, is smooth away from V x{0} and it is Lipschitz-continuous,
with |9 — Y| < cpdistg, (-, CP™ x {0}). Recalling Lemma 4.1 we can see
that, since the almost complex structure J,, on S fulfils |J,, —Jo| < (Q %) 7
in S (by dilation), then the constants ¢, go to 0 as k — oco. Analogously we
get that the Lipschitz constants of 9 are uniformly bounded by 2L.

By Lemma 4.2 the masses of Py are uniformly bounded in k& (with respect
to go), since so are the masses of Ty, , M(To,,) < K.

So by compactness, up to a subsequence that we do not relabel, we can
assume P, — P, as k — oo for a normal cycle P...

Lemma 5.1. P, is a Yg-positive cycle; more precisely it is the proper trans-
form of Tw.

Proof. 9p-positiveness follows straight from the Jg-positiveness of P and
wk — 19[)‘ < ckdistgo(-,(CIP’" X {0}), c. — 0.

Recall that 99 = E*(Yepn + Icn+1); we want to estimate (notation from
Section 4)

M(Px L A?) = (Pxx LAP) () = klim (P L AP) (D).
Write

(PeLAP)(9g) = (Pl A7) (E0cpn) + (P A?) (E0cmn).  (23)

Let us bound the second term on the r.h.s.

(Pl AP) (€ Dgnin) = (Ap)u(PuLA?) (A1) (E0gni)) .

The current (Ap)«(PxL-.A”) is the proper transform of Tp .., , therefore
(Lemma 4.2) M ((A,)«(PrL.A?)) < K C independently of k; the form (A ")*(E*Icn+1)
has comass bounded by p?. Altogether

(PLLA")(E*Ieni1) < K C p*

To bound the first term on the r.h.s. of (23), let P be the proper trans-
form of T'; using that (A,,)*E*Vcpn = E*VIepn we can write

(PeLAP)(E*0gpn) = (PLA™)(E*Ygpn) < M (PLA™) < M (PL AP),
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which goes to 0 as p — 0 by Lemma 4.2. Summarizing we get that there
exists a function 0,(1) that is infinitesimal as p — 0, such that |(P;L A?) ()| <
0p(1) (the point is that o,(1) can be chosen independently of k).

Therefore also M (P L A?) = limy_oo(PrLA?)(J9) < 0,(1), which
means that

Poo = lim Poo L(A\ A?). (24)
p—

Recall now that the proper transform is a diffeomorphism away from the
origin, thus

PooL(A\ A?) = lim (@), To,, LIS\ S?) = (@71) T L(S\ S),

which concludes, together with (24), the proof that P is the proper
transform of (cI)*l)*TOO.
O

Recalling (4), the previous lemma tells us that Py, is of a very special
12
form. Denoting V := {Z" =zl < 1} C CP™ and, for each disk DX in S,

7j=1 |ZO‘2

LX the disk such that ®(L~X) = DX, we have

Peo) = [{ [ 0.5 ac?faroo) (29

When we take the proper transform the density is preserved going from
S to @71(S), since @1 is a diffeomorphism on S (see Lemma B.2).

We are ready to conlcude the proof of Proposition 3.1, and therefore of
Theorems 1.1 and 2.1.

Tm

22 converge to the point (1,0, ...,0)
in DN S?"! where D is the disk D = D[10--0],

We want to show that any converging sequence Tp,, = (Ar, )T — To
is such that the cone T, contains k[D].

proof of Proposition 3.1. The points

Let us apply the proper transform to Tp,, and get P, as in Lemma
5.1. Fix k: there is a sequence {z,,} tending to the origin of points with
densities such that liminf,, o v(zy,) > k. By Lemma B.2 the points p,, :=
(@fl)(xm) also have densities fulfilling that their liminf is > « for Py.

It easily seen that it holds p,, — po = ([1,0,...0],0) € CP" x C"**1,

By upper semi-continuity of the density (which follows from the almost
monotonicity formula for P;) we get that py also has density > x for Pg.

