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Abstract

We address the one-parameter minmax construction for the Allen—Cahn energy
that has recently lead to a new proof of the existence of a closed minimal hypersur-
face in an arbitrary compact Riemannian manifold N"*! with n > 2 (Guaraco’s
work [I4], relying on works by Hutchinson, Tonegawa, Wickramasekera [16], [36],
[37], [40] when sending the Allen—Cahn parameter to 0). We obtain the following
result: if the Ricci curvature of N is positive then the minmax Allen—Cahn solu-
tions concentrate around a multiplicity-1 minimal hypersurface (possibly having a
singular set of dimension < n — 7). This multiplicity result is new for n > 3 (for
n = 2 it is also implied by the recent work [6] by Chodosh-Mantoulidis).

We exploit directly the minmax characterization of the solutions and the an-
alytic simplicity of semi-linear (elliptic and parabolic) theory in W12(N). While
geometric in flavour, our argument takes advantage of the flexibility afforded by
the analytic Allen—Cahn framework, where hypersurfaces are replaced by diffused
interfaces; more precisely, they are replaced by sufficiently regular functions (from
N to R), whose weighted level sets give rise to diffused interfaces. We capitalise
on the fact that (unlike a hypersurface) a function can be deformed both in the
domain N (deforming the level sets) and in the target R (varying the values).
We induce different geometric effects on the diffused interface by using these two
types of deformations; this enables us to implement in a continuous way certain
operations, whose analogues on a hypersurface would be discontinuous.

An immediate corollary of the multiplicity-1 conclusion is that every compact
Riemannian manifold N™*! with n > 2 and positive Ricci curvature admits a
two-sided closed minimal hypersurface, possibly with a singular set of dimension
at most n — 7. (This geometric corollary also follows from the combined results
of [19], [29], [41], [42], obtained by different ideas in an Almgren—Pitts minmax
framework.)

1 Introduction

The close link between Allen—Cahn energy and minimal hypersurfaces has its roots
in the ideas pioneered by De Giorgi in the development of I'-convergence. The works of
Modica—Mortola [25] and Kohn—Sternberg [20], among many others, testify to the fine
suitability of the Allen—Cahn approximation method for the study of area-minimisers.
Moving away from the minimising case, the Allen-Cahn approximation has seen further
success in recent years, starting with the combined works of Guaraco, Hutchinson,
Tonegawa, Wickramasekera [14], [16], [36], [37], [40]: their outcome was a new proof
(that uses classical PDE minmax techniques) of the existence of a closed minimal
hypersurface in an arbitrary compact Riemannian manifold of dimension 3 or higher.
Moving to higher codimension problems, very recently the work of Pigati-Stern [27]



has made another fundamental contribution: after identifying a correct energy (and
geometric framework), it carries out an approximation procedure reminiscent in many
ways of the Allen-Cahn one; this leads to a new proof (again via classical PDE minmax)
of the existence of stationary integral varifolds of codimension 2 (the natural candidates
for closed minimal submanifolds of codimension 2) in an arbitrary compact Riemannian
manifold.

The original proof of the existence of stationary integral varifolds in a compact
Riemannian manifold was obtained by Almgren [2] (in arbitrary codimension). In
codimension-1, the work of Pitts [28], together with the regularity and compactness
theory of Schoen-Simon-Yau [32] and Schoen-Simon [33], provided the information
that the varifold obtained is in fact a closed minimal hypersurface (that is, smooth ex-
cept for an expected singular set of codimension 7 or higher). In answering (positively)
the above existence question, Almgren and Pitts developed a considerable amount of
machinery, which has been extended and further developed in the past decade, leading
to impressive progress in the field, particularly for codimension-1 questions (starting
with the resolution, by Marques—Neves [22], of the long-standing Willmore conjecture).
The power so far deployed by the Almgren—Pitts minmax method is countepoised by
certain intrinsic difficulties that make it rather involved: the space of integral varifolds
on N (or variants of it), on which the minmax is carried out, lacks a linear structure
and, moreover, no Palais-Smale condition is available for the area functional on this
space. The Allen—-Cahn minmax method looks, on the other hand, for saddle-type
solutions to a semi-linear elliptic problem on the Hilbert space W12, and the validity
of a Palais—Smale condition permits the use of classical PDE minmax tools, leading to
convenient Morse index bounds.

A common feature in all variational minmax constructions is the fact that the
geometric objects produced are integral varifolds, and as such carry an a.e. integer-
valued multiplicity. Proving that this multiplicity is (a.e.) equal to 1 can lead to further
geometric consequences. The work of Chodosh-Mantoulidis [6] (valid more generally
for solutions with bounded Morse index, not necessarily minmax solutions) implies that
the minimal surface obtained by a one- or multi-parameter Allen-Cahn minmax is two-
sided and has multiplicity 1 when the Riemannian manifold is 3-dimensional and the
metric is bumpy or has positive Ricci curvature. Combining this with the result of [10]
on the Weyl’s law, [6] obtained the validity of the generic version of Yau'’s conjecture
for 3-manifolds (on the existence of infinitely many hypersurfaces)ﬂ The multiplicity
question is ubiquitous in the field. The work of Zhou [43] proves the multiplicity-1
conclusion for one- or multi-parameter Almgren—Pitts minmax, when the metric is
bumpy or has positive Ricci and the dimension of the manifold is between 3 and 7,
as conjectured by Marques—Neves [23], 1.2] (see also [23] Addendum]). For the recent
viscosity approach to the minmax for surfaces in arbitrary codimension, proposed by
Riviére in [30], the work of Pigati-Riviére [26] established a multiplicity-1 conclusion
for the critical points constructed.

Heuristically, and regardless of the specific framework used for the construction, the
seeked submanifold (more precisely, integral varifold) is always obtained as a limiting
object from a certain sequence; the relevance of the multiplicity-1 conclusion lies in
the fact that it very much constrains the fashion in which this limit arises. Thanks
to it, finer pieces of information that are available on the sequence can pass to the

Yau’s conjecture was then established in full, for manifolds of dimension between 3 and 7, by Song
[35] in combination with the work of Marques—Neves [24].



limit in a straightforward way. Higher multiplicity hypersurfaces, on the other hand,
could arise in many different ways, possibly with degeneration of certain features and
preventing the passage to the limit of certain properties. In the case of the Allen—-Cahn
equation, Wang [38] provides a C"*-sheeting result (with Allard-type estimates) under
multiplicity-1 convergence.

Our main theorem is the following multiplicity-1 result (new for n > 3), which
applies to the Allen—Cahn (one-parameter) minmax construction in Guaraco’s work
[14]. The case n = 2 also follows from Chodosh—Mantoulidis’s result [6].

Theorem 1.1. Let N be a compact Riemannian manifold of dimension n+1 withn > 2
and with positive Ricci curvature. Then the Allen—Cahn minmaz ([1]], see Section|[2.1])
yields on N a multiplicity-1 smooth minimal hypersurface M with dim (M \ M) <n—T7.

Remark 1.2 (Additional consequences). The multiplicity-1 conclusion immediately im-
plies that M is two-sided; in fact N \ M is given by two disjoint open sets whose
common boundary is M. It also follows easily that M is connected and has Morse
index 1.

To obtain the multiplicity-1 result of Theorem we exploit directly the minmax
characterization (rather than finite index properties). Recall that the Allen-Cahn en-
ergy & involves a small parameter € > 0 and the desired minimal hypersurface appears
by taking a suitable (subsequential) limit, as ¢ — 0T, of varifolds naturally associ-
ated to the minmax critical points u. € WH2(N) constructed in [I4]. (Heuristically,
a diffused interface is constructed from weighted level sets of u., following [16].) The
minimal hypersurface is obtained in the ¢ — 07 limit as a stationary integral vari-
fold. Exploiting the fact that u. have Morse index at most 1, the varifold turns out to
be smooth away from a singular set of codimension 7 or higher, ultimately thanks to
Tonegawa and Wickramasekera’s works [36], [37], [40]. We will not directly analyse the
Allen—Cahn solutions u. constructed in [I4], that concentrate on the minimal hyper-
surface. We will only retain the following information on these solutions: the minmax
characterisation of uc, the fact that the minmax values c. = E.(us) converge to the
mass of the varifold as € — 07, and the smoothness properties of the varifold. We then
prove the following result (see Section for a sketch of the argument), from which
Theorem [1.1] is easily deduced.

Theorem 1.3. Let N be a compact Riemannian manifold of dimension n+ 1, n > 2,
and with positive Ricci curvature. Let M C N be any smooth minimal hypersurface
such that dim (H\M) < mn—"T, M is stationary in N, and for every x € M there
exists a geodesic ball in N centred at x in which M 1is stable. Then the minmazx value
ce obtained by [14] (for € < 1) satisfies

limsup ¢ < 2H"(M).
e—0t
Remark 1.4. The assumptions on M in Theorem are valid for any minimal hy-
persurface whose closure is the support of a varifold produced by the minmax in [14]
(using [16], [36], [37], [40]). Then it is readily checked that Theorem follows from
Theorem [L.3

Remark 1.5. It is not hard to check that, under the assumptions of Theorem the
area of the minmax hypersurface is less than or equal to that of an arbitrary two-sided
minimal hypersurface in N that has the properties listed for M in Theorem



Remark 1.6. While Ricy > 0 on N would not suffice for our multiplicity-1 conclusion,
the assumption Ricy > 0 in Theorems and can be weakened. Denoting by
{Ricy = 0} the set where the Ricci curvature is 0 in at least one direction, the curvature
hypothesis can be relaxed by assuming Ricy > 0 on N and, additionally, one of the
following: (i) H"({Ricy = 0}) = 0, or (ii) {Ricy = 0} C U2, A; where A;’s are
pairwise disjoint open sets, each having smooth mean-convex boundary, with mean
curvature pointing towards the interior of A;. (See Remark )

Remark 1.7. As the assumption Ricy > 0 is only used at specific points in the proof
(summarised in Remark, some ideas developed here could be employed more widely.
For example, an argument in [5] is inspired by the present work, and analogues of
Theorem and of Theorem below are obtained in [4] for 2 < n < 6 when N is

endowed with a bumpy metric.

While the Allen-Cahn and Almgren—Pitts frameworks are different in spirit (see also
Remarks and , Theorem could be viewed as an Allen—Cahn counterpart of
the combined results obtained in [19], [29], [41], [42] for the Almgren—Pitts minmax. In
[T9] Ketover-Marques-Neves show (relying also on [41]) that, when N"*! is orientable
with positive Ricci curvature and 2 < n < 6, the minimal hypersurface is two-sided and
has multiplicity 1. This result is extended to n > 7 by Ramirez-Luna in [29] (relying
on [42]). Recalling Remark Theorem [1.1| provides an alternative route to following
existence result for two-sided minimal hypersurfaces, also obtained in [19], [29].

Theorem 1.8. In any compact Riemannian manifold of dimension n + 1 with n > 2
and with positive Ricci curvature there exists a smooth two-sided minimal hypersurface
M with dim (M \ M) <n—1.

Remark 1.9. The curvature hypothesis in Theorem can be weakened in one of the
ways described in Remark [I.6]

1.1 Strategy

We now outline the proof of Theorem Given M as in Theorem the idea
is to produce, for all sufficiently small €, a continuous path in W2(N) that joins the
constant —1 to the constant +1 and such that the Allen—-Cahn energy evaluated along
the path stays below 2H" (M) by a fixed positive amount independent of € (determined
only by geometric properties of M C N). Since this is an admissible path for the
minmax in [14] (see also Section [2.1)), the inequality in Theorem [1.3] must hold.

The construction of the path is geometric in flavour and employs classical tools
(coarea formula, semi-linear PDE theory). For simplicity, in this introduction we illus-
trate it mainly in the case 2 < n < 6, so that M is smooth and closed. We think of
M with multiplicity 2 as an immersed two-sided hypersurface, namely its double cover
M with the standard projection. This immersion, that we denote by ¢ : M — N, is
minimal and unstable (by the positiveness of the Ricci curvature). It is possible to find
a (sufficiently small) geodesic ball B C M such that the lack of stability still holds for
deformations that do not move B (this follows by a capacity argument). We then find a
deformation of ¢ that is area~-decreasing on some time interval [0, tp] and that does not
move B. This deformation is depicted in the top row of Figure . (We can choose the
initial speed of the deformation to be non-negative on M, therefore the deformation
“pushes away from M”.) We denote by 2H" (M )—7 the area of the immersion at time ¢y,



for some 7 > 0. If we cut out B from M we are left with an immersion with boundary,
namely ¢| N\-1(B)" We can restrict the previous deformation to ¢ NI\~1(B) obtaining
an area-decreasing deformation (at fixed boundary) on the time interval [0,%p]. This
time the area changes from 2H" (M) — 2H™(B) to 2H"(M) — 2H™(B) — 7. This de-
formation is depicted in middle row of Figure [ Now we proceed to close the hole
at B continuously (bottom row of Figure (1)), reaching, say in in time 1, the same im-
mersion depicted in the top-right picture of Figure [I] It is helpful to think of closing
the hole at B by inserting a weighted copy of B and letting the real-valued weight
increase continuously from 0 to 2. (Abusing language, we will talk in this introduction
of immersions also to indicate these “weighted immersions”.) The area increases from
2QH™(M) — 2H™(B) — 7 to 2H"™(M) — 7. Therefore, in going from the middle-left pic-
ture to the bottom-right picture of Figure |1}, we have produced a “path of immersions”
along which the area stays stricly below 2H" (M), at least by min{r,2H"(B)}, a fixed
positive amount that only depends on the geometry of M C N.

