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Abstract: We show that any semi-calibration of degree 2 is locally in-

duced by a smooth almost complex structure. We provide some applications

of this result in the regularity theory for semi-calibrated 2-currents.

Calibrated geometry made its appearance, in full generality, in the land-
mark paper [16]. A connection with calculus of variations (e.g. [1]) was
immediate, since calibrated integral currents are mass minimizers for their
boundaries. Further interest in the topic came later on, with highly re-
markable works that relate the regularity properties of calibrated currents
to important geometric issues, such as theory of invariants and gauge theory
(see e.g. [14], [21] and [22]). In recent years the topic has been enlarged
by looking, more generally, at semi-calibrated currents, see e.g. [19] and
the �nal section of [22] for geometric motivations. These currents are no
longer mass minimizers for their boundaries, but they turn out to be almost
minimizers. The regularity theory for semi-calibrated currents is however
generally expected to be better than that for arbitrary almost minimizers.

In this note we focus on semi-calibrations of degree 2. A classical example
of calibration of degree two is the Kähler form in a complex manifold. The
analogue semi-calibration is the almost Kähler form in an almost Hermitian
manifold. In this case semi-calibrated 2-currents turn out to be pseudo
holomorphic. We will show that we can induce an almost complex structure
that turns any given semi-calibrated 2-current into a pseudo holomorphic
one. This can be viewed as a local classi�cation result for semi-calibrations
of degree 2 in the spirit of the classi�cation theory of parallel calibrations
described in [18], Chapter 4. The classi�cation of parallel 2-forms of unit
comass was obtained in [16].
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In Section 1 we present our main result, then in Section 2 we give a few
examples of applications concerning regularity theory.

1 How to turn semi-calibrated 2-currents into pseudo
holomorphic ones.

Given a di�erential form φ of degree k on a Riemannian manifold M
endowed with a metric g, we can compare the action of φ on oriented k-
dimensional planes with the action of the k-dimensional volume form. The
comass ‖φ‖∗ of φ (see [16]) gives a quantitative meaning to this comparison,
as follows. Denoting by TxM the tangent space to M at a point x, recall
that unit simple k-vectors in TxM are naturally identi�ed with oriented
k-dimensional planes in TxM. Then

||φ||∗ := sup{〈φx, ξx〉 : x ∈M, ξx is a unit simple k-vector in TxM}.

Forms of unit comass are called semi-calibrations (see [19]), a generaliza-
tion of the notion of calibration introduced in [16] (calibrations require the
closedness of the form as extra-condition). Semi-calibrated submanifolds, or
more generally semi-calibrated integral currents, are de�ned by the condition
that (almost all of) their oriented tangent planes belong to the subfamily of
unit simple k-vectors on which φ gives its maximum action 1, in other words
φ and the k-dimensional volume have exactly the same action. Calibrated
currents are easily seen to be mass minimizers in their homology class (see
[16]). The same proof shows that semi-calibrated currents are instead al-
most minimizers in their homology class (or λ-minimizers, e.g. in the sense
of [15]).

We show the following local result for the 2-dimensional case.

Theorem 1.1. Given a Riemannian manifold M with metric g, let ω be

an arbitrary semi-calibration of degree 2 in (M, g). For any point x0 ∈ M
there exist a neighbourhood U of x, a non-degenerate di�erential form Ω of

degree 2 and a Riemannian metric gJ on U such that

• Ω is a semi-calibration in (U, gJ);

• Ω and gJ uniquely de�ne an almost complex structure J on U such that

gJ(·, ·) = Ω(·, J ·);

• any 2-plane in (TxM, g) (where x is an arbitrary point on U) that is

calibrated by ω(x) is also calibrated by Ω(x) in (TxM, gJ). In particu-

lar any 2-plane in (TxM, g) (where x is an arbitrary point on U) that
is calibrated by ω(x) is J(x)-holomorphic.
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In other words, by changing the semi-calibration and the metric we pos-
sibly increase the family of calibrated planes but surely preserve those that
were initially calibrated. Before going into the core of the proof, let us ana-
lyse some important eigenvalue properties.