Doing this for every k we get that we are dealing with a sequence of
normal cycles P all having the point py as a point of density > «. We wish
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to prove that, being the cycles Py positive, then the point pg is also of density
> k for the limit P.
The cycles P are ¥p-positive so for any 6 > 0 it holds

M (Pl Bs(po)) = (PxL Bs(po))(J%)-

By weak convergence

M (Ps L Bs(po)) = (Poo L Bs(po))(Yo) =
= lim (PsL Bs(po))(do)-

We can split

(PrLBs(po))(Yo) = (PrL Bs(po)) (o — Uk) + (PrL Bs(po)) (Jr).  (26)

The semi-calibrations 1, have uniform bounds on their Lipschitz con-
stants, say 2L. The metrics at pg coincide with gg independently of k. We
can therefore use the almost monotonicity formula for P at py (Proposition
2.1) to get

(PyLBs(po))(9k) = M (P, Bs(po)) > m(k — C2L6)5%,

where C is a universal constant. The forms ¥y fulfil |J; — 99| < ¢ in
Bjs(po) and ¢ — 0 as k — oo. Therefore we can bound, from (26),

‘(PkLBg(po))(ﬁlo” Z —CkKC—i-M(PkLB(;(po)) Z —CkKC+7TI€52—2CL53.

Since ¢ — 0 we can conclude

M (Poo L Bs(po)) > mrd? — 20 LS (27)

independently of §, which means that pg is a point of density > & for the
Yo-positive cycle Pao.

Recall the structure of Py, from (25): it is made by the holomorphic disks
LX weighted with the positive measure 7, so if yo has density > , then the
disk L1901 ;must be weighted with a mass > &, in other words the measure
7 must have an atom of mass > k at yo.

So Py is of the form x[LIH0 9] + P, for a y-positive current P. Trans-
forming back via ®, T, contains the disk x[D], as required.

O
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6 The uniqueness can fail without the assumption
on the densities.

In this final section we show the importance of the assumption on the
densities in Theorem 1.1. The algebraic blow up introduced in the paper
and used in the proof turns out to be very useful again and allows us to
provide a geometric picture of Kiselman’s counterexample [18]. From now
on, for sake of simplicity, we assume to be working in the integrable case
(C2, Jp,wp), with coordinates z = (21, z2). The word positive will be used
instead of wy-positive.

We briefly recall the connection between plurisubharmonic functions and
positive currents.

A plurisubharmonic (psh) function f is, by definition, an upper semi-
continuous function whose restriction to complex lines is subharmonic. Equiv-
alently, the Levi form L;; := %afzj’ for i,j € {1, 2}, is positive definite. This

last condition automatically implies that 8228% are Radon measures.

For i € {1,2}, denote by 0; : A¥ — A¥F! (respectively 0;) the operator

on forms whose action on a function f is given by 0;(f) := %dzi (resp.

9i(f) == %d@i). So the two-form

o f

dz' A dZ?
82¢8§j z “

00f = (1 +02) (D1 +82) f =
]

has measure coefficients and gives rise to a normal positive cycle Ty, which
acts on a two-form [ as follows

T5(0) = | 99f A B.

Recall that (22 —9° = 0. Since the standard differential d equals 0 + 0,
the two-form 00f is closed and Ty is easily seen to be a cycle: for any
one-form «

oT¢(a) == /((:2 QOf Nda = /(C2 d(00f) A a = 0.

With this in mind, every positive cone with density v at the vertex (as-
sume without loss of generality that the vertex is at the origin) is repre-
sentable as a plurisubharmonic function h with the following homogeneity
property (see [18])

h(tz) = vilog|t| + h(z), for any t € C, z € C2.

More precisely (see [6]), denoting 7 : C2 — CP! the standard projection,
h is of the form vlog |z| + f o 7 for some f : CP! — R.
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Let us see a concrete example, where we translate the question from C2
to C2 using the algebraic blow up. Let us fix notations first.

We send the point 0 # (21, 22) € C2 to the point ([z1, 22], 21, 22) € C2 C
CP! x C2. Using the chart Z on CP!, we can identify ([21, 20], 21, 29) with
(2,229, 29) = (a,Aa, \) € C x C? with a, A\ € C. Therefore we can locally

227 22

identify the complex line bundle C2 with C x C with coordinates (a, \). The
holomorphic planes through the origin are sent to the holomorphic planes
{p} x C. The image of a sphere of radius r in C? is, after the blow-up, the
hypersurface |\| = \/1:-7\2

A positive cone in C?, with density v at the vertex (placed at the ori-
gin) is given by assigning a positive Radon measure on CP!, having total
mass v. Let us blow-up the origin of C? and move to C x C. We have a
measure p on the first C-factor, i.e. a measure on the set of “vertical” holo-
morphic planes. Consider the psh function vlog|A| + f (a) (with v = |ul),
where f(a) = [-log|¢ —aldu(C), i.e. f is the convolution of p with the
fundamental solution of the Laplace operator in C. In particular, Af = pu.