This path of immersions is then “reproduced at the Allen—Cahn level”, i.e. replaced
by a continuous path v : [0,%p + 1] — W12(N). Each function in the image of this
curve is a suitable “Allen—Cahn approximation” of the corresponding immersion. To
construct this, one fits one-dimensional Allen—Cahn solutions in the normal bundle to
the immersion, respecting multiplicities: at points with multiplicity 1 and 2 we will
use respectively the top and bottom profiles in Figure 3] The image of the immersion
corresponds to points where the function transitions between —1 and +1, with a double
transition for points of multiplicity 2. The operation of closing the hole at B can be
reproduced at the Allen—Cahn level thanks to the multiplicity-2 assumption on B:
in the normal direction to B, the profile of the function goes from being constantly
—1 to looking like the bottom picture in Figure 3] employing the continuous family
of profiles depicted in Figure |4] (going from the last to the first picture). Moreover,
this operation is continuous in W12?(N). (Working in the Allen-Cahn framework,
hypersurfaces are replaced by weighted level sets of functions and are thus naturally
diffused, so continuous weights are allowed. This ultimately permits the geometric
operation of closing the hole by increasing the weight of B continuously from 0 to 2.
The analytic ingredient behind the implementation of such a geometric operation is the
possibility to vary, as in Figure[d] the values of the function whose level sets give rise to
the diffused hypersurface. This geometric effect cannot be obtained by composing the
function with a domain deformationEI) The construction of v is done for all sufficiently
small € (the parameter of the Allen-Cahn energy) and, moreover, for all sufficiently
small € the Allen—Cahn energy all along « is a close approximation of the area of the
corresponding immersions; therefore, for all sufficiently small €, the energies stay below
2H™(M) by a fixed “geometric” amount ~ min{r,2H"(B)}.

We now consider (0) and ~y(t9 + 1) (respectively the Allen—Cahn approximations
of the immersions in the middle-left and top-right picture of Figure . For the latter,
we use a (negative) Allen-Cahn gradient flow (to which we add a small forcing term,
infinitesimal in €). We build a mean convex barrier (by writing a suitable Allen-Cahn
approximation of ¢), that sits below v(tp 4+ 1). Thanks to this, we show that the flow
deforms 7(tp + 1) continuously into a stable Allen-Cahn solution, which has to be
the constant +1 by the Ricci-positive assumption. Along this flow, the Allen—Cahn

2In a similar spirit, when we will write an Allen-Cahn approximations of an immersion with bound-
ary, there will be no sharp transition of multiplicity at the boundary: the weight will instead continu-
ously decrease to 0 in a neighbourhood of the boundary of the hypersurface.



energy is controlled by the initial bound ~ 2H™(M) — 7. The function v(0) is ~ +1
close to M \ B and ~ —1 away from a tube around M \ B: we connect this function
explicitly to the constant —1, continuously in W12, with approximately decreasing
Allen—Cahn energy. This is again possible thanks to the profiles in Figure 4. (A close
geometric operation is to give weight 2 to M \ B and let the real-valued Welght decrease
continuously to 0.) Reversing the latter path, composing it with 7 and then with the
path obtained via the flow, we produce the promised continuous path in W12(N) that
joins —1 to +1 and has the desired energy control.

push away from M

v M — N keeping B fixed

(double cover of M)

/\/

. make a hole
‘M\L 1(B) z<1t B) push away from M \ B

—

~—

><%<

close the hole at B continuously
(increasing the density from 0 to 2)

Figure 1: Cut, deform, fill in. The path of “immersions” in the second and third row
reaches the same immersion depicted in the top-right picture.

We stress that the functions «(¢), ¢t € [0,t9 + 1], that we call “Allen-Cahn ap-
proximations” of the corresponding immersions, are not solutions of an Allen—Cahn
equation, even when they are built from minimal hypersurfaces; they only realize the
“correct” energy value. In fact we do not even analyse the Allen—Cahn first variation
of v(t). The loss of information on the first variation is compensated by the ad hoc
structure of the Allen-Cahn approximation: its level sets are by construction graphical
over the given immersed hypersurface, so that the Allen—Cahn energy is an effective
approximation of area (by the coarea formula) and the geometric information can be
translated to the Allen—Cahn level.

We digress to comment briefly on the operation of connecting «(0) to the constant
—1. We could in fact use an Allen—Cahn flow for this step, by first slightly deforming
7(0) into another function (with a similar profile, so that it still approximates 2|M \ B|,
but with a more effective first variation) and then running the Allen-Cahn flow, that
deforms this function to the constant —1. We do not argue in this way, since we are
able to produce an explicit deformation of v(0) to —1, which is elementary and straight-
forward, thanks to the profiles in Figure [l We stress, however, that the deformation
that we exhibit mimics the Allen—Cahn flow, and can be viewed as a regularized ver-



sion of the Brakke flow that starts at 2|M \ B| and vanishes instantaneously. While
the Brakke flow creates a discontinuity in space-time, at the Allen—Cahn level we gain
continuity (and the flow reaches —1 in time O(e |loge|)). As we mentioned above, an
intuitive geometric counterpart of the deformation connecting v(0) to —1, is the one
that continuously decreases the weight of M \ B from 2 to 0 in time O(¢ |loge |).

A remark in similar spirit can be made for the portion of path that “closes the
hole at B”. At the Allen—Cahn level we gain continuity for this operation, because the
framework allows (heuristically) to increase the weight of B from 0 to 2 continuously.
More precisely, with the parametrization that we employ (that takes time 1), if we
were to take the € — 0 limit for this portion of path, we would see indeed a continuous
increase of the density on B from 0 to 2 (going from the bottom-left picture to the
bottom-right picture of Figure[l)). We could have alternatively parametrized this por-
tion of path by employing the same one-dimensional profiles in the normal direction
to B, however parametrized at faster speed (as in (3))), in order to mimic a reversed
Allen—Cahn flow on R: in this case this portion of path would take time O(e |loge|)
and if we were to take the € — 0 limit we would see the sudden appearance of 2|B]|.

o ~ 2| M|
@
make
a hole
at B push away from M
keeping B fixed
Y(0) = f \ _
=9 \\ /W(to +1) = gro+1
- -
gt = e
h Gt Gto+r
pusn away 0 1 hol
from M\ B ;tOSBe e
continuously

—+1

Figure 2: Lowering the peak (landscape for the Allen-Cahn energy). The same labels
as in Figure [I] are used, to denote deformations that reproduce those in Figure

We emphasise the following point of view on the construction of the path (con-
necting —1 to 41) that was sketched above. Consider ¢ : M — N: we exhibit two
one-sided deformations that decrease area and that can be reproduced for the Allen—
Cahn approximations. One (from the top-left to the middle-left picture of Figure
has the geometric effect of removing 2| B|. The other (from the top-left to the top-right
picture of Figure[l]) is a deformation of ¢ as an immersion, induced by an initial velocity
compactly supported away from B. We will denote by G{ in Section [4] the Allen-Cahn
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approximation of ¢. Then, with reference to Figure [2 and using the notation ~(0),
~v(to + 1) respectively for the Allen-Cahn approximations of the immersions in the
middle-left and top-right picture of Figure [I] the two deformations just described, im-
plemented at the Allen-Cahn level, correspond respectively to “going from Gf to v(0)”
and “going from Gj to vy(to + 1)”. The two deformations are linearly independent, as
the former acts on a compact set containing B while the latter in the complement of
this compact set. Note that it may well be that ¢ is an immersion with Morse index
1 (e.g. the double cover of an equator of RP3). The area-decreasing deformation that
removes B is clearly not a deformation of ¢ as an immersion; it can be reproduced as
a continuous deformation at the Allen—Cahn level thanks to the fact that multiplicity
is 2 on B, so that the profile of Gfj in the normal bundle to B looks like the bottom
one in Figure [3} this profile can be connected continuously to the constant —1 with
controlled energy, employing the deformation depicted in Figure

The function v(0) (that will be denoted by f = go in Section [7)) can be connected
to the constant —1 and the function v(tp + 1) can be connected to the constant +1,
as described in the sketch given earlier. We thus have a “recovery path” for the value
2H™(M): this path connects —1 to +1 (passing through G§) and the maximum of
the Allen—Cahn energy along this path is ~ 2H™(M). What we achieve is to deform
this path in the sorroundings of G, exploiting the information that we have gained on
the landscape, specifically we deform the portion between v(0) and v(tg + 1). From
~v(0) we use a deformation that reproduces the one in the middle row of Figure|l| By
doing this we reach a function g, (notation as in Section . Now we close the hole
continuously, replicating the deformation in the bottom row of Figure [T} reaching the
function 7(tp + 1) (that will be denoted by g¢,+1 in Section [7)). We have thus found a
path v : [0,t9+1] — WL2(N), from ~(0) to v(to+1), that lowers the peak, compared to
the initial “recovery path”. This follows thanks to the fact that the Allen—Cahn energy
is a close approximation of the area of the corresponding immersion, so we inherit the
estimates that we had for the path of immersions that joins the middle-left picture to
the bottom-right picture of Figure [T}

This shows that the landscape around Gf is reminiscent of one where the Morse
index is > 2. However Gj is not a stationary point for the Allen-Cahn energy. In
fact, we never need to compute the Allen—Cahn first or second variation along these
deformations, it suffices to know that the Allen—-Cahn energy at (0) and ~y(tg 4+ 1) is
strictly less than its value at Gf (by a fixed amount independent of €). Knowledge of
the first variation is only needed for G in order to prove that a negative gradient flow
connects y(to + 1) to +1, for which we employ G as a barrier.

Remark 1.10. It is natural to ask whether the path from —1 to +1 produced in the
earlier sketch can be imitated (e.g. in an Almgren—Pitts framework) by a one-parameter
family of boundaries in N. For the portion 7 : [0,¢g + 1] — W12(N), rather than
increasing the weight of B from 0 to 2 (which cannot be done in the class of boundaries)
one can argue by doubling M \ B and inserting a small cylindrical neck at B, then
pushing this hypersurface away from M without moving the neck (and decreasing the
area), then closing the neck. (An operation of this type is analysed in [I9]. To avoid
confusion, we point out that for our path v, the nodal sets {v: = O};¢[y,¢o+1] are not
cylindrical necks.) It is conceivable that one could then use mean-curvature-flow to
drift away from M until extinction time and thus imitate, by using boundaries, the
portion of path from ~v(¢y + 1) to +1. The use of a flow for this purpose does not
appear to have been investigated in the literature. (Gradient flows may be easier to



use in the Allen—Cahn framework, since the parabolic problem is semilinear, has long-
time existence and singularities do not appear. This may be particularly true when
n > 7 with singularities present in the geometric initial condition, see Remarks [I.1]]
and[1.12]) For the portion of path that goes from (0) to the constant —1, the spirit of
the Allen—Cahn deformation is again very different than a deformation of boundaries
(compare with [19], [41]), since its geometric analogues are either a continuous weight-
decrease from 2 to 0 or a Brakke flow that instantaneously makes M \ B disappear.
The Allen—Cahn framework allows a very straightforward way to produce this portion
of path. (Some extra challenges have to be overcome in [19], for example the catenoid
estimate.)

For n > 7, we still employ the idea illustrated in low dimensions. Its implemen-
tation, however, is rendered somewhat harder by the presence of the singular set:
standard tubular neighbourhoods and Fermi coordinates for M (that are essential to
fit one-dimensional Allen—Cahn profiles in the normal bundle to M) are not available.
While the geometric ideas remain the same as in the low-dimensional case, we need
to additionally study certain analytic properties. Denote by dy; : N — [0,00) the
distance function to M. The value dy;(x) is always realized by a geodesic (possibly
more than one) from z to a smooth point of M. This allows to analyse the cut-locus of
dy7 (restricting to {dy; < inj(NN)}), following [21], and obtain n-rectifiability properties
for it. This leads (for the moment) to the existence of a suitable replacement for Fermi
coordinates, which becomes the usual one on any compact subset of M. Denote by
. : M — N the immersion given by the standard projection from the double cover
of M. We choose K C M compact (sufficiently large) and a geodesic ball B C «(K)
(sufficiently small) so that ¢ : M — N admits a deformation as an immersion that
decreases area and only moves K \ ¢~}(B). (This is analogous to what we did in the
lower dimensional case, except that this time we additionally need a deformation that
does not move M close to the singular set.) The set K will play the role that was of
M in the low-dimensional case. Around t¢(K) we define Allen-Cahn approximations
of suitable immersions by fitting one-dimensional Allen—Cahn profiles in the normal
bundle. Away from ¢(K'), we use the level sets of dy; to complete the definition of
the desired Allen-Cahn approximations and create (as in the low-dimensional case) a
continuous path 7 : [0,¢9 + 1] — W12(N) with controlled energy. Exploiting further
the n-rectifiability of the cut-locus, we analyse the singular part of Ady; and (using
also the Ricci-positive condition) we obtain that, restricting to {d3; < inj(/NV)}, the
distributional Laplacian of dy; is a positive Radon measure. This translates into a
mean convexity property for the Allen-Cahn approximation G of ¢ : M — N. With
a (slightly non-standard) smoothing operation, we obtain from G§ a smooth barrier m
that is still mean-convex for the negative Allen-Cahn gradient flow (as for 2 < n < 6,
we add an infinitesimal forcing term). By employing m we produce the part of the
path that connects y(typ + 1) to the constant +1.

Remark 1.11. The continuity of the path from (0) to v(tg + 1), its energy bounds,
and the mean-convexity of Gf, ultimately rest on the fact that almost every level set of
the distance function dg; is almost everywhere smooth, with mean curvature pointing
away from M. These properties only require classical arguments. The almost every-
where information is sufficient for our purposes, because in the Allen—-Cahn framework
hypersurfaces are “diffused”. For contrast, in the case of boundaries of Caccioppoli sets,
all level sets of dy; have to be analysed, compare [29, Proposition 2.2].



Remark 1.12. The almost everywhere properties at the previous remark are sufficient to
set up a mean convex Allen-Cahn flow starting at Gj. For n > 7 this initial condition is
built from a singular hypersurface. We expect that the € — 0 limit of these Allen-Cahn
flows gives rise to an ancient (mean-convex) mean curvature flow with initial condition
(at time —oo) given by the singular minimal immersion ¢ : M — N.

1.2 Structure of the paper (and remarks for n < 6)

Except for properties of the distance function borrowed from [2I] (in Section (3| we
point out the relevant modifications needed to handle the singular set), the proof is
self-contained.