The endomorphism A associated to ω and g. We are going to de�ne
a linear map A = A(x) : TxM→ TxM and study its eigenvalues in relation
to the calibration properties of ω(x). Set

ω(v, w) = g(Av,w) for any v, w ∈ TxM .

Equivalently Av is de�ned to be the (controvariant) vector whose g-
dual (covariant) version is the covector ω(v, ·). Then A is a skew-adjoint
operator with respect to g, i.e. g(Av,w) = −g(v,Aw). The g-positive
de�nite endomorphism −A2 = A∗A is thus diagonalizable. Observe that
if v is an eigenvector (relative to a non-zero eigenvalue) of −A2 then Av is
an eigenvector for the same eigenvalue.

The comass of ω with respect to g is 1: taken an arbitrary vector v /∈
KerA this yields, by comparing the actions of ω and of the g-area-form on
the 2-plane v ∧Av, the inequality

g(v, v)g(Av,Av)− g(v,Av)2 ≥ ω(v,Av)2.

By de�nition of A any vector v is g-orthogonal to Av and thus

g(v, v)g(Av,Av) ≥ g(Av,Av)2.

So, since A is g-skew-adjoint, we can rewrite the inequality as

g(v, v) ≥ g(−A2v, v).

We can therefore conclude that any eigenvalue of −A2 must belong to
the interval [0, 1]. The eigenspace of A relative to 0, i.e. KerA, is the g-
orthogonal complement of the maximal vector subspace on which ω(x) is
non-degenerate.

We are now going to relate the calibrating properties of ω(x) to the
eigenvalues of A. First remark the following. Let t ∈ TxM be g-orthogonal
to the 2-plane v∧w; then ω(v, t) = ω(w, t) = 0. This can be seen by noticing
that, as t varies among all possible vectors orthogonal to v ∧w, the 2-planes
of the form v ∧ t and w ∧ t span the tangent space to the Grassmannian
G(2, TxM) at the point v∧w. From the fact that ω restricted to G(2, TxM)
realizes its maximum at v∧w we have that ω(v, t) = ω(w, t) = 0, as desired.
This fact is known as the ��rst cousin principle�, see [17].

With this in mind it follows, by the de�nition of A, that g(Av, t) =
g(Aw, t) = 0 for any t ∈ TxM that is g-orthogonal to v ∧ w. Observe that
if v is a (non-zero) vector that belongs to a calibrated plane then Av 6= 0
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by de�nition of A. Therefore A restricts to an endomorphism of the 2-plane
v ∧ w. In other words v ∧ Av is calibrated by ω in (TxM, g). This can be
expressed by the equality

g(v, v)g(Av,Av)− g(v,Av)2 = ω(v,Av)2.

Recalling that the g-adjoint of A is −A and that v is g-orthogonal to Av
we rewrite the previous equality as

g(v, v) = g(−A2v, v).

It follows that the only possible eigenvalue for the endomorphism −A2

restricted to the 2-plane v ∧ w is 1. So we conclude that, for an arbitrary
choice of unit vector v in a calibrated 2-plane, the map −A2 restricted to the
calibrated 2-plane is diagonalizable with g-orthonormal eigenbasis {v,Av}
and (double) eigenvalue 1.

proof of Theorem 1.1. Without loss of generality we can work in a local
chart around x0. Therefore we will identify a neighbourhood of x0 in M
with a neighbourhood of the origin of Rn. Moreover, by using the standard
embedding of Rn in Rn+1 in the case that n is odd, we will further assume
that we are given the semi-calibration ω in a neighbourhood of R2n endowed
with a Riemannian metric g and that x0 is the origin.

The two-form ω has rank m at the origin for some m ∈ N, 0 ≤ m ≤ n;
this means that ω(0)m 6= 0 and ω(0)m+1 = 0. From ω(0)m 6= 0 it follows
that ωm 6= 0 in a neighbourhood of the origin, so the rank is at least m in a
neighbourhood, but it is not necessarily constant and could be strictly higher
than m somewhere. The rank at x is half the number of non-zero eigenvalues
of A2(x) (recall that the eigenvalues of A2 all have multiplicity two). So
at the origin we have that KerA(0) is 2(n −m)-dimensional and there are
λ1(0) ≤ ... ≤ λm(0) ∈]0, 1] double eigenvalues of A2(0). Let ε := λ1(0) > 0,
so that λj(0) ≥ ε for all j = 1, ...,m.