The current 90 (vlog |\ + f(a)) is the sum of the current associated
to the 2-surface C x {0} with multiplicity v and the current associated to
integration on the vertical 2-planes, weighted with p. °

To fix ideas, let v = 1. Let us assume that, for 71 < Rs, in the domain

By < |\ < —£i— the current is very close to the plane v[{p;} x C]

Vit laP Vit [aP
and for ——2— < |A| < —LL— it is very close to the plane v[{p2} x C],

V1+al? V1+lal?

where {p1} x C and {p2} x C are distinct “vertical” holomorphic planes. To
fix ideas, let f,g be such that Af and Ag are positive measures of total
mass 1, very close to Dirac deltas placed respectively in correspondence of
the points p; and ps.

Question: how can we extend the current across the intermediate do-

. r Ry . . ..
main T <Al < Tt in such a way that it is globally positive and
boundaryless?

Consider the currents 77 and 75 representable as integration of the ac-
tions of the vertical planes with weights ci A f and coAg, with ¢; > ¢co > 1. In
terms of psh functions, 171 = ¢100f and Ty = c20dg. Consider the function

E(a,\) :=cag(a) — c1f(a) — (c1 — c2) log |A|.
cag—cif—m
Its level sets E, = {E = n} are the hypersurfaces |[\| = e =<2 . Choose
a positive value of 7, large enough in modulus, so to ensure that the cor-
responding level set E, is contained in the intermediate domain —=%

Vi =

“By going back to the coordinates z1 = a), zo = A, we can recover the psh function on
C?: for this purpose it is convenient to rewrite v log |A\|+ f (a) = vlog|A|+vlog /1 + [a]2—

vlog+/1+ |a|?+ f (a), so that the inverse transform of v log |A|+v log /1 + |a|? is v1og |z|.
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N < T

Set the current X(g>, 71 + X{E<y) T2, which equals T} above E; and T3
below E,. Such a current develops a boundary on E, given by the slices
of T1 and T3 with the level set E,. Precisely the boundary is given by the
1-current of integration along the “vertical” circles E, N ({a} x C) weighted
with —c1Af + c2Ag.

Claim: there exists a positive 2-current, supported in E;, whose bound-
ary is the same as the boundary just described with opposite sign.

This can be seen explicitly as follows. Let us consider the one form
tvEWo, where wy is the standard symplectic form on C2. Its differential is
given, through Cartan’s formula, by d(tvpwo) = Lyvgwo, the Lie derivative
of wg along the gradient field.

It holds, as we are about to see, on the set {\ # 0},

Lyvpwy = (ClAf — CgAg) <_21da A da) . (28)

Let us compute this Lie derivative. For the sake of notation, only for
this computation we take coordinates x1, x2, x3, x4 so that a = x1 + iz9 and
A = x3 +irg = 0 and denote by 0; the derivations w.r.t. x;. So we write
wo = dz' A dx? + dx® A do* and VE = (0;F)0;.

Lypdr' Ade? = (Lypde') A de® 4 do' A (Lypdz?) =
= (dLvpx') Ada? + de' A (dLypa?) = (d(OLE)) A dx? + dat A (d(0oE))
4

4
= (k01 E)da* N dx® + (Op0aE)da’ A da® = (010, E + 0,0,E)da’ A da?.
k=1 k=1

In the last equality we used the specific form of E. An analogous com-
putation yields

Lypdz® A dr' = (0303 + 0,04F)dx> A da*.

Away from {\ = x3+iz4 = 0}, the Laplacian (0303 E+0404E) = A(log \)
vanishes, so (28) is proven.