After the preliminary Section [2] we begin the proof of Theorem [I.3] which we
write for n > 7, assuming the existence of a (non-empty) singular set M \ M of
dimension < n — 7. While the underlying ideas are the same for all dimensions, the
proof becomes considerably shorter and more straightforward in the absence of singular
set, in particular when n < 6. In detail, Sections [3| and 4, in which we study the
distance function to M and its level sets, can be omitted when M = M and one can
use standard facts about tubular neighbourhoods of smooth closed hypersurfaces. In
Section [5| we identify a large unstable region 2|K \ B| and in Section |§| the immersions
that will be relevant for the construction of the path. The compact set K that we need
to work with in Sections |5 and |§| can be replaced simply by M when M = M, and in
this case the definitions of the Allen—Cahn approximations of the relevant immersions
given in Section [7] become simpler. In Section [7.5] we construct a barrier m by suitably
mollifying a Lipschitz function Gf, which is defined from the level sets of d3; and is
an Allen-Cahn approximation of ¢ : M — N. This convolution procedure (described
in Appendix ensures smoothness and mean-convexity of m, which is important for
our arguments. If M = M, G is already smooth and mean-convex and no smoothing
is needed, so Appendix [A] and part of Section [7.5] can be omitted. In Section [§ we
complete the proof of Theorem [I.3] and subsequently of Theorems [I.1] and
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2 Preliminaries

We give a brief summmary of [14], then introduce the one-dimensional Allen—Cahn
profiles that will be needed for our proof.
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2.1 Reminders: Allen—-Cahn minmax approximation scheme
We recall the minmax construction in [14]. For € € (0, 1) consider the functional

[ Va2 W)
20 N 2 £

Ee(u)

on the Hilbert space W12(NN). Here W is a C® “double well” potential, with exactly
three critical points, two non-degenerate minima at +1 and a local maximum at 0, with
(exactly) two zeroes of W/ (one between —1 and 0, one between 0 and 1) and with

quadratic growth to oo at £o0o; the normalisation constant o is 0 = f_ll VvW(t)/2dt.
22

A standard choice of potential is W (z) = a 5 ) , suitably modified (to have quadratic

growth) outside [—2,2]. Consider continuous paths in W12(V) that start at the con-

stant —1 and end at the constant +1: this is the class of admissible paths. A “wall” (or

“mountain pass”) condition is ensured and yields the existence of a minmax solution u.

to &' (ue) = 0. Moreover, upper and lower energy bounds are established, uniformly in
e. (We recall that &/(u) = —e Au+ W (u), where A is the Laplace-Beltrami operator,

3
so the Euler-Lagrange equation £./(u) = 0 is elliptic semi-linear.)
In order to produce a stationary varifold, one considers w. = ®(u.) as in [16], with

®(s) = [ v/W(t)/2dt, and defines the n-varifolds

1 oo
VE(A) = a/ Viw.=ty(A)dt.

The analysis in [16] (which only requires the stationarity of u. and no assumption on
their second variation), together with the upper and lower bounds for &.(u.), gives that
V¢ converges subsequentially, as € — 0, to an integral n-varifold V' # 0 with vanishing
first variation.

Thanks to the fact that the Morse index of u. is < 1 for all €, [I4] reduces the
problem locally in N to one that concerns stable Allen—Cahn solutions, as in [36]. For
these, the regularity theory of [40] and [37] applies and gives that spt ||V is smoothly
embedded away from a possible singular set of dimension < n — 7, i.e. V is the varifold
of integration over a finite set of minimal hypersurfaces, each counted with integer
multiplicity: V = Zszl q;| M;|, with ¢; € N and M; minimal and smooth with dim(DM;\
M;) < n —7 (]M;| denotes the multiplicity-1 varifold of integration on Mj;). In the
case n < 6 all the M;’s are closed (and smooth). (In the case Ricy > 0 there is only
one connected component, K = 1, see Remark )

We point out that, denoting by €; the sequence extracted to guarantee the varifold
convergence, &, (us;) — ||V||(N) in this construction, in other words the Allen-Cahn
energy of u., converges to the mass Zszl @ H" (M) of V.

2.2 1-dimensional profiles

Let H(r) denote the monotonically increasing solution to u” — W'(u) = 0 such that
lim, 1o H(r) = £1, with H(0) = 0. (For the standard potential (17;2)2 we have
H(r) = tanh(r).) Then also H(—r) and H(+r + z) solve v’ — W'(u) = 0 (for any
z € R). The rescaled function H,(r) = H () solves eu” — @ = 0.

Truncations. The arguments developed here will involve the construction of suitable
Allen—Cahn approximations of certain immersions. For that purpose, we will make use
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of approximate versions of H.. While this introcuces small errors in the corresponding
ODEs, it has the advantage that the approximate solutions are constant (41) away
from an interval of the form [—6¢ |loge|,6¢|loge|]. An Allen—Cahn approximation of
a hypersurface in N requires to fit the 1-dimensional profiles in the normal direction to
the hypersurface and we need to stay inside a tubular neighbourhood, so it is effective
to have one-dimensional profiles that become constant before we reach the boundary
of the tubular neighbourhood.

The cutoff for the heteroclinine H is done as follows (this truncation is also used in
[6] and [39]): for A = 3|loge | define

H(r) = x(A™"r)H(r) £ (1 = x(A™'r)),
where = is chosen respectively on r > 0, r < 0 and x is a smooth bump function that is
+1 on (—1,1) and has support equal to [—2,2]. With this definition, H = H on (—A, A),
H = —1on (—00,—2A], H= +1 on [2A,c0). Moreover H satisfies (as we check below)
[ W/ (H)||c2ry < C€?, for C > 0 independent of €. Note that H - W'(H) =0
away from (—2A, —A) U (A, 2A), so it suffices to compute on (—2A, —A) U (A, 2A):

H'(r) = A72X" (A1) (H(r) F 1) + 2075 (A1) (r) + x (A~ ) B (1),

We have ||H(r)F1||co < ce® and [|[H'(r)||cs < ce® for some o > 6, and ¢ > 0 depending
only on W. This can be done by explicit check for the standard potential (e.g. when
r > 0 we must estimate 1 — tanh(r) = % for r > —3loge) and is true whenever
W is quadratic around the minima by comparison. Therefore on (—2A, —A) U (A, 2A)
we get ||ﬁ”|\cz < ¢ed3 for e < 1/2 and é > 0 depending only on W. Similarly, on
(—=2A, —A) U (A, 2A) one checks that ||H ||z < &3 for € < 1/2 and & > 0 depending
only on W. Moreover, since W/(H) = H” and H — H = (1 — x(A~'¢))(H F 1), we find
on (—2A, —A) U (A, 2A)

— — == =/
W/ (E) |z < W (H)llco + W0 |H — Hllgo + 3[W” |er (IH |er + [H o) < ce®.

In conclusion |[H — W' (H)||c ®) < Ce? for some C > 0 (depending on W).

Notation: For € < 1 we rescale these truncated solutions and let H (-) = H (2).

Computation of the Allen-Cahn energy of H. To compute the energy of Hf, fol-
lowing [17], we have, for any ¢ : R — R,

e e, W) _ [*1 o1 2
/@z,b)zq'z*g—/@ Q(ﬁqﬁm) +4'\2W (q).

The first term vanishes when ¢ = H.. Let G denote a primitive of /2W (t). For the
second term, noting that the integrand is G(q)’, we get G(q(b))—G(g(a)). In particular,
Jr 5IHLI2+ % = G(1)—G(~1) = 20. Using the fact that H.(—2ec A) = —1+0(e?),
we get for ¢ = H,

/ ZEAZW + M = G(-1+0(e?) = G(=1) = 0(e*) > 0

12



and similarly [,7, 5|¢'|* + @ = O(e*) > 0. Therefore
2e A
W (H
/ E|]I-}If€\2—i-(7£) =20 — O(eh).
—_2¢A 2 9

Recalling the definition of ﬁe, we have that
HE —H = (1— x(e A™")(H £1)

which is controlled by O(£?) in C?-norm. Therefore

2eA o e o
Y+

m@ﬁ3§20+0@%. (1)

20 — 0(e%) < /

—2eA

Figure 3: The (smooth) functions H- (top) and ¥ = ¥y (bottom), with A = 3|loge|.

Families of profiles. Define the function ¥ : R — R

H(r+2eA) r<0
U(r)y=4 _ - . 2
(r) { I (—r+2cA) r>0 @)
This function is smooth thanks to the fact that all derivatives of H vanish at +2¢ A.
Define the following evolution for ¢t € [0, c0):

(3)

¥, (r) ::{ H(r+2eA—-t) r<0

H(—r+2eA—t) r>0 "

Note that ¥g = ¥ and ¥, = —1 for t > 4e A. For t € (0,4¢ A) the function ¥, is equal
to —1 for |r| > 4e A — t. The functions ¥; form a family of even, Lipschitz functions
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Figure 4: The profiles v, depicted for ¢t € (0,4¢ A), see (3)).

and &:(¥;) is decreasing in ¢. Indeed, the energy contribution of the “tails” (£1) is zero
7|12
(so the energy is finite) and we have & (¥;) = £ (V) — 5 fft € % + @
Note that ¥ and ¥; depend on €, however we do not explicit this dependence for
notational convenience. The profiles ¥;, and profiles of the type Hg(- —t), will be used
within our construction to produce Allen—Cahn approximations of relevant immersions

(possibly with boundary), having multiplicity 1 or 2 on their image.

3 Distance function to M

Let N be a Riemannian manifold of dimension n + 1 with n > 2 and with positive
Ricci curvature Ricy > 0. Let M C N be a smooth minimal hypersurface such that
dim (M\ M) <n-—7T, M is stationary in N, and M is locally stable in N, i.e. for every
point in M there exists a geodesic ball centred at the point in which M is stable. These
properties are true for the € — 0 varifold limit of finite-index Allen—Cahn solutions on
N, thanks to the analysis in [14], [16], [36], [37], [40]. The stationarity condition implies
the existence of tangent cones at every point in M. A consequence of the deep sheeting
theorem in [33], [40] is that any point of M at which one tangent cone is supported on
a hyperplane has to be a smooth point.

Let disty denote the (unsigned) Riemannian distance on N; we will be interested
in the function dg7 : N — [0, 00), d37(-) = distny (-, M). Since N is complete, for every
z the value dy7(z) is realized by at least one geodesic from = to M (Hopf-Rinow). We
recall a few facts that are true of the distance to an arbitrary closed set, see |21, Section
3]E| The function dy; is Lipschitz on N (with constant 1) and locally semi-concave on

31f the closed set is known to be a C''! submanifold, then the existence of a tubular neighbourhood
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N\ M, so that its gradient is BVj,. on N \ M (equivalently, the distributional Hessian
of dy7 on N \ M is a Radon measure). We denote by Sa; the subset of N\ M where
dyr fails to be differentiable; Sy coincides with the set of points in p € N \ M for
which there exist at least two geodesics from p to M whose length realizes dy7(p). The
function dgz is C! on N\ (HU%) and Sg_ is countably n-rectifiable (this uses [I]).
However, rectifiability is not necessarily true of its closure unless extra hypotheses on
the closed set are available; for example, % would be countably n-rectifiable (even
in the C*=2 sense) if M were a C* submanifold with k > 3, thanks to [21], Section 4].
While this statement does not apply immediately in our case due to the presence of
the singular set M \ M, the proof in [21], Section 4] can still be carried out without any
change by virtue of the following observation, which can also be found in [13], [42].

Lemma 3.1. Let x+ € N\ M. For any geodesic from x to M (whose length realizes
dy7(x)), we have that the endpoint y on M actually belongs to M.

Proof. Let y be any geodesic from x to M, let y be its endpoint on M and fix a point
z € N that lies in the image of v and such that disty(z,y) < inj(N). Consider the
(open) geodesic ball B(z) C N centred at z with radius distx(z,y). Then MNB(z) =0
(otherwise there would be a shorter curve than + joining z to M) and y € M NOB(2).
Since the monotonicity formula holds at all points of M (M is stationary in N), we can
blow up at y to obtain tangent cones. Then every tangent cone to M at y has to be
supported in a (closed) half space (the complement of the open half space obtained by
blowing up B(z) at y). By [34, Ch. 7 Theorem 4.5, Remark 4.6] every tangent cone to
M at y is the hyperplane tangent to B(z) at y, possibly with multiplicity. As pointed
out above, the sheeting theorem in [33], [40] implies that y is a smooth point. O

In other words, any geodesic that realizes the distance to M has to end at a smooth
point, i.e. on M (and it meets M orthogonally). This is the key fact that allows to repeat
the arguments in [21, Section 4] (as we briefly sketch below) and obtain Proposition 3.2}
In the rest of this work we will be interested in the set T, = {x € N : disty(x, M) < w},
where w is chosen in (0,inj(V)), therefore we restrict to this open set for our analysis
(even though not strictly necessary for this section).

Proposition 3.2 (as in [2I]). The set Sq N1, is countably n—rectzﬁabl. Moreover,
Vdz; € SBVi(T, \ M) and the singular part (with respect to H" ™1 L(T,, \ M)) of the
Radon measure D*dy7L(T,, \ M) is supported on Saz; N (T \ M).

Remark 3.3. Additionally we have, since M is smooth, that the absolutely continuous
part of D%dz; has a smooth density with respect to H"L (Tw \ (MU Sdﬁ)) This
density coincides with the pointwise Hessian of d3;.

Sketch: relevant arguments in [21]. Consider the map F(y,v,t) = exp,(tv) for
y € M and v a unit vector orthogonal to M at y. For fixed (y,v) the curve F(y,v,t)
is a geodesic leaving M orthogonally. We will limit ourselves to ¢t < w, since we are
only interested in T,,. If ¢y is sufficiently small (depending on (y,v)) the geodesic
t € [0,t9] — F(y,v,t) is the minimizing curve between its endpoint F(y,v,ty) and M,

is guaranteed, in which the nearest point projection is a well-defined map; moreover, if C? regularity
on the submanifold is assumed, Fermi coordinates can be used. In our case, due to the presence of the
singular set M \ M, one cannot have a tubular neighbourhood of M.