Since A(x) smoothly depends on x, if we stay in a small enough neigh-
bourhood U of the origin there will be exactly

m double eigenvalues λ1(x), ..., λm(x) of A2(x)

that belong to the interval [ ε
2 , 1] and exactly (n−m) double eigenvalues

of A2(x) that belong to the interval [0, ε
4 ].

Consider the 2m-dimensional vector subspace spanned by the eigenvec-
tors of A2(x) relative to the eigenvalues λ1(x), ..., λm(x) and denote it by
V (x). The g-orthogonal complement V ⊥(x) is spanned by the eigenvectors
relative to the remaining eigenvalues, i.e. the eigenvalues that are ≤ ε

4 . The
smooth dependence of A(x) on x yields that V (x) and V ⊥(x) also depend
smoothly on the point x.
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We are going to change the metric g(x) to a new metric gJ(x) in the
following way. Remark that −A2(x) is an endomorphism of V (x), since
V (x) is spanned by eigenvectors of −A2(x). We can diagonalize the g(x)-
positive de�nite map −A2(x) restricted to V (x) and by taking the square
roots of the entries we �nd a g(x)-positive de�nite Q(x) on V (x) such that
Q2(x) = −A2(x). Observe that Q (and in the same way also Q−1) commutes
with A. To see this, choose an eigenbasis of V (x) (for −A(x)2) of the form
{v1, Av1, ..., vm, Avm}, where vi and Avi are eigenvectors relative to λi. In
this basis Q and A are 2 × 2-block diagonal matrices: for Q each block

is

( √
λi 0
0

√
λi

)
and the corresponding block for A is

(
0 −λi

1 0

)
. So

they commute. Therefore by setting J(x) := Q−1(x)A(x) we de�ne an
endomorphism such that J2 = −Id, i.e. J(x) is an almost complex structure
on V (x). Then de�ne a new (smooth) Riemannian metric gJ(x) on U as
follows

(gJ(x)) (v, w) := ω(x)(v, J(x)w) = g(x)(A(x)v, J(x)w) for v, w ∈ V (x)

(gJ(x)) (v, w) := 0 for v ∈ V,w ∈ V (x)⊥

(gJ(x)) (v, w) := g(x)(v, w) for v, w ∈ V (x)⊥.
(1)

The restriction of ω(x) to V (x) is a non-degenerate two-form on V (x)
that is a calibration with respect to the metric gJ(x) and the calibrated
2-planes are exactly those that are J(x)-holomorphic: indeed in each V (x)
we have a standard symplectic form related to the metric and the almost
complex structure by gJ(v, w) = ω(v, Jw).

The important remark here is that any 2-plane that is calibrated by
ω(x) in (TxM g) must lie in V (x), since as we saw above it must live in the
eigenspace of −A2(x) relative to the eigenvalue 1. The map −A2 restrics
to an endomorphism of any calibrated 2-plane and it is there diagonalizable
with g-orthonormal eigenbasis of the form {v,Av} and (double) eigenvalue
1. In particular Q is the identity on any calibrated 2-plane. This means
that, on a calibrated 2-plane, J = A and gJ = g and we can see that any
2-plane that is calibrated by ω(x) in (TxM g) will be calibrated as well by
the restriction of ω(x) to (V (x), gJ(x)).

We observe now that by restricting the action of ω to the V (x) we can
de�ne a smooth two-form in U. Precisely, denoting by Π(x) the orthogonal
projection from TxM to V (x), we de�ne

ω1(v, w) := ω(Πv,Πw) = g(AΠv, JΠw)

and this depends smoothly on x since so do g, Π, A and J . The action
of ω1 on V (x) is exactly that of ω(x)|V (x), while ω1 is degenerate on the

complementary subspace V (x)⊥.