If we take, in the boundaryless 3-surface F,, the 2-current corresponding
in duality to the one-form ty,wo, this is positive and its boundary is the 1-
current dual to d(tygwo), i.e. its boundary erases exactly that of x(g>, 11+
X{E<nT2. So the claim is proved: this current fills the gap between 77 and
T5 along E;,.

This operation seems a bit magical, but is nothing else than the geo-
metric picture corresponding to the operation of taking the supremum of
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the psh functions c¢;f and cog — 1. Since psh functions are closed under
this operation, the current 9d(sup{cif,cag — n}) is guaranteed to be posi-
tive and boundaryless: E, is the set where the two functions are equal and
the operation of taking the sup amounts (from the geometric point of view
when considering the associated currents) to filling the gap along F, with
the current vy pwy.

The construction described in this section is exacly what Kiselman does,
although the geometric picture in [18] is a bit hidden by the fact that ev-
erything is expressed in terms of psh functions. The current he constructs
is made by iterating the construction: with suitable choices of the param-
eters involved he alternates currents defined in suitable domains —=2

N
|A| < == and ensures that the measures that we called Af and Ag have

v/ 14|a|?

different limits.

As we can see from the explicit construction just exhibited, the current
constructed in [18] has the property that the point zp where it fails to have
a unique tangent cone is an isolated point of strictly positive density. The
proof given in the present work therefore breaks down in that case.

More precisely, the failure of uniqueness of tangent cone for a positive
(1,1)-cycle must happen at a point zy where there exists 6 > 0 so that the
Lelong number v fulfils v(zg) > v(z) 4 ¢ for all points = in a neghbourhood
of xy. This fact follows, in the complex setting, from Siu’s result [30], while
for an almost complex setting it is yielded by Theorem 1.1.

Indeed, the current constructed in [18| has the property that the point
xo where it fails to have a unique tangent cone is an isolated point of strictly
positive density. Therefore the proof given in this paper for Theorem 1.1
fails in that case.
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A Appendix

We give here a brief sketch of the main ideas involved in the construction
of the pseudo holomorphic polar foliation used in the present paper. As
mentioned in Section 3 the construction is exactly as in [25], the only extra
care required is that we must perform it in R?**2 = C"*! for arbitrary n,
while in [25] only the case n = 1 is addressed. We will keep notations as
close to [25] as possible in order to facilitate the comparison.

Let J be an almost complex structure in BS"H that agrees with the
standard Jy at the origin and assume that ||J — JOHCQ,U(BgnJrQ) < o, where
ap is small enough. For X € CP" let Dy x denote the (flat) Jo-holomorphic
disk through the origin such that the image of Dy x \ {0} via the standard
projection C"*1\ {0} — CP" is X.

The first essential step requires the following: given X construct in B%fﬁ
an embedded J-pseudo holomorphic disk that goes through the origin with
tangent Dyx.

Using coordinates (w1, ..., wp, z) on C** for X = [Wy,..W,,, Z] € CP"
the disk Dy x is represented by

W
Dy x = {(wl, ey Wh,y 2) W5 = 7jz for j =1, ,n} ,

i.e. we have a representation of Do x as a graph on the complex line
spanned by the z-coordinate. We let

Wh Wy
h8’X (Z) = (ZZ, ceey ZZ>

and Dy x is the graph of h8’X. We will denote by (hg’X)j the j-th com-
ponent of the function h8, x- We can also think of Dy x as the image of the
parametrized curve from D? € C into B3"*? given by

HS,X(Z) = (h87X(z),z) :

In a first moment we will look for a perturbation of Dy x of the form

Hx (2) = ((h) x)"(2) + A (2), o (W x)"(2) + A"(2), 2 + ()

with A',..., A", u functions of z to be determined. What we require on
H x (2) is that it must represent a J-pseudo holomorphic curve, but in general
it will neither pass through the origin nor be a graph on the z-coordinate line.
As a parametrized J-pseudo holomorphic curve from D? € C into (Bg””, J)
it must satisfy the equation (we denote by z,y the real coordinates on D?)
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OHy Jaﬁx

oy ox

Splitting Hx () = H&X(z)—i—TX(z), with Tx (2) = (AN(2), ..., \"(2), u(2)),
we rewrite the latter equation as

oT'x OHY x oT'x
=i(J — : i(J — . 2
7% i(J — Jo) o (z) +i(J — Jo) P (2) (29)

We can uniquely solve (29). Indeed, denote by (Tx)? the j-th component
of T'x. Recall at this stage that the following is a well-posed elliptic problem

from Ch" to CM+1v.