“Even C* countably n-rectifiable for all k, however we will not need this stronger property.
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equivalently, its length is dy; (F(y,v,t0)). However for large enough ty the geodesic
may fail to be minimizing, therefore one can consider o = o,, € (0,w| defined as
follows: o = w if F(y,v,t) is minimizing (between its endpoint and M) for all ¢t < w;
otherwise, o is chosen in (0,w) so that F(y,v,t) is minimizing (between its endpoint
and M) for t < o and F(y,v,t) is not minimizing if ¢ > . The set of points

Cut(M) = {F(y,v,a(y’v)) cy € M,ve (TyM)J‘, o] = 1,03 < w}

is the restriction to T, of the so-called cut-locus of M, and it is a subset of T, \ M
whose closure in T}, does not intersect M. Recall that the unit sphere bundle of M is
just M, the oriented double cover of M, so we will also write (y,v) € M.

Standard theory of geodesics (e.g. |31, Ch. 2, Lemma 4.8 and Ch. 3, Lemma 2.11],
which give the analogue of |21, Prop. 4.7] for M) gives that if z € Cut(M) then at
least one of the following two conditions holds: (a) there exist (at least) two distinct
geodesics from x to M that realize d77(x); (b) the map F : M x (0,w) — T, has
non-invertible differential at (y, v, 0(,.)), where x = F(y,v,0(,,)). Conversely, if (a)
or (b) holds, then the geodesic t — F(y,v,t) cannot be minimal on ¢t € [0,¢y] when
to € (0(y,),w). Option (a) is equivalent to z € Sq_ N (To, \ M) (see [21, Prop. 3.7]).

Using these facts, the arguments of [21, Proposition 4.8] adapt to give that

S N (T, \ M) = Cut(M),

therefore in order to prove the rectifiability in Proposition it suffices (since Sd
is countably n-rectifiable, see above) to show that Cut(M) \ Sq_ is a countably n-
rectifiable set in T,,\ M, i.e. the analogue of [2I, Theorem 4.11]. Note that Sy_NM C
M\ M is H™-negligeable, so it does not affect rectifiability. The points in Cut(M) \Sa,
are characterised by the validity of option (b) above, and the arguments in [21] are local
around the points (y,v,0y,) € M x (0,w), so they apply verbatim to our case.

Once the countable n-rectifiability of Sy has been obtained, it follows that Vdgz
is SBWVoc(T, \ M). Indeed, we know to begin with (see above for these statements
about the distance to a closed set) that Vdyz is in BWoc(T,, \ M) and notice that dgz
is C? (even C* for all k) on T, \ (% U M) thanks to the smoothness of M. The
“Cantor part” of the Radon measure DQdM gives 0 measure to countably n-rectifiable
sets (see [3| Prop. 3.92 or Prop. 4.2]), in particular it gives 0 to %. The smoothness
of D?%dy7 in T, \ (% U M) then implies that there is no “Cantor part”, i.e. Vdyz is
SBViee(T,, \ M). This concludes the sketch of proof of Proposition

Remark 3.4 (on the diffeomorphism F'). We point out a couple of further facts, mainly
adapted from [21], for future reference. The level sets of dg; are smooth in the open
set Tj, \ (%UM}, thanks to the implicit function theorem, the smoothness of d3; and
the invertibility of F' on this open set.

The map F(y,v,t) = exp,(tv) for y € M and v a unit vector orthogonal to M at
y, t € (0,w) is a map from M x (0,w) into T}, (since the oriented double cover M of M
is defined as the set of (y,v) with y € M, v unit vector normal to M at y). Arguing as
in |21, Prop. 4.8] we see that the following restriction of F' (still denoted by F')

F:{((y,v),s): (y,v) € M,s € (0,00,0))} — T \ Cut(M) \ M (4)
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is a (smooth) diffeomorphismﬂ This diffeomorphism extends as a continuous map to
M x {0} by sending ((y,v),0) to y € M (note that it is a 2 — 1 map here, the standard
projection from M to M). The image of this continuous map is then T, \ Cut(M)\
(M \ M). Again following verbatim [21, Prop. 4.8], we also have that the function
O(y,v) 18 continuous on M. The diffeomorpshism F in , continuously extended to M,
provides the natural replacements for Fermi coordinates around M in our situation,
where the singular set M \ M is present. We will write

Vir = {((y,0),8) = (y,0) € M, s € [0,0(,.))},

for the domain of (the extension of) F.
Let us take a closer look at the level sets I'y = {x € T}, : dy;(x) = t}, for t € (0,w).
By the previous discussion, the smooth hypersurface I‘t\SdW can be retracted smoothly,

staying in T, \ Sa- onto a subset of M and at each time the image of the retraction is
contained in (a smooth portion of) a level set of dg;. In fact, we have a retraction

(T, \ Cut(M) \ (M \ M)) x [0,1] = T, \ Cut(M) \ (M \ M)

explicitly given, using the identification , by (here ¢ = (y,v) € M and o, = T(yw))

R: {(q,s):qu,se [0,04)} x [0,1] = {(¢,8) :q€ M,s €[0,04)}
R(q,s,a) = (q,(1 — a)s).

Under the identification , the function s is just dgz, so it follows that the retraction
preserves level sets of dy;.

We will now analyse the jump part of the Hessian of dgy7 : T, \ M — (0,00);
this will lead to Lemma below. To this end, we perform, for H"-a.e. point x €

<Sdﬁ \M) N1, a blow up of d3; as follows. Using normal coordinates around z, for

all sufficiently small p > 0 consider the function d, : B} (0) — (0, c0) defined by

P .

Then (Vd,)(y) = (Vdy;)(x+py). Note that d, have Lipschitz-constant 1 and d,(0) = 0,
therefore we can extract a sequence p; — 0 such that d,; converge in C%* (for all @ < 1)
to a 1-Lipschitz function d, : Bf™(0) — R with d,(0) = 0. Recall Proposition
the rectifiability of % implies that at H™-a.e. point x € % \ M there exists a
measure-theoretic unit normal 7, to ﬁﬁ (rather, two choices of it); moreover, the left
and right limits in the Lebesgue sense of the SBVj,. function Vdy; are well-defined in
the two halfspaces identified by the normal (see [3, Theorem 3.77]). This means that
there exists two constant vectors a # b in R™*! such that

1

pn—|—1

dp(y) =

1
\Vdy;—al =0 and —

pTH-l ]Vdﬁ — b‘ —0

/{zeBp(x):z~ﬁg;<0} /{zeBp(x):z~ﬁg;>0}

as p — 0. This is equivalent, by a change of variables, to

®This diffeomorphism shows, in particular, the following. If 2 € T,, \ (% U M), then we know
that there exists a unique geodesic v from x to M and its endpoint y is on M by Lemma Then,
by the properties (a), (b) discussed above, no point of v is in Cut(M) and therefore all points on
except y have the property that they lie in T, \ (Sa, U M).
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|\Vd, —a| — 0, / |Vd, —b] =0
{z€B1(0):2-71z >0}

as p — 0. Therefore Vd, converge in LY(BP(0)) to the function Fy, defined to

be constant on each of the two half-balls {z € B**(0) : z - A, < 0} and {z €

BI(0) : 2 - A, > 0}, with respective values @ and b. This function must be the

(distributional) gradient of d,. Indeed, for every v € C}(Bj(0)) we have [ B1(0) G VU =

lim; o0 fBl(o) dp; Vv = —limj o0 fBl(O) Vdpv = — fBl(O) F,yv, where we used, in the

/{ZEBl (0):2-7z <0}

two limits, respectively the uniform convergence d,, — d, and the L'-convergence
Vd,. — Fgp. The equality obtained expresses the fact that F,;, = Vd,; and proves that

dy, — dy in WH(B1(0)) and in C%*(B;(0)).

Recall now that dy; is locally semiconcave, so it has at least an element in the su-
perdifferential, i.e. there exists a C! function w in a neighbourhood of  that is > dy7
and such that w(z) = dy;(x). Performing the same blow up on w, we consider the
rescalings ZEHLU==(@)  Phege functions converge in C' (B1(0)) to an affine function
wy. By uniform convergence, w, > d; on B1(0) and w,;(0) = d;(0) = 0. Recalling
that Vd, = F,, we obtain

(a—b)-ngy > 0. (5)

The jump part of D(Vdy;) is characterized as the measure that is absolutely continuous
with respect to H" L Sg_ and with density that is given for H"-a.e. z € (S4. .\ M)NT,
by (b—a) ® fig (see e.g. [3, (3.90)]). Taking the trace and using (5] this implies:

Lemma 3.5. Let A denote the Laplace-Beltrami operator on T, \ M. The singular
(jump) part of Adgz in T, \ M is a negative measure (supported on Sa.).

Next we analyse the absolutely continuous part (with respect to ") of Adyz, for
dy7 : Tw \ M — (0,00). By Proposition it suffices to analyse the smooth function
Adgr on Tp, \ (Sa,, UM). For this, we will need the Ricci curvature assumption (which
has not been used so far).

Lemma 3.6. The function dgf satisfies Adgy <0 on Tj, \ (S, U M).

Proof. Recall Remark For x € T, \ (% U M), dyz(z) is realized by the length
of a unique geodesic from z to a point in M that we denote by m(x), and the level set
{y € N\ (Sa;; UM) : dy;(y) = dyp(x)} passing through x is C? and its scalar mean
curvature at & (with respect to the normal that points away from M) is —Ady;(x).
We are thus in the classical situation in which we look at level sets of the distance
function to a smooth submanifold, in this case a geodesic ball B, (n(z)) in M. This
gives the information on the Laplacian in a neighbourhood of x. By Riccati’s equation
[11, Corollary 3.6], using the non-negativity of the Ricci curvature, we get that the
mean curvature of the level sets {y € N\ (% UM) :y = exp,(tv),z € B.(m(x))}
(this is a disk at distance t from B, (7w (x))), for either of the choices of unit normal v
on B,(m(z)), increases in ¢, hence Ady; <0 on N\ (% UM). O

From Lemmas and we have Ady;L(T,,\M) < 0 in the sense of distributionsﬁ
We now analyse Ady; at M. For p € M take a sufficiently small open ball U containing

SA distribution is said to be < 0 if for every non-negative test function the result is < 0. A
distribution that is > 0 or < 0 is necessarily a Radon measure, see e.g. [8, Theorem 1.39].
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p, that is disjoint from (M \ M) and from Cut(M) and such that U \ M is the union of
two disjoint connected open sets U™ and U~. We compute the action of the distribution
Adyz on an arbitrary test function u € C2°(U), and obtain (Adyz)(u) = — [ VdgzVu =
— fU+ VdzVu — fU* Vd77Vu. Note that Vdg; extends to a smooth vector field in a
neighbourhood of U™, so [,y Vdy;Vu = [, div(uVdyy) — [i;4 wdiv(Vdyy), where in
the last term div(Vdy;) = Adyz in the classical sense. The unit outer normal to OU*
agrees, on supp(u), with —Vdy; (this relavant portion of 9U™ is contained in M). The
divergence theorem then gives fU+ div(uVdyz) = — |, gu+ W Arguing similarly for U™,
we find (Adgz)(u) = [y vAdgr +2 [0 v o

In conclusion, Ady; (T, \ (M \ M)) = Ady; (T, \ M) +2H™ L M. In particular,
Adg7L(T,,\ (M \ M)) is a Radon measure (we have given its Hahn decomposition into
negative and positive parts). We will now extend across M\ M by a capacity argument.

Proposition 3.7. Let N be a closed (n + 1)-dimensional Riemannian manifold with
positive Ricci curvature and M a smooth minimal hypersurface as in Theorem [1.3
Denote by dy7 the distance function to M and by T,, = {x € N : dyj(z) < w}, where
w < inj(N). Then Ady; is a Radon measure on Ty, with positive part 2H™ L M.

Proof. Let 6 > 0 be arbitrary and choose x € C°(T,,) to be a function that takes
values in [0, 1], is identically 1 in an open neighbourhood of M \ M, identically 0 away
from a (larger) neighbourhood of M \ M and such that Jr, IVx] < 6 (see [8, 4.7]).
Then we have, for v € C°(T,,),

(Adzy — 2H" L M)(v) =

(Adyy = 2HLM)(1 = 0) + () ) =2 [ v =

(Adﬁ — 27—["|_M)((1 — X)’U) — Vdﬁ VXU — VdMVUX — 2/ XU. (6)
Tw Tw M

For the second term recall that the distribution Vdg; is an L* function with |Vdy;| =1
a.e. and so | [, VdgVxv| < |v]|pe (fTw |Vxl> < O||v||gee. This tends to 0 as 6 — 0.

As § — 0, the corresponding x will go to 0 in L!(T,,) so the third term will also tend to
0. For the fourth term, we notice that (by the construction of x) supp(x) is contained
in {disty (-, M \ M) < d} with d — 0 for § — 0; as H" L M is a finite measure, we have
that (H"L M) ({disty (-, M \ M) < d}) — 0, hence the fourth term also tends to 0 for
o0 —0.

The distribution Adgz is a priori of order < 1: | [, (Adgp)v| = | [, VdgVo| <
H" L (N)|v|]|cr. For the first term in the right-most side of @, observe that (1 —
X)v € CX(T, \ (M — M)) and Ady; — 2H"L M is a negative Radon measure on this
open set (by Lemma and by the observation preceding Proposition , so that
(Adg;—2H"LM)((1 —x)v) < 0if v > 0 (because (1 — x)v > 0 by the choice of x). As
(6) holds for all &, and its last three terms tend to 0 as § — 0, for every v € C°(1,,)
and v > 0 we have

(Adgr — 2H" L M)(v) = lim(Adgy — 2H"LM)((1 = x)v) < 0.