5



We now choose a smooth local orthonormal frame {t1(x), ..., t2n−2m(x)}
for the subspaces V ⊥(x) for x ∈ U (maybe for this we need to make the
initially chosen neighbourhood smaller, but by abuse of notation we keep
denoting it by U). Denote by ? the metric duality between vectors and
covectors with respect to gJ . The form

ω2(x) := (t1(x))?∧(t2(x))?+(t3(x))?∧(t4(x))?+... (t2n−2m−1(x))?∧(t2n−2m(x))?

is smooth and degenerate on V (x). Extend further the almost complex
structure J from V (x) to the whole of on TxM by setting

J(t1(x)) = t2(x), ..., J(t2n−2m−1(x)) = t2n−2m(x).

The two-form ω2 restricts to a standard symplectic form on V (x)⊥ with
compatible metric gJ and almost complex structure J . We can now de�ne
the smooth two-form

Ω := ω1 + ω2.

Since ω1 restricts to a standard symplectic form on V (x) with compatible
metric gJ and almost complex structure J we can see that Ω has unit comass
with respect to gJ (e.g. by Wirtinger's inequality) and gJ(·, ·) = Ω(·, J ·).
Moreover we already pointed out that any 2-plane that is calibrated by
ω(x) in (TxM, g) must lie in V (x) and is therefore calibrated by ω1(x)
in (V (x), gJ). The restriction of Ω(x) to V (x) is exactly ω1(x) and thus
on (V (x), gJ) the 2-planes calibrated by ω1 and Ω are the same. So what
happens is that the 2-planes that are calibrated by ω(x) in (TxM, g) are a
subset of those that are calibrated by Ω(x) in (TxM, gJ).

2 Applications.

The theorem in Section 1 shows that, given any semi-calibrated current
of dimension 2, we can locally �nd a new Riemannian metric gJ and a new
semi-calibration Ω (of unit comass with respect to the new metric) such that
gJ and Ω uniquely de�ne an almost complex structure J which makes the
2-dimensional current (which stays untouched) a pseudo holomorphic one.
In other words we can always locally reach a situation where we work with
a pseudo holomorphic current in an almost Hermitian manifold. This allows
us to have more structure without changing the local regularity properties of
the current. We now present a few examples of the applicability of Theorem
1.1.

Study of the regularity of an arbitrary semi-calibrated integral
2-cycle. In [20] the authors study the regularity of pseudo holomorphic
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cycles under a �locally-taming� assumption, i.e. they assume that there exists
locally a closed non-degenerate two-form that is compatible with the almost
complex structure J . They prove that such a cycle can only have isolated
singularities. It would be very important to improve (and possibly shorten
the proof of) their result by dropping the �locally-taming� assumption, as
suggested by the authors themselves in the introduction of their paper.

The case of a calibrated integral 2-cycle embeds (thanks to the closedness
assumption on the 2-form) in the theory of mass-minimizing integral currents
studied in [1] and [7]. Remark that in a series of recent works a new proof
of this regularity theory is presented, see [8], [9], [10], [11], [12], [13]. For
the case of semi-calibrated integral 2-cycles, however, the optimal regularity
result is only known in some particular cases, e.g. Special Legendrian cycles
(see [2], [3]). In this latter case the proof actually argues, in one of its
�rst steps, by �nding an almost complex structure that induces the semi-
calibration.

By Theorem 1.1 the extension of [20] (to the case when the almost com-
plex structure is not locally tamed by a closed form) would actually yield the
complete regularity theory for semi-calibrated integral 2-cycles. This would
be a very important result in view of the geometric applications outlined in
[22], Section 6. A possible �rst step to approach the problem when we drop
the �locally-taming� assumption could be the technique used in [6] to prove
the rate of decay of the mass ratio.

Simpli�cation in [19]. In [19] the authors prove the following

Theorem. An arbitrary semi-calibrated integral 2-cycle possesses at any

point a unique tangent cone.