{ 8(F‘gi)g)j(z) = Fj(z) (30)

(Tx)|ap2 € span{e*“w]: keN\{0}}

For [|J — JOHCQ,,,(BgnH) small enough a fixed point argument in C?" x

... x C%" yields a unique solution for T'x (z), which belongs to C%". We thus
have the parametrized J-pseudo holomorphic curve Hx(z). Since u(z) is
small, the function z — ((z) = z + p(z) is invertible (it is a perturbation of
the identity). Then we set

H(z):= Hx o( () (31)

and this curve is now a J-pseudo holomorphic graph on the z-coordinate
line. In general however this is not a graph through the origin: therefore we
need to extend the previous construction in the following way.

For p = (Wip,..; Wnp, 2p) € C"™ and X = [Wy,.. W, Z] € CP", let
Dg x be

DS,X = {(’LUl, ...,wn,z) F Wy — wjp = (h%X)J(Z) = 7](2 - Zp) for J = ]-7 "'an}a

i.e. the flat Jy-holomorphic disk through p with direction given by
X. Following the strategy used before, we first of all perturb D27 x to a

parametrized J-pseudo holomorphic curve ﬁp, x(2) of the form

F[p,X(Z) = ((hg,x)l(z) + A;,X(Z)a “es (h87X)"(z) + Ay x(2), 2+ fip,x (%))
by imposing

OHyx _ 0y x

oy Oz
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Again by a fixed point argument, using the well-posedness of the elliptic
problem (30), we find a unique solution. By inverting the function ¢, x(z) =
Z + pp x (2) we then obtain

Hyx(2) = Hyx 0 ¢ x(2) = (hpx(2),2),

so that the image of the curve ﬁp, x is the J-pseudo holomorphic graph
of ;Lp, X

The graph of in, x does not necessarily pass through the point p. How-
ever, the fact that it is a C'*1”-graph over the complex line spanned by the
coordinate z, allows us to perform the following operation: given (p, X) €
C"*+1 x CP™ as above, we can construct f{p,X and take the intersection of the
complex hyperplane {z = 0} with this curve. In other words we are taking
the point A, x(0) € C* = {z = 0}. Moreover by the C'*'*-regularity we
can take the element of CP" obtained as (homogeneous) (n + 1)-tuple

W@;&(o»

To sum up we can assign to (p, X) a point in {z = 0} = C" and an
element of CP". Restrict these two assignments to the couples (p, X) such
that p = (w1p, ..., Wnp,0). Identifying {z = 0} = C" we thus get a map!?
1 : C" x CP" — C™ x CP™. The elliptic estimates coming from problem (30)
imply that (since ||J — JOHCQ,U(BgnH) is small) 1 is a C%¥-perturbation of the
identity and thus invertible. This means that, given the couple (0, X) we can
find a point ¢ € {z = 0} and a direction Y € CP" such that ¢(¢q,Y") = (0, X),
i.e. that graph of iquy goes through 0 with direction X.

At this stage we know how to construct a J-pseudo holomorphic disk
through the origin with a given tangent. Now with a bit more effort we
can see that, as X ranges over an open ball U of CP", the disks that we
constructed foliate a punctured cone with vertex at the origin.

Consider for example the punctured cone {|w;| < % forj = 1,...,n}.
For any point ¢ = (wi, ..., Wng, 2Z¢) in the cone define the map

=,: U — CP"

in the following way: given X € U, after constructing (using the recipe
illustrated above) the unique ﬁpy such that the J-pseudo holomorphic graph
of in’y goes through 0 with direction X, we take the (homogeneous) (n+1)-
tuple [y y(24), 2. Still by means of elliptic estimates it can be checked

0T his map, that we denote by 1, is denoted by ¥ in [25]. We keep however the capital
letter for the map defined further below, in order to remain coherent with the notation
introduced in Section 3.
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(compare [25]) that =, is (independently of ¢) a perturbation of the identity,
which in turn yields that we have a foliation of the punctured cone. Remark
that there is nothing special about our choice of the cone, we could do the
same for an arbitrary ball U of CP™: the only care that should be taken, is
that the choice of U can influence how small ||J — J0||02,V(B§n+2) needs to be,
in order to ensure the existence of the polar foliation.