The distribution Ady; — 2H" L M is therefore a negative Radon measure on 7,,.
O
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4 Level sets of dy;

We consider the level sets I'y = {x : dyp(x) = t}, for t € [0,w/2] (we fixed an
arbitrary w € (0,inj(N))); we will obtain that the areas of I'; are “essentially” decreas-
ing in ¢. Further, we will consider an “Allen-Cahn approximation” Gg : N — R of
Leelioge| = ['2e defined, for € sufficiently small (to ensure 4 A < w/2), as follows:

N -1 forx e N\ T,
Golw) = { H (—dyp(x) + 2 A) forzeT, (™)

Since H is constantly —1 on (—o0, —2¢€ A], the function G is constantly —1 on {z :
dyp(x) > 4e A}. Since H is smooth, G has the same regularity of dy7, i.e. it is locally
Lipschitz, G§ € W1(N). Moreover, its gradient (which equals f(ﬁa)’(fdﬁ(:v) +
2e A)Vdy;(z) in T, and 0 otherwise) is in BV(N) and its distributional Laplacian
AGY is a Radon measure (as computed within below). Note that the profile of
o in the normal direction at any point of M is given by the function ¥ = Wy in
, therefore Gfj can also be thought of as an Allen-Cahn approximation of 2|M|, or
equivalently of the immersion ¢ : M — N that covers M twice. The fact that &.(GS)
is approximately 2| M| will be etablished later.
The Allen-Cahn first variation of Gj (which is clearly 0 outside T,) can be computed
in T,, as follows:

~(20)8'-(G7) = = AGE — VG0 ®)

i — W/ (H (—dy; +2e A
= el (~dyy + 26 N)|Vdgg? — e H (—dyy + 2 A) Adyy — = éw+ A _

W/(H (—dg; +2¢A))

— 5@8,(—dﬁ +2¢ A) Adﬁ,
<0

— el (—dy; +2¢A) —

0(=2) 0<-<3

in the distributional sense. Since Ady; a Radon measure thanks to Proposition
we will think of —&'.(G§) as a Radon measure. (The term O(g?) in the last line is a
Lipschitz function that we interpret as a density with respect to H"*!; the last term
is the measure Ady; multiplied by a bounded Lipschitz function.)

Denote by F ,, for a constant y > 0, the functional on W1?(NN) given by

Fep(u) =& (u) — % /Nu

The computation in shows that for every ¢ there exists pue > 0, ue — 0 as € — 0,

such thatﬂ (we need pe > 40||O(2)|| L where O(£?) is the first term in the last line of

@)

MEHn+1 > 1 pee
20 T 22

(The inequality means that the Radon measure on the left minus the Radon measure
on the right is a non-negative measure.) The function G{j will form the starting point
for the construction of a barrier for the negative F ,_-gradient flow in Section

—Flep(Gg) = —€'(Gp) + ML

A precise choice of p. will be made in .
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Areas of T'y. Since Sg- 18 countably n-rectifiable (and thus has Hausdorff dimension
< n and vanishing H"*! measure) we get that, for a.e. t > 0, H"(Sa; NTt) = 0. We
will denote by Q C (0,w) the set with H'(Q) = 0 such that

te(0,w)\Q=H"(S;_NIy) =0

(and therefore, for t ¢ Q, I'; is a smooth hypersurface away from a H"-negligeable
set). Therefore for ¢ € (0,w) \ Q we have H™(T';) = H"(T; \ Sg..), i.e. we only need to
compute the area of the smooth part of I';. Thanks to this, we will compare the area
of T'y to that of M for t € (0,w) \ Q.

Lemma 4.1. Let Ty = {z € N : dyp(z) =t} and Q C (0,w) as above (H'(Q) = 0).
Then

(a) fort € (0,w) \ Q the set Ty is a smooth hypersurface away from a set of vanishing
H"-measure and H"(T'y) < 2H™(M);

(b) the function t € (0,w) — H™(T'y) satisfies for t1 < to, ta & Q (t1 € Q is allowed),
the inequality H™(T'y,) < H™(Ty,).

Proof. The first part of (a) has already been discussed above. Recall the diffeomorphism
induced by F' in Remark Endow {(¢,s) : q € M,s € [0,04)} with the pull-back
metric (via F) from T, \ Cut(M) \ M. The metric extends continuously to M x {0} to
give the natural metric on M. We will thus work in Vig=1{(g,8):q € M,se [0,04)};
note that F~! (Fto \ Sdﬁ) = {(z,s) € Vy; : s = to}. Denoting by II the map II(q, s) =
(q,0), recall that from the structure of V,; we obtain the following. For every ¢ < ¢q the
set {(z,s) eV :xell (F_l <Ft0 \ﬁﬁ)) ,s =t} is contained in F~(T \%) It
is then enough, for (a) and (b), to prove that, if tg ¢ Q and ¢ < tg, then {(z,s) € V}; :
s =t} has area bounded by {(z,s) € Vy; : x € I ({(z,s) € Vy; : s =to}), s = t}.

Let (x1,...,%p,5s) be local coordinates on V,; chosen so that 82 sy 88 form a
local frame around a point 2o € M, that is orthonormal at zg € M, and 8 is the unit
speed of the geodesics {z = const} Then the Riemannian metric on VM induces an
area element 6, for the level set {s = so} at the point (zo, s0). By [LI, Theorem 3.11]
it satisfies the ODE & 55 log 05 = —H(azo, s) - 88 , where H(mo’s) is the mean curvature of

the level set at dlstance s evaluated at the point (z¢, s). (Note that in [II] s denotes

the volume element, but since % is a unit vector, the area and volume elements are

the same.) By Riccati’s equation [11l Corollary 3.6] we find that H(xg,s) = ﬁ(xms) . %
is strictly increasing in s, at least at linear rate, thanks to the positiveness of the Ricci
curvature, H g, ¢ > s(miny Ricy). Therefore % log s < —s(miny Ricy) and we find

for s >0,t>0
9(80 —|—t) . . /80+t
1 — | < = R d
o5 (Mt ) = emien) [

and therefore
_ minp Ricpy 2
080+t < 9806 2 (2s0t+t ), for (.%'0, So + t) S VM'

In particular, (t) is decreasing in ¢t. From this (a) and (b) follow by integrating the
area element. (Recall that [y, oda’ ... dz" = 2H™(M).) O

Allen—Cahn energy of Gj. Thanks to Lemma we can control the Allen—Cahn
energy of Gy by twice the area of M. Indeed, recalling that the energy is 0 in the
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complement of T/, and that VGj is parallel to Vdgzz, we use the coarea formula for
the slicing function dy; (for which |Vdy;| = 1) and we get

€12 € w €12 €
[ (/ VG +W<Go>)d3 _
T 2 e 0 2 g ~~—
w/2 s by@
e/

:/25A / . (H ' (s))? N W (H (s)) Is <
—w/2+2€e A Pacn—s 2 € Lem\r::m
< ) (/Rg @y, w(ms)) |

where we used Lemma (a) for a.e. s, namely s ¢ Q. By the estimates in we get

E-(G§) < 2H™(M) (1 + O(=?)). (9)

5 Instability properties of M (choice of B)

Let « : M — N be the (smooth) minimal immersion induced by the standard
projection (2—-1 map) from the oriented double cover of M onto M. Let v be a choice (on
M) of unit normal to the immersion ¢. Recall (Remark [3.4)) the coordinates ((y,v), s) =
(g,s) on Vi, which is diffeomorphic to T, \%\ (M \ M); here y € M and v a unit
vector orthogonal to M at y, or, equivalently, ¢ = (y,v) € M. For every compact set
K C M there exists cx > 0 such that cx < Oy for all (y,v) € K. This follows from
the continuity of o, on M (Remark . Choosing K even (i.e. such that K is the
double cover of a compact set ((K) in M) this means that ((K) admits a two-sided
tubular neighbourhood of semi-width cx.

We will now consider deformations of + with initial velocity dictated by a function
@ € CZ(M). For ¢ € CZ(M), choose csupp, as above and consider the following
one-parameter family of immersions ¢; : M — N defined for ¢t € (—dp,dp), where

dg € (O, C;;;%):

<y7 U) — CXDP,(y) (t§0(<y7 U))V((Z% ’U))),

for (y,v) € M. The first variation of area at t = 0 is 0 because M is minimal. The
second variation of area at ¢t = 0 is given by

/~ Veol2dn" — / (AP + Ricw (v, v)dR", (10)
M M

where A denotes the second fundamental form of ¢, V the gradient on M (with respect
to go, the Riemannian metric induced by the pull-back from M), Ricy the Ricci tensor
of N and H" is induced on M by gy (equivalently, integrate with respect to dvoly)).

Lemma 5.1 (unstable region). There exist a geodesic ball D CC M and ¢ € CE(M)
with ¢ > 0, such that, writing D = 1=Y(D), the support of ¢ is contained in M\f) and

/~ IVo|2dH™ — /~ ?*(|A?> + Ricy (v, v))dH" < 0. (11)
M M
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Proof. The second variation of M is only defined for initial velocities induced by a
function with compact support in M. Fix an arbitrary point b € M. Let § > 0 be
arbitrary and choose p = ps € C°(N) such that 0 < p < 1, p = 1 in an open neigh-
bourhood of {b}U (M \ M), p = 0 in the complement of a (larger) open neighbourhood
of {b}U (M \ M), and [, |[Vp|* < é. This is possible because {b} U (M \ M) has finite
(actually 0 when n > 2) H" 2-measure, and the mass growth is Euclidean around every
point of M (since 2|M| is a stationary integral varifold, which gives the validity of the
monotonicity formula): the previous two facts allow to conclude that the 2-capacity of
{b}U(M\ M) is 0 (see [8, Section 4.7]), establishing the existence of p with the desired
properties.

Then the function p(q) = 1 — p(¢(q)) is admissible in and the expression
becomes (integrating on M)

2 / Vpl2dn" 2 / (1— p)2(|Ant]? + Ricx (v, v))dH".
M M

(Note that on M the choice of v is in general only permitted up to sign; this suffices
for the term Ricy(v,v) to make sense.) Sending 6 — 0 the second term tends to
—2 [,;(IAm]? + Ricy (v, v))dH"™ and the first term tends to 0, so the above expres-
sion converges to a negative number (recall that Ricy > 0). Therefore there exists &
sufficiently small such that

2/ \Vp2dH" — 2/ (1 —p)2(|Ap|* + Ricy (v, v))dH™ < 0.
M M

We let, for this 6, ¢(q) = 1 — p(¢(¢)). Since 1 — p vanishes in a neighbourhood of b,
there exists a geodesic ball D whose closure is disjoint from supp(1 — p) and therefore
its double cover D is a positive distance away from suppe. ]

Remark 5.2. This lemma uses n > 2 to argue that {b} has codimension > 2 (for n =1
the lemma fails, e.g. for RP! C RP?).

Remark 5.3. By the construction of p in [8], p(x) = 0 when distx (x, {b}U(M\M)) > ds
for some ds — 0 as § — 0. This means that for § sufficiently small the support of p
has at least two (compact) connected components one of which contains b (and thus

D) while the union of the others contains an open neighbhourhood O; of M \ M.
Let O CC O; be an open set containing M \ M (to avoid technical difficulties, we
ensure also that @O N M is (n — 1)-dimensional, thanks to the coarea formula for
disty). For gz~5 = 1 — p o, we have that the complement of suppgz; has at least two

(open) connected components in M, one containing D while the other contains t=1(0).
Note that K = M \ ¢~'(O) is compact. These facts guarantee that ¢ vanishes in a
neighbourhood of dD and of d(:~'(0)) = 0K, a condition that will be technically
useful in Section [6]

Remark 5.4 (choice of B). Choose the ball B in M to be concentric with D and with
half the radius. Denote by R > 0 the radius of B. Let B = t~Y(B): this is the union
of two geodesic balls in M. The choices of B and ¢ will be kept until the end.

Remark 5.5. The geometric counterpart of Lemma is that the minimal immersion
¢ is unstable with respect to the area functional also if we restric to deformations that
leave D (and D) fixed and that do not move M close to its singular set M \ M. We
will be more specific in Section [6] below.
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6 Relevant immersions (choice of )

Recall Remark . We will fix the compact subset K = M \+~(0) and will denote
by Kp the compact set K \ B , where B is as in Remark Note that both K and
Kp are even in M, i.e. they are double covers (via ¢) of compact subsets of M. We
have supp¢ C Kp C K, for ¢ chosen in Lemma Recall that ¢ vanishes in a
neighbourhood of 0K p (and of 0K). We will define on K and Kp suitable two-sided
immersions into N, smooth up to the boundaries 0K and 0K p (this means that there
exist open neighbourhoods of K and Kp to which the immersions can be smoothly
extended).

Choose cx > 0 such that cx < ming, ,ex Oy (by the continuity of o > 0 on M
the minimum exists and is positive). We therefore have a well-defined one-sided tubular
neighbourhood of K in V;, namely K x [0, ck), with closure contained in V;. Note
that there exists an open neighbhourhood of K on which o(,,) > ¢k, by continuity of
o on M.

Recall that Vj; is endowed with the Riemannian metric induced by the pull-back
from N. Let I1x denote the nearest point projection onto K (in coordinates, Il (g, s) =
(¢,0)). For future purposes, we ensure that cx above is also suitably small to ensure
that, for x = (¢,s) € K x [0,ck), then

| |[Jk|(z) — 1| <2Cks and < 2Cks, (12)

| |

where |JTlx| = /(DIlg)(DIlk)T and the constant Cx > 0 is the maximum of the
norm of the second fundamental form of ¢ : M — N restricted to K C M. Note that
s is just the Riemannian distance of (¢, s) to K (and to M).