The �rst part of the paper is devoted to the proof of the theorem in
the case that the semi-calibration ω has an associated compatible almost
complex structure J such that any semi-calibrated integral 2-cycle is actually
J-pseudo holomorphic. In the last part of the paper the authors deal with
the general case of a semi-calibrated integral 2-cycle by approximating, in a
suitable way, any such cycle with a pseudo holomorphic one.

In view of our Theorem 1.1 this approximation can be completely avoided,
since we can de�ne an almost complex structure J that makes the given semi-
calibrated cycle J-pseudo holomorphic. The change of metric has no e�ect
on the uniqueness property that we need to prove for the tangent cone.

Improvements in [5]. (i) In the same vein, our Theorem 1.1 shows that
the pseudo algebraic blow up technique used in [4], [5] to prove the uniqueness
of tangent cones for a positive-(1, 1) integral cycle can actually be used to
show the uniqueness of tangent cones for an arbitrary semi-calibrated 2-
cycle, thereby recovering, with di�erent techniques, the same result as [19].
Remark that, in view of [6], the pseudo algebraic blow up technique also
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yields an explicit rate of decay for the mass-ratio of semi-calibrated two-
cycles under a blow up analysis.

(ii) Remark that, given a semi-calibration ω of degree 2 in a Riemannian
manifold (M, g), the 2p-form 1

p!ω
p is still a semi-calibration. This can be

seen by the following considerations, that show (among other things) that
the comass of 1

p!ω
p is 1. It is enough to do this pointwise so we �x a point x.

Let W (x) ⊂ TxM be the subspace where ω(x) is non-degenerate. Remark
that is only makes sense to consider values of p that are not greater than the
rank of ω and that 1

p!ω
p is the zero-form on the orthogonal to the subspace

W (x), i.e. we can think of both ω(x) and 1
p!ω(x)p as forms on W (x). We

perform the construction of the proof of Theorem 1.1 in the subspace W (x),
i.e. the g-orthogonal to KerA(x). This gives us the new metric gJ so that ω is
a semi-calibration in (W (x), gJ). Wirtinger's inequality tells us that 1

p!ω
p is a

semi-calibration in (M, gJ). From the proof in Section 1 we get that g ≥ gJ

onW (x), since the eigenvalues of −A(x)2 onW (x) belong to ]0, 1]. This fact
together with Theorem 6.11 of [16] yields that 1

p!ω
p is a semi-calibration also

in (W (x), g) and moreover that the set of calibrated 2p-planes in (W (x), g)
is contained in set of calibrated 2p-planes in (W (x), gJ); in particular the
calibrated 2p-planes in (W (x), g) is contained the the eigenspace of −A(x)2

relative to the eigenvalue 1 and is made of 2p-planes that are invariant under
the action of A(x) (recall that A(x) = J(x) on this eigenspace).

By passing from ω to Ω as in Section 1, and thus from 1
p!ω

p to 1
p!Ω

p we
enlarge the set of 2p-calibrated planes: indeed the 2p-planes calibrated by
1
p!Ω

p in (TxM, gJ) are exactly those that are J(x)-holomorphic. By what we
previously observed, they thus contain in particular the 2p-planes calibrated
by 1

p!ω
p in (W (x), g).

So we have concluded that the 2p-planes calibrated by 1
p!ω

p in (M, g)
(i.e. the semi-calibration that we had in the beginning) are also calibrated
by 1

p!Ω
p in (TxM, gJ). The uniqueness of tangent cones for a 2p-integral

cycle T semi-calibrated by 1
p!ω

p in (M, g) can be thus deduced from the
uniqueness of tangent cones for T when we view this cycle as being semi-
calibrated by 1

p!Ω
p in (M, gJ) (for the latter case we can use the result of

[5]). Therefore we have proved

Theorem 2.1. Let ω be a semi-calibration of degree 2 in (M, g) and consider

the semi-calibration of degree 2p given by
1
p!
ωp, where p ≤ dimM

2 is a positive

integer. Then any (2p)-dimensional integral cycle semi-calibrated by
1
p!
ωp

possesses at any point a unique tangent cone.
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