To avoid confusion, remark that in Section 3 and throughout the paper
we use coordinates (zp,...,2,) in C"" and construct a polar foliation in
a punctured cone that is a neighbourhood of the (real) 2-dimensional plane
{z1 = ... = 2z, = 0}. On the other hand in this appendix we used coordinates
(w1, ..., wy, z) and constructed a polar foliation in a neighbourhood of {w; =
.. = wy, = 0}. This should not give rise to confusion and was only done in
order to keep the notation in the appendix as close as possible to [25].

Te map ¥ that we use in the paper is given by doing (in words) the
following: the input of ¥ is a point (zo, ..., 2,). Consider the complex line
[20, 2] and determine, by applying 1 ~! the unique couple (¢,Y) such that
iL(Ly is a J-pseudo holomorphic graph that passes through the origin with
tangent [2o, z,]. Then

U (20, .oy 2n) = (ﬁq,y(zn),zn) .

With a slight abuse of notation, due to the fact that we are now going
to identify 11 (0, [20, 2n]) (which is a couple in C" x CP") with the corre-
sponding point in C**! x CP" (recall that C* = {z = 0} C C"!) we can
write:

\I/(Zo, ceey Zn) = Hw_1(07[20,---72n})'
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B Appendix

The following almost-monotonicity formula for positive or semi-calibrated
cycles is proved in [24], Proposition 1, for a C! semi-calibration: the same
proof works as well for a form with Lipschitz-continous coeflicients, so we
only give the statement.

Let the ball of radius 2 in R? be endowed with a metric g and a two-form
w such that both g and w have Lipschitz-continuous coefficients (with respect
to the standard coordinates on R™) and w has unit comass for g. The metric
g is represented by a matrix and we further assume that %]I < g < 5l where
I is the identity matrix. So g is a Lipshitz perturbation of the flat metric.

Let T be a w-positive normal cycle. Then we have a 2-vector field
T(z), of unit mass with respect to g. This means that for ||T]-a.a. ,
T(z) = Zi\[:(f) M (@) Ty (2), a convex combination of w,-calibrated unit sim-
ple 2-vectors. The mass refers pointwise to the metric g,.

Proposition B.1. In the previous hypothesis, there exists ro > 0 and C > 0,
depending only on the Lipschitz constants of g and w such that, given an
arbitrary point o € B1(0), the following holds.

Denote by By(xzg) (respectively Bg(xo)) the ball around xo of radius r
(respectively s) with respect to the metric gs,; let \ | be the distance for g,
and | - |4 the mass-norm with respect to g. Let 5. be the unit radial vector
field with respect to xo and g, .

For any 0 < s <r <rg, we have

e“m + Cr s + Cs
L (TUB o >><w>—s—<TLB< ) ()
5 |2
> Ak ( )N — d\|T|| = 32
/BT\BS@O & — o2 Z e O | g(a) a 32)
wi(x f
B, \Bs(zo) ’.Z‘ Zz ‘
and
T — Cr e“s — Cs
———— (TLB\(z ))(w) — ——— (T'L Bs(w0)) (w)
r s
a 2
< Ae( YA — d|T| =
/B . \:C_W Z (o ), AT (33)

—

_ {wi(2), T ()
_/BT\BS(mO) |z — xo|? AT

where wy 1= %_J (dr A\ w) is the tangential part of w (as in [16] and [24]).
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The following two lemmas are used in the paper when pushing forward
a positive cycle under a diffeomorphism.

Lemma B.1. [the pushforward of a positive-(1,1) current via a pseu-
doholomorphic diffeomorphism is positive-(1,1)/

Let C be a positive-(1,1) normal current in an open set U C R*NV, en-
dowed with an almost complex structure Ji, a compatible metric g1 and a
two-form wy. Let f : U — R?N be a smooth pseudoholomorphic diffeomor-
phism, where R?N s endowed with an almost complex structure Jo and com-
patible metric and semi-calibration g2 and wo. Then f.C is a positive-(1,1)
normal current in (R2V, Jo, g2).