Choosing & > 0 and # > 0 sufficiently small, we can ensure that (¢, c + t¢(q)) €
K x [0,%K) for all t € [0,{o] and for all ¢ € [0,¢]. For any such ¢,¢ we thus have
a smooth two-sided immersion ¢ = (y,v) € Int(K) — exp, ((c+ tq@(q))v) from the
interior of K into V.
Remark 6.1. Note that, since ¢ = 0 in a neighbourhood of 0K, the immersion ¢ =
(y,v) € Int(K) — exp, ((c+ tc;g(q))v) agrees with ¢ = (y,v) € Int(K) — expy(cv) in
a neighbourhood of 0K, therefore it extends smoothly to K. Similarly, ¢ = (y,v) €
Int(Kp) — exp, ((c + t&(q))v) extend smoothly to K because ¢ = 0 vanishes in a
neighbourhood of 0K.
Remark 6.2. (a) Again thanks to the fact that é = 0 in a neighbourhood of K, we
have the following technically useful fact. For the two-sided immersion ¢ = (y,v) €
K — exp, ((c—i— té(q))v), with ¢ > 0, denote by v a choice of unit normal (which
extends continuously up to OK) and by Kc,t,q; its image. We can find ¢ > 0 such that,
for any ¢ € [0,%0] and ¢ € [0, &], the set {exp,(sv) : s € (—¢,¢),x € K, 5} is contained
in K x [0,ck). By making ¢ smaller if necessary, we can also ensure that the set

{exp,(sv) : s € (—min{c, ¢}, min{c,c}),z € K, 5}

is a tubular neighbourhood of K, 3 in the sense that it admits a well-defined nearest
point projection Il.; onto K_, ;. This projection extends smoothly up to the bound-
ary portion {exp,(sv) : s € (—min{c,c},min{c,c}),z € 0K, ;}. In fact, close to
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{exp,(sv) : s € (—min{c,c}, min{c,c}),z € 8Kc’t’¢;} we have that II.; agrees with the
nearest point projection onto I'..
These properties essentially say that we can work with tubular neighbourhoods of

K., 5 without interfering with the complement of F(K x [0, ck)) and it will be useful

when writing Allen-Cahn approximations of the immersions ¢ = (y,v) € Int(K) —

exp, ((c+ té(@)0).

(b) For notational convenience we redefine ¢y, by choosing the minimum of &
specified above and ¢ specified in (a). Then we have a well-defined nearest point
projection

ey : {expy(sv) 1 s € (—c,c),z € K, 5t = K, 5
for all ¢ € (0, )] and all ¢t € [0, %)
Remark 6.3. Choosing a suitably small tg < tg, tg > 0, we can further ensure that
the area of the immersion ¢ = (y,v) € Int(K) — exp, ((tdg(q))v) is strictly decreasing

in t on the interval [0,%p]. This follows upon noticing that the first variation (with
respect to area) at t = 0 is 0 (by minimality of M) and the second variation at
t = 0 is negative by Lemma (see Remark . Remark that the immersions

q = (y,v) € Int(Kp) — exp, <(t¢~>(q))v> (the previous family of immersions restricted
to Int(/p)) have the same area-decreasing property, since ¢ =0 on D. For the latter
family of immersions, the area at ¢t =0 is H"(K) — H"(B) < 2H"(M) — 2H"(B).

Lemma 6.4. Let tg be as in Remark and ¢o as in Remark (b). There exist
co € (0,¢0] and T > 0 such that

(1) for all c € [0, co] and for all t € [0,t0] the area of the immersion
a = (y,v) € Int{(Kp) — eap, ((c+ td(q))v)

is < H"(K) - §H"(B) = H"(K) — §H"(B);

(ii) for all c € [0, ¢o] the area of the immersion

4= (y,v) € Int(K) — eap, ((c+todla))v)
is <H"(K)—T.

Proof. Let us prove that (i) holds for some ¢, € (0,é)] (in place of ¢p). Argue by
contradiction: if not, then there exists ¢; — 0 and t; € [0, tg] such that the area of ¢ €

Int(Kp) — exp, <(cZ + t@(q))v) is > 2(H"(M) — 33"(B)) for all i. Upon extracting
a subsequence we may assume t; — t € [0,¢o] and by continuity of the area we get that
the area of ¢ € Int(Kp) — exp, ((tq@(q))v) is > (H"(K) — 3H"(B)). This is however
in contradiction with Remark [6.3] which says that this area is < #"(K) — 24"(B).
Let us prove that (ii) holds for some cjj € (0, ¢ (in place of ¢y) and for some 7 > 0.
By Remark the area of ¢ = (y,v) € Int(K) — exp, ((tmﬂ?(q))v) is strictly smaller
than H{"(K). Denote by 27 the positive difference of the two areas. By continuity,

8More precisely, we can patch the definition of Allen-Cahn approximation given in the tubular
neighbourhood of K, 5 (for ¢ = 2¢ A to be chosen) with the function G§ defined in @
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there exists ¢ > 0 such that for all ¢ € [0, ¢j] the area of the immersion ¢ = (y,v) €
Int(K) — exp, ((c + tod(q))v ) is smaller than H"(K) — 7.

Choosing ¢y = min{c, ¢j} concludes. O

We will write, in Section[7], Allen-Cahn approximations of the immersions in Lemma
To that end, we will work in the tubular neighbourhoods specified in Remark
restricting the range of ¢ and ¢ to [0, ¢o] and [0, to] respectively (in order to exploit the
area bounds obtained in the lemma). We will also make use of the following bounds.

Remark 6.5. There exists a constant Ck ¢, > 0, depending only on ¢, fo, on the
Riemannian metric and on the C3 norms of ¢ on K and of F, such that for ¢ € [0, co]
and ¢ € [0, to]

| [JHeil(x) =1 | < Ckeotys and

1| < Cruys, 1
‘unc,tr(x) ‘—CK’ oto® (13)

where |JT.;| = \/(DIl.+)(DIl.;)T and s is the distance of x to K., 4

Signed distance disty o . To write Allen—-Cahn approximation of the immersions in
Lemma . we will need to use the following notion of signed distance to K _, ;. Recall

that ¢ > 0 is smooth and ¢ = 0 in a neighbourhood of K. In the coordlnates of Vi,
K., j 1s identified with a graph, namely (for c € [0, co] and t € [0, %o])

F—1< ct¢> ={(q,s) € K x [O,CK):s:chtqz;(q)}.

We define, on K x (0, cg), the following “signed distance to F'~! (Kct¢>)” for ¢ > 0.
First we decide the sign of the distance: we say that (¢, s) € K x (0,cx) has negative

distance to F~! (Kc,m;) if s < ¢+ tp(q) and positive distance to F~! (Kc,t,qB) if

s> cH+ tquS(q). Next we define its modulus. The modulus of the signed distance is

the unsigned distance of (q,s) to F~! (Kct q;) in K x (0,cg) (recall that K x (0, cx)

is endowed with the Riemannian metric pulled back from N). Note that if (¢,s) €
F! (Kc’t ¢~>> then the distance extends smoothly at (g, s) with value 0. Also remark
that we do not define the signed distance on K x {0}. The signed distance just defined
descends to a smooth function on F' (K x (0,cx)) C N that we will denote by distr_,

The set F' (K x (0,ck)) is an open tubular neighbourhood of ¢(K) of semi-width cK,
with M removed.

7 Allen—Cahn approximations and paths in W1H2(N)

The overall aim in the sections that follow is to produce, for all sufficiently small
g, a continuous path in W12(N) that starts at the constant —1, ends at the constant

+1 and such that & is bounded by =~ 2H" (M) — min an(B), z

chosen respectively in Remark [5.4] and Lemma[6.4) and depend only on geometric data
(not on ). Theorem [L.3] (and Theorems [1.1] . will follow immediately once this is

achieved.

} where B and 7 were
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7.1 Choice of ¢

Let B be as in Remark [5.4] and ¢g, to, 7 be as in Lemma [6.4] The geometric
quantities H"(B) and 7 are relevant in the forthcoming construction.

In the following sections we are going to exhibit, for every sufficiently small €, a
continuous path in W12(N) with & suitably bounded along the whole path. We will
specify now an initial choice € < €1 that permits the construction of the W2-functions
describing the path. When we will estimate & along the path, we will do so in terms
of geometric quantities (typically, areas of cetain hypersurfaces, hence independent of
€) plus errors that will depend on €. For sufficiently small €, i.e. € < g3 for a choice of
€9 < €1 to be specified, these errors will be < C(e |loge |), for some C' > 0 independent
of €; we will not keep track of the constants and will instead write O(e |loge|). At the
very end (Section [§)), in order to make these errors much smaller than 7 and H"(B),
and thus have an effective estimate on & along the path, we may need to revisit the
smallness choice: for some €3, (possibly €3 < €2) we will get that for € < €3 the errors
can be absorbed in the geometric quantities. Therefore for € < €3, we will have an
upper bound for & along the path that is independent of €.

Now we choose €1. The choices of €9, €3 will be made as we proceed into the
forthcoming arguments. We restrict to €1 < 1, so that the O(g?) controls that we have
on the approximated one-dimensional solutions in Section [2.2] are valid for all € < €;.
We then require €1 < % so to have ¢|loge| is decreasing as € decreases so that the
conditions specified on €1 hold also for each € < €1 and, moreover,

“
20

(and implicitly < iw). Since the quantity 6¢|loge| will appear frequently (due to the
choice of truncation in Section [2.2)), we will use the shorthand notation A = 3|loge |,
when working at fixed ¢.

6e1llogeq| <

7.2 Allen—Cahn approximation of 2(|M| — |B|)

Recall the function G : N — R defined in (7)), which is an Allen-Cahn approxima-
tion of ¢ : M — N, i.e. a W12 function with nodal set close to the image of ¢ and such
that its Allen-Cahn energy &£ (Gj) is approximatelyﬂ the area of ¢ (i.e. = 2H"(M)).
Due to the fact that we replace hypersurfaces by non-sharp transitions, the function
G{ can also be thought of as an Allen-Cahn approximation of I'pc 5 (that is exactly
the nodal set of Gf)).

Definition of f. We will now “remove the ball B” from G : N — R. In other
words, we will write an Allen—Cahn approximation f of 2(|M| — |B|), or, equivalently,
of t| ;5. Always because we have non-sharp transitions, we can think of f also as
an Allen—Cahn approximation of I's. o with two balls removed. Although f = f¢ does
depend on €, we drop the € for notational convenience. What is important to keep in
mind is that we can perform the contruction of f given below for any € < €1 and that
we will obtain estimates on &£.(f°) that are uniform in €.

9In Section [4] we only established an upper bound for £ (G§), and most of the times an upper
bound is all that will matter for our Allen—Cahn approximations (although a lower bound in terms of
the area of the correspoding immersion is also going to be always valid). In the case of Gg, such a
lower bound for &.(G§) will be established later.
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To this end, we let x € C2°(M) be smooth and even (i.e. x(p) = x(q) if ¢(p) = ¢(q)),

with x =1 on B, |Vx| < %, where R is the radius of B, and suppy CC D. Then we
define, using coordinates (q,s) € K x [0,cx) C V,

Go,8(4,8) = Vacay(g)(8), (14)

where Uy is as in 1} Since x is even, the function Gg, p descends to a well-defined
function f on F' (K X [0, ck)) (this is a tubular neighbourhood of semi-width cx around
t(K)). Note that f agrees with Gj on F’ ((K \ D) x [O,cK)) andon F' ((K X (cx/2,ck))
(on the latter both are equal to —1), therefore we extend f to N by setting it equal to
Gjon N\ F(K x [0,ck)),

G§ forz e N\ F(K x[0,cx))
fx) = { G5 p(F(2)  forze F(K x[0,cx) (15)
then f is WH™ on the complement of F(D x [0,cx/2]). Since Wy(z) is even and
Lipschitz on R, see , we will in fact conclude that f is W1> on N. We only need
to check it around points x € D. Let xo : M — R be defined by xo(y) = x(t: ™' (v));
this is a smooth function compactly supported in D. In a neighbourhood of x € D
we can choose a small geodesic ball B,(z) C M and use Fermi coordinates (y,a) €
By(7) X (—ck, ci). Then in this neighbourhood f(y,a) = Wy, py,(y) (@) Since ¥y(2) is
Lipschitz in (¢, z) € [0,00) x R, we conclude that f is Lipschitz on B,(z) x (—ck, ck).
(The Jacobian factor that measures the distortion of the Riemannian metric from the
product metric on B, (x) X (—ck, ck) is bounded by a constant that only depends on
the geometric data F(K) C M C N; therefore it suffices to observe that Wy 5y, (@)
is Lipschitz with respect to the product metric.) Therefore f € W1°(N).

Allen—Cahn energy of f. To estimate from above the Allen—Cahn energy of f, since
f = Gf in the complement of F (D x [0, cK)> and we estimated £.(Gj) in (9), we only
need to compute the energy of f on F (D x [0, cK)> (and, similarly, the energy of G§

on F (f) x [0, CK)>). We can therefore use coordinates (¢, s) on D x [0, ¢x) C Vi asin

and apply the coarea formula (for the function Ik (g, s) = (¢,0), whose Jacobian
determinant |JIIx| is computed with respect to the Riemannian metric induced from

N):
V 2 W WGE
[ GELMO [ (v ) g
F(Dx[0,cx)) 2 € Bx(0,cx) 2 €

1 2 W(GE
+ / / - L WGl g, dg+
B \Jo.cx) [THK| \ 2 €

€
WL/~ N §|VqG8,B 2
(D\B)x(0,cK)

The notation V, stands for the gradient projected onto the level sets of s (recall that

% is orthonormal to the level sets of s). By definition of Go p we have, at (q,2) €

D x (0, cx):

9 e
%O,B

oGy _ d
dq; da

4£A6—X

a=4e Ax(q) g’

(Wa)(2)
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where, with a slight abuse of notation, x(g, z) = x(q). As a function on M, x satisfies
|Vx| < % (where R denotes the radius of B). Moreover, 1L (W,)(2)] = |¥'(|2|+a)| < 2
These bounds imply (A = 3|loge])

Ce?|loge|?> Cellogel?
2R T R
(Here C = (8- 6)2C’, where C’ > 0 depends on the distortion factor between the
Riemannian metric and the product metric.) Since B, D, R and C are independent of
€, implies that the third term on the right-hand-side of can be made arbitrarily
small by choosing ¢ sufficiently small; this term is O(g? |loge |3), since the integrand
is zero on (D \ B) x (4€ A, c). The first term on the right-hand-side of vanishes
because Gg g = —1 on that domain. For the second term on the right- hand side of
, note that the inner integral only gives a contribution in [0,4¢ A] (G, 0B = 1 on
s € [4e A, ck]). Recalling the bounds on the Jacobian factor |JIIx| given in and
the energy estimates on the one-dimensional profiles, see and , we ﬁnd

e|V4Gol* <

(17)

second term on right-hand side of <

4e 1 2 W(\I’45A )
; 1 /o, 1 F4eAx(g)
—(1+8€ACK)/D\B </0 25( 4€Ax(q)) + € >dq

<H"(D\ B)(1+8eACk)&(H) <
< (H"(D) — H™(B)) (1 + 82 ACk)(20 + O(?)).

We can thus rewrite as a leading term 2o (H"(D) — H”(B)) plus errors; for a

sufficiently small choice of €5 < €1, for € < €3 all errors are of the type O(e|loge|).
We therefore conclude that the following estimate holds for all € < ea:

/ i |V2f]2 W) <do(H"(D) —H"(B)) + O(c|loge]|).
F(Dx[0,cx)) €

Coing back to G§, we can give a lower bound to its energy on F(D x [0, cx)) with a
computation analogous to the one just carried out. With coordinates (g, s) € D x[0, ck)
we have that G{j is the function ¥(s) and therefore |VGy| is glven by | ZW(s)| (the

gradient is parallel to the %). Using the coarea formula (agal Ol with TTx) we get

/ - VG52 n W(G5) _
F(Dx[0,cx)) 2 €

_/ /48A 1 E
I \Jo  [JHk| \ 2|0s

> H(D)(1 — 8¢ ACk) (20 + O(2)),

where we used (12)), (L), (3). The result in is of the form 40H™(D) plus errors.
The errors are of the form O(e|loge|) for all € < ey for some suitably small choice of
g < £7.

107t would also be possible to use the coarea formula slicing by the distance to M, as done in @,
making use of Lemma [11]
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Remark 7.1 (on the choice of €3). We make the choice of €5 several times along the
construction, always with the scope of making the errors controlled by C¢|loge | with
C independent of € € (0,e2). The specific value €2 might change from one instance to
the next, but since we make finitely many choices we implicitly assume that the correct
€9 is the smallest of all. From now on, this remark will apply every time we say that
the errors are of the form O(e|loge|) for all € < €9 for some suitably small choice of
E9.

In conclusion for all € < €9 we have that

12 £ 2
L VG WGE) L ISP, W)
20 Jr(Dx[0,cx)) 2 € 20 Jr(Dx[o,cx)) 2 €

> 21" (B) = |O(e|loge|)]. (19)

Recall that f does depend on ¢, although we are not expliciting the dependence for
notational convenience, and that we can produce f (as defined above) for every € < ;.
By @ and (19), and the fact that f = G§ on N\ F(D x [0, cx)), we conclude that for
a sufficiently small choice of €5 < €1, for all € < €9, the following estimate holds:

E(f) <2(H"(M) —H"(B)) + O(¢ | loge ). (20)

This says that f is a goodlﬂ Allen—Cahn approximation of 2(|M| — |B|). In terms of
the immersions of Lemma, f is also an Allen—Cahn approximation of ¢ = (y,v) €
Int(Kp) — exp, (2¢ Av) (the nodal set of f contains the image of this immersion with
boundary).

7.3 From &.(—1) =0 to 2(|M| —|BJ)

In this section we construct a continuous path in W2(NN) that joins f to the
constant —1, keeping & along the path controlled by E.(f).

We begin by introducing the following one-parameter family of functions: for r €
[0,4¢ A] define

e -1 forx € N\ T,
Vo) = { U, (dyp(x)) forxeT,

where ¥, is as in . Since H® is constantly —1 on (—o0, —2¢€ A], the function Y is
constantly —1 on {x : dy;(x) > 4e A—r}. Moreover, since dy; is Lipschitz on N and ¥,
is Lipschitz on R, denoting the Lipschitz constants of ¥, and dy; respectively by Cy,,
Clyyr we have [V (dyz(2)) — Ur(dgz(y))| < Cu, |dyz(z) — diz(y)| < Cy, Capdisty (2, ).
Therefore Y, € WHo°(N).

Notice that Y = Gj. We compute E.(Y,7) by using the coarea formula (slicing by
the distance function dyz, for which |Vdy;| = 1) as we did for G (see (9). We obtain

(21)

4eA—r 1\2
ey <oeon (5 [ <SR TED) comana o, e

1We only need the upper bound (20), however a lower bound of the form &.(f) >
2(H"(L(K)) —H™(D)) — O(e|loge]|) is also easily seen to be valid.
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using (/1) and the fact that f4aA " (\Iﬂ + @ < fooo € % + @ =20 +0(e?).
Note that £.(Y;7) = 0 asr — 4€A

Now we give a lower bound for the energy of Y;7 on the domain F' (D x [0,ck)) as
we did for G§ in ., i.e. using the coarea formula for the function Ilx. Note that
on this domain we can use the coordinates (¢,s) on D x [0, cx) and the fact that the
gradient of Y,° is parallel to %. We have

£12 €
/ - VY7 n W(Y;7) _
F(Dx[0,cx)) 2 €

3}

B 4eAN—r 1 e
a /f) /o |[JTIk| \ 2 |0s
U2 W(Y,)

4eA—r (
>2H”(D)(1—85ACK)/ e 4 :
0 2 €

where we used and the fact that £ ‘85 s)‘2 + W(‘I] W () g independent of gq.

We therefore Conclude from the first 1nequahty in and from , the following
estimate for the Allen-Cahn energy of Y7 in N \ F(D X [0,cx)): there exists €9 < €1
sufficiently small such that for all € < &9

£2 €
N\F(Dx[0,cx)) 2 3
4e A—r W 2 w \I/T
Q(H”(M)—H"(D))/ L 2’”) + (8 ) 1 0(= [10g= ).
0

Definition of the path f,. We now define a continuous path r € 0,4 A] — f, €
Wl’z(N)~ as follows. Recalling the definition of x € C2°(M) and using coordinates
(¢,s) € D x [0, cx) we set

Y;‘,B(q’ S) - \P48Ax(q)+r(3)7
where U, is as in (3). The function f, : N — R is then defined by

f B Y;‘E(x) 1f$€N\F(DX[O7cK))
r(z) = { Y, p(F~Y(z)) ifze F(Dx[0,cx))

Note that f, is well-defined on D since x is even. Remark also that for » = 0 this
function is f and for r = 4€A it is the constant —1. Moreover, f, € Wheo(N) for
every 7. To see this, notice that Y, p is smooth on D x (0,ck), so f, is smooth on

F(D x (0,¢x)). Moreover, f. € Wl’oo(li\ F(B x [0, ck])) because it agrees with Y,°
on this open set. The smoothness at F(D x {cx}) is immediate because f, = —1 in a

neighbourhood of F(D x {cx}). We thus only need to check that f, is Lipschitz locally
around any point z € D. Using Fermi coordinates (y,a) € B(x)x (-4, 6), where B(x) is
a small geodesic ball in M centred at x and § > 0, we have the following expression for
[, thanks to the fact that ¥, : R — R is even for every 7: f.(y,a) = Vyc pyo(y)4r(a),
where xo(p) = x(F~1(p)). Since ¥,(z) is Lipschitz on {(r,z) : r € [0,00),z € R},
and since g is smooth, we obtain that f, € W1 on the chosen neighbourhood of
z. (As we did in , we use the fact that being Lipschitz for the product metric on

(25)
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B(x) x (—9,9) implies Lipschitzianity with respect to the Riemannian metric induced
from N.) In conclusion we have f,. € WL°(N).

The path r € [0,4¢ A] — f. € W12(N) is moreover continuous. Let us check the
continuity of V£, in r (with respect to the L? topology on N). The partial derivatives
of f, on F(D x [0, ck)) are given by, using (g, s)-coordinates on D x (0, cf):

< e Aag(;) o(s +4ehx(q) +7),..., Up(de Ax(g) +7 + s)> .

By continuity of translations in LP, and smoothness of x and of the Riemannian metric,
we get that V£, is continuous in 7 (with respect to the L2-topology, or even LP for any
p). Similarly we can argue for T, \ F(D x [0,cx)), where f = Y and the gradient
is W{(r + dy7(z))Vdzz(z): this changes continuously with r (with respect to the L?-
topology, or even LP for any p). Therefore we have that r € [0,4e A] — V f, € L?(N) is
continuous. The fact that f,. changes continuously in r with respect to the L? topology
is even more straightforward.

Energy along the path. To estimate &, (fT) we compute the energy on F(D x[0,cK))
using the coarea formula for I, similarly to , in the coordinates (¢, s) € Dx[0, cx).
Notice that Yy 5(q,s) = —1 for ¢ € B. Then we obtaln

/(DX[O ex) W;CTP * W(sfr) -
/D\B/ !JHK\ ( !\If’; s)I? (\I;T(S))>dsdq =

< (1+82ACK) /D\B /OCK <&_ I\IfﬁnéS)P N W(‘If;(s))> dsdq <

<2(14+8eACk)H" (D \ B) </46A5(\P2/)2 + WSI/)) .

Recalling that f, = Y* on N\ F(D x [0, cx)) and by the estimate in we conclude
that there exists €9 < €7 such that for all € < &9 the following estimates hold for
r€[0,4e A

55 5 + O(e|loge]), (26)

4e N2
E.(f,) < 2 (H"(M) — H"(B)) <1 / ) Wm) -

E(fr) <2(H" (M) = H"(B)) + O(e |loge ).

(The second follows from the first since the energy of ¥ in parentheses is < 1+ O(g?).)
The second estimate shows the uniform energy control on r € [0,4 € AJ; the first shows
that & (f,) > 0asr = 4ecA.

Remark 7.2. At least for n < 6 it is possible to produce a continuous path from f
to —1, with a similar energy control as in , by employing alternatively a negative
&.-gradient flow starting at a suitably constructed function fo that is Wh2-close to f
and with &.(f2) = £(f). One can choose fa such that the flow is mean convex and
converges (decreasingly) to the constant —1, reaching it in time O(c |loge|). Thee — 0
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limit of such paths is then the Brakke flow that starts at 2(|M| — |B]|) and vanishes
instantaneously. The family that we gave in this section mimics exactly this flow,
however it is more elementary, even for n < 6, as we can exhibit the path explicitly
(and moreover presents no additional difficulties for n > 7). Note that the path f, that
we produced also reaches —1 in time O(e|loge ).

7.4 Lowering the peak

In this section we construct the next portion of our path, starting at f. The immer-
sions in Lemmal[6.4] are particularly relevant, as they provide the geometric counterpart
of this portion of the W12-path: first we use the immersions in (i) of Lemma keep-
ing ¢ = 2¢ A and increasing ¢ from 0 to tg; then we connect the final immersion just
obtained to the one in (ii) of Lemma with ¢ = ¢y and ¢ = 2 A (in doing so, we
“close the hole at B”). The portion of the path that we exhibit in this section is made
of Allen—Cahn approximations of the immersions just described. It is this portion of
the path that “lowers the peak” of & (compare Figure , keeping it a fixed amount
below 2H™(M) (thanks to the estimates in Lemma [6.4).

We will keep using the shorthand notation A = 3|loge|. All the functions that we
will construct in this section coincide with Gf in the complement of F'(K x [0, ck)).
By construction they will in fact agree with Gj in a neighbourhood of 0F(K x [0, cx))
(guaranteeing a smooth patching) and thanks to Remark and since 2e A < ¢/20
(Section ) we can use tubular neighbourhoods of semi-width 2¢ A around KQ ' for
every ¢ > 2¢€ A to define Allen—Cahn approximations of the immersions in Lemma [6.4

Recall the notation K ot from Section @ it denotes the image via F': V7 — N of
the graph {(¢,s) € V3 : ¢ € K,5s = c+tp(q)}, for t € [0,%0] and ¢ € [0,¢o]. In other
words, KC,t, 3 is image of the immersion (smoothly extended up to 0K, see Remark
q = (y,v) € K — exp, ((c—i— té(q))v). Recall the definition of signed distance
provided in Section |§| and denote by dist K,,; the signed distance to Kq 4.3 well-defined
on F(D x (0,ck)). If t =0, then distr,  ; extends continuously to F'(D x [0, cx)) with

value —c on F(D x {0}). With this in mind, the definition of f in —, can
equivalently be given as follows

flz) = ﬁiaAXO(nK(x)) (_diSthsA,O,qz(x>> for x € F(K x [0,ck))
Go() forx € N\ F(K x [0,ck)),

where
€

— —€
Hy(-) =H (- —s),

Xo = xoF~! and, with a slight abuse of notation, ITx (z) is the nearest point projection
of x onto M. (In the coordinates of V,; we have IIx(q, s) = (g,0), which is the notation
used in Section [6} the map on F(K x [0,ck)) that we are using above should then
be F ollg o F~1 we however denote both the map in K x [0,cx) and the map in
F(K x [0,ck)) by the same symbol I.)

Remark 7.3. The signed distance distKQEAM;(x) is defined on F (K x (0,cx)). We
point out the following facts. Let z € F(K x {0}) and z; — z, z; € F (K x (0,ck))
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(so that the signed distance is negative on xz; for j sufficiently large). Then

limsupdistr, ,  -(z;) < —2€A.
j—+o0 shne

Moreover, distKQEAM; extends continuously to F ((K \supp(qg)) X {0}) with value

—2¢e A. In particular, the continuous extension is valid on (a neighbourhood of) D.