—

proof of lemma B.1. The current C' is represented by a couple (uc,C),
where pc is a Radon measure and C is a unit 2-vector field, well defined pc-
a.e. The (1, 1)-condition can be expressed by the fact that C = Zﬁl Ajéj,
with Z]Ail Aj =1, A >0 and éj are unit simple Ji-invariant.

The push-forward f.C can be represented by the Radon measure f,uc
and the 2-vector field (defined f,uc-a.e.) f.C, the latter is however not of
unit mass. Denoting by | - || the mass norm on 2-vectors with respect to ga,
we rewrite it as

M ~ M ~ f é*
FC =Y NfCyp =Y NGl == =
j=1 j=1 Hf*C]H

M M = ~
e DR R e D S
= = (S0 Gl ) 1£:Cl

where each simple 2-vector G is of unit mass and Jo-invariant (by

I17-G;l
the hypothesis on f).
We can then represent f,C' by the Radon measure

M
S N NEG | e
j=1

and the 2-vector field of unit mass

M

3 A - LAl £.G;
= (S 1.6l 1465l

which is a convex combination of unit simple Jo-holomorphic 2-vectors.
O
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Lemma B.2. [the density is preserved|

Let U, V be open sets in R*"2 w be a calibration in U, T be a normal
w-positive 2-cycle in U, f : U — V be a diffeomorphism. Be v(p) > 0 the
density of T at p € U. Then the current f.T has 2-density equal to v(p) at
the point f(p) € V

proof of lemma B.2. Up to translations, which do not affect densities,
we may assume p = f(p) = 0, the origin of R?"*2. We use coordinates

q = (q17 q2, -~7QQn+2)~

Step 1. Assume that f is linear. Choose any sequence of radii R, | 0
and dilate the current f, T around 0 with the chosen factors, i.e. observe the

sequence:
Id
A
(Rn|>*(f )= <|R\ f)

By the linearity of f this is the same as

Id
o T=f.| — T.
(f R|> f(mnr)*

The assumptions yield a subsequence R;,; such that <| l?{il)*T — T

for a cone T, whose density at the vertex is v(0). So

Id
(L) 7.
|RTL]| *

Recall that Ty, is represented by a positive Radon measure on the 2-
planes, with total mass v(0). The linearity of f gives that f.Tw is still a cone
with the same density v(0) at the vertex, so we have found a subsequence Ry,

such that ( ) (f«T) weakly converges to a cone with density v(0). Since

the sequence R was arbitrary, we get in particular that f,7T has 2-density
equal to v(0) at the point f(0) =

Step 2. For a general f, write f(q) = Df(0) - q+ o(|q]).
(f<T). We show that this se-

1d
||

As before, we have to observe (“{%d‘

) (DF(O) - q).T), for

quence has the same limiting behaviour as (

which Step 1 applies.
We estimate the difference of the actions on a two-form g supported in
the unit ball Bj:

(i) -7~ (210071 5) -

=7(r (i) 2~ @100 () 9)



Writing explicitly 8 = Y, Brdq’, where dq! = dg' A dg’ for i # j €
{1,2,...,2n + 2}, the difference in brackets reads'!

ﬁIO%Of—ﬁJO%O(Df(O)'Q)

2 o2

I n

df?.

This form is supported, for n large enough, in a ball of radius < mRn
around 0. Moreover, for each I, we can estimate from above, for n large
enough:

1y |Pro s o f = Bro iy o (P10) - 9)
[ fller sy 1Billcr s o(1
< HHeea 2w g < 0,

for a function o(1), infinitesimal as n — oo, depending on 3 and || f||c2.
Using monotonicity, we get a constant K > 0, depending on v(0) and || f||c1,

such that M (TI_B B ) < KR2 for n large enough. These estimates
2 O n
imply

r(r (rfzi\>*5‘ (DF(0)-af <\fzi|>*ﬂ> —Oas e

Id
so the limiting behaviour of (]R ‘> (f«T) must be the same as that
Id ’
of <|R> ((Df(0) - q)«T). In particular the density of f,T at the point

£(0) = 0 is 1(0).
0

UWriting f = (f*, f2, ..., f>"*?) and I = (i, ), the notation df’ stands for d(f*) Ad(f?),
as in [14] (page 120).
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