Definition of g;. We construct now the portion of path t € [0,%9] — g; € W12(N)
whose geometric counterpart is given by the immersions in (i) of Lemma with
c=2eA and t € [0,%p]. These immersions “have a hole at B”. We set, for ¢ € [0, t]:

. Go(x)  (see ) forz e N\ F(K x [0,ck))
ge(2) = ¢ Hacayo(ig () (—distx,_, , () forz e F(K x (();cK)) ub . (27)
1 for x € F((K \ D) x {0})

In the second line of we are using the fact that dist Kyonis is well-defined and
continuous on D, with value —2¢ A (see Remark. Also note that on F(OK %[0, cx))

the definition in the second line agrees with the definition of Gf ((5 vanishes in a
neighbourhood of 0K, see Section [f]) and the same is true on F(K x {ck}) (g: = —1
in a neighbourhood). For ¢t = 0 we have gy = f, by the expresion of f given earlier in
this section.

gt € WY°(N) for each t. Let us check first that g; it is continuous on N for
each t. In view of the comments just made, this needs to be checked only at an
arbitrary z in F((Int(K) \ D) x {0}). Let z; — =, then for sufficiently large j we have
z; € F((Int(K) \ D) x [0,ck)). Then z,z; ¢ suppxo x [0,cx). Therefore by we
get gi(zj) = ﬁe(—distK%A)w (x5)). Recall Remark. By continuity of H and the
fact that H (z) = 1 for z > 2¢ A we conclude that g;(z;) — 1, hence g; is continuous
at x.

To check that g; € W1°°(IV), note first that the definition in the second line of
is equal to the one of G in a neighbourhood of the boundary of F(K x [0, ck)).
Moreover g; is smooth on F(K x (0,ck)) and G§ is W12 (N). These fact imply that
gt € WH*(N \ F(K x {0})), and actually even in a neighbourhood of the boundary
of F(K x [0,cx)). Moreover, for z € B we have g = —1 in a neighbourhood of z,
because yo = 1 on B and Hj, \(2) = —1 for z < 2¢A.

Therefore we only need to check that g; is locally Lipschitz around points x €
F((Int(K)\ B) x {0}). We distinguish two cases. If z ¢ D, i.e. if z € F((Int(K)\ D) x
{0}), then g, is actually C' in a neighbourhood of x. This is seen by repeating the
argument used above (for the continuity of g; at such point) to prove that |Vg;(x;)| — 0
(using the fact that M is smooth on R and equal to 0 on [2e A,00)). We therefore

have: g is C' on F((Int(K) \5) x (0,ck)), g+ extends continuously to F'((Int(K) \

D) x {0}) with constant value 1 and Vg; extends continuously to this set with value
0. From these facts it follows that the L function equal to Vg; on F((Int(K)\ D) x
(0,ck)) is the ditributional derivative of g; in a neighbourhood of = and therefore g;
is C! in a neighbourhood of x. In the second case, i.e. if z € D\ B, then for a
sufficiently small ball B,(z) C M we have ¢ = 0 on F~'(B,(z)) (because supp(¢)

and D are disjoint) and we can use a well-defined system of Fermi coordinates (y,a) €
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By(z) x (—ck, ck). In these coordinates we have distk, _, <Z}(F(y, a)) = |a] —2¢ A and

g(F(y,a)) = ﬁian(y)(_‘a‘ + 2 A), which is Lipschitz in the neighbourhood.

The path t — g is continuous. It suffices to check that the second line in
is continuous in ¢. The proof can be carried out using the coordinates on V; and
the fact that the graph {(¢,s) : ¢ € K,s = 2e A + tgfg(q)} changes smoothly in ¢,
hence so does the function dist Kyenid In fact, for our purposes it suffices to observe
that if t; — ¢ then K, _ At.g converges to K,, Afg In the Hausdorff distance, from
which it follows that disty (-, Ky, 3) converges pointwise a.e. to disty (-, Ky, 7 5)-
This implies that Vg;, converges pointwise a.e. to Vg; and, by dominated convergence
(since N is compact and |Vg| is uniformly bounded independently of t) Vg, — Vgz
in L2(N). The fact that g;, — g; in L?(N) follows easily by checking that t — g; is a
Lipschitz curve with respect to L (N). Therefore the path t € [0,t9] — g; € WH2(N)
is continuous.

Energy of g:. To give an upper bound for £.(g;) we first need a lower bound for the
energy of G§ on F(K x [0,ck)). This is analogous to the estimate in (18):

€12 £
/ IVGEE | WG
F(Kx[0,cx))

2 e
) /K </046A ‘JéK! (; %%(3) 2+ W) ds) dq
> (1 —85ACK)/K (/04€A (; aasqzo(s) cL W<‘io(5))> i ) dg >
> H(K)(1 — 8¢ ACk) </_2;AA % ‘EE’ g W(sﬂe)> _
=H"(K)(1—8eACKk)(20 + O(e?)), (28)

where we used .
From (@ and we obtain that, for some suitably small choice of €5 < €1, for all
€ < & the following holds for the energy of G, (and thus also of ¢¢) in N\ F/(K %[0, ck)):

<HY(M\K)+O0(c|loge ).  (29)

1 VG | W(GH)
20 N\F(Kx[0,cx)) 2 €

We now pass to an estimate for the energy of g; in F(K X [0, cx)). For this we will use
Fermi coordinates for a tubular neighbourhood of K, _, , 3 of semi-width 2¢ A. Denote
by (y,a) € Ky, 3 X (—2€A,2¢A) such coordinates and by Ilz. 5 ¢ the nearest point

projection from the chosen tubular neighbourhood onto K, _,, 3 (see Remark .

Remark that g; = —1 on F(B x [0, ¢x)) so there is no energy contribution in this open
set. The coarea formula (for the function Ily. A ¢) then giveﬂ

?In the first inequality that follows we use the fact that for y € K,_, , ;N F((D\ B) x [0,¢K)),
integration in a is in the domain —2e A < a < 2eA(1 — 2x(IIx((y,a)))), and we can bound the top
endpoint of this interval by 2€ A.
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2
/ Vel Wig) _
F(E\B)x[0.cx)) 2 £
2e A . 9 —
[ (/ 1(6|H€'(a>( +W<H<a>>>da)d .
K,y \F(Bx0ex) \J—2e [T2ea] \ 2 -
~ 2e A
(1+26ACy, 0 )H Ky, 5\ F(B % [0,cx))) /26A - ’ _
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Therefore for some suitably small choice of €5 < €1, for all € < €5 the following holds

2
1/ cValT W) gmie, N\ F(B x [0,¢x))) + Ofe | loge ).
20 Jp(kxoex)) 2 3 At

Note that K,_,, 5\ F(B x [0,ck)) is the image of Kp via the immersion in (i) of
Lemma when ¢ = 2¢ A. Using Lemma in the last estimate and putting it
together with we finally obtain that, for some suitably small choice of €5 < €1, for
all € < g9 the following estimate holds for all ¢ € [0, to]:

£.(g1) < 2 (H”(M) - j%%B)) 1 0(e [loge ). (30)

Definition of giy+r: “closing the hole at B”. We have constructed a continuous
path t € [0,tg] — g € WY2(N) with go = f and with & uniformly controlled by
, reproducing the middle row of Figure |1l The next portion of the path will start
from g4, and will “close the hole at B”. On the geometric side, we are starting at the
immersion in Lemma [6.4] (i) with ¢ = 2¢ A and ¢ = ¢y, and ending at the immersion in
Lemma |6.4] (ii) with ¢ = 2 e A and t = ty, reproducing the bottom row of Figure |1l We
define for r € [0, 1]

B Gi(z)  (see (7)) forz € N\ F(K x [0,ck))
Gtotr (@) = § Hacaq—ryoig @) (—dist, - (2))  for z € F(K x (0,cx)) UD
1 for z € F((K \ D) x {0})
(31)

Note that g¢,+r = g+, when r = 0 (justifying the notation). Moreover g¢,4»(x) = g¢,(x)
for r € [0,1] and = € N \ F(supp(x) X [0,¢x)). In other words, we are only making
changes to the values of gy, in the set F’ (]_N) x [0, CK)) (equivalently, introducing Fermi
coordinates centred at D, the set D X (—ck,ck)).

The fact that gy, € WH(N) for every r € [0, 1] follows by repeating the argu-
ments used for g;, where the only part that has to be altered is the local expression of
Gto+r around points of D. Usmg Fermi coordinates (y,a) with y € D, a € (—cg, ck)
we get gro4r(F(y,a)) = H45A(1 mx(y) (—lal +2€A), which is Lipschitz. Notice that
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this is the domain in N where we are “closing the hole” when r =1 the expression just
obtained becomes g;,41(F(y,a)) = Hy(—|a| +2eA) = ¥y(a) and so

796(:”) (see (7)) forx e N\ F(K x [0,ck))
Gro+1(z) = ¢ H (fdistK%Ayt’&(m)) forx € F(K x (0,ck)) . (32)
1 for x € F(K x {0})

Note also that 7 € [0,1] = g+ € WH2(IV) is a continuous path (with a proof as the
ones used earlier for g; and f).

Energy of g¢y+r. We use the coarea formula as we did to reach . We get

/ . Vgt srl® n W (gto+r) <
F(Kx[0,cx)) 2 3

2e A e
1 I 2 W(HE (a))
— | = |H a‘ +———"2\da|d <
(/ZaA |2 e A 4| (2 (@) € Y

2e A W(EE)
S+ 2
26A2 €

<)o

< (142 ACy ,t0,co, ¢)Hn( QSA’tO’QE) (/

= (1+2eACy to.co, ¢)H”( 2aA,to,<Z>)(20 + 0(£?)).

Therefore for some suitably small choice of 5 < €1, for all € < g9 the following holds

26A,t0,<£

1 Vatorr® | W(gtotr)
2 € + <H"(K, 5, 3)+O(e|loge]).
20 F(KX[O,CK)) 2 € ( 2 A7t07¢)) ( ‘ ’)

Note that K,_, , 3 is the image of K via the immersion in (ii) of Lemma hen
¢ =2¢eA. Using Lemma in the last estimate and putting it together wit |ﬂ| we
finally obtain that, for some 5u1tably small choice of 9 < €1, for all € < €9 the following
estimate holds for all r € [0, 1]:

Ee(gro+r) < 2H"(M) — 7+ O(e|loge ). (33)

7.5 Connect to +1

To conclude the construction of our path, we will connect g;,+1 to the constant +1
by means of a (negative) gradient flow. To this end, we will produce a suitable barrier
m, constructed from G§. First we check that

Go < gig+1 on N.

To see this, recall that G = g¢,+1 on N\ F (K x [0, ck)), so we only need to compare the
two functions on F(K x [0, ck)). On this domain we use coordinates (¢, s) € K x[0, cx).
Use the following temporary notation: H(x) = H(-z), T = {(¢;s) : ¢ € K,s =
2e A + top(q)} and d(q,s) = distKQEA,t07¢;(F(q, s)). Equivalently, the latter signed
distance is sgn g 5 dist((g, s),T'), where dist is the Riemannian distance (induced from
N) and sgni, ) = —lon {(¢g,5) : ¢ € K,0 <5 <2eA+ tod(g)} and sgh(ys) = +1 on
{(q,5) : q € K,2e Atop(q) < s < cx}. Then G5(q,s) = H(s—2¢ A) and g411(q,5) =
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H(d(q,s)). If sgn(y ) = —1 then the Riemannian distance to T is > 2¢ A — s, because
T lies above {s = 2¢ A}. Similarly, if sgn(, ;) = +1 then the Riemannian distance to T
is < s —2¢eA. Therefore in either case we have d(q,s) < s —2¢e A. This implies (since
H is decreasing) that G(q,s) < gi,+1(¢, 9)-

We are going to work with the “modified” Allen—-Cahn energy

Fope(u) = E(u) — £ / w dH™,
20 N
where pe > 0 tends to 0 as € — 0. The role of . is that of a forcing term, to ensure
that the flow “moves in the desired direction” and is moreover “mean-convex”. There
is flexibility on the choice of p.; we fix the following (note that in Section 4] we only
required gz > |O(¢?)| in order to obtain ):

e =< loge |. (34)
We are now ready to contruct the barrier.

Lemma 7.4. For all sufficiently small € there exists a smooth function m : N — R
(m =mF) such that m < g¢y+1 and —(20)F'c 4. (m) =€ Am — WIm) 4 e > 0.

£

Proof. In Section [4] we obtained that, for all sufficiently small €,

~(20)F 2 (G5) 2 HT,

for e > 0 as in (34]). Recall that this inequality means that (the positive Radon
measure) —(20)Fc . (G§) minus 41" is a positive measure.

For p > 0 consider the function G, — p. Then A(G — p) = AGG and W/(G§ — p)
converges uniformly on N to W/(Gj) as p — 0. Therefore we can find a sufficiently
small pg € (0,1) (depending on &, in fact we may choose py ~ £2) such that for all
sufficiently small € we have

~(20)F 20 (G5 — po) = . (35)

Let Cn be the constant in Lemma[A.3] We are going to work with € sufficiently small
to ensure (in addition to the previous conditions identified so far in this proof) that
2e Cy < pe/20. From now we work at fixed € (satisfying the smallness conditions just
imposed).

Let ns be the mollifiers defined in Appendix [A] for § < &y, where Jyp > 0 depends
only on the geometry of N. Then the (smooth) function —(20)F . .. (Gf — po) * s
defined in is positive for all 4, more precisely for all sufficiently small § (one needs
-+ > |0(8?)], where O(6%) appears in (52))

(—(20)F'eu. (GG = po)) x s = % (36)

This follows from and (52), (57). We now mollify (G§ — po) as in (53). We have
|G — pol < 2, since |G§| < 1. From Lemma[A.1] part (i), we obtain that the functions

(Gg — po) * m5 converge uniformly on N to (G§ — po) as § — 0. Therefore (for §
sufficiently small —2 < (G§ — po) * 5 < 2 since the same bound holds for Gf — po)

W' (GG = po) *ns) = W(GG = po)| oy <
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< Wl co—2,2) (GG — po) * ns — (GG — po)llcony = 0

as § — 0. The function W'(G§—po) belongs to W1°(N), therefore by Lemma part
(i), we get [[W'(G§ — po) x s — W (GG — po)lco(y — 0. By the triangle inequality we
therefore have

W' (GG — po) *ns) — W (GG — po) *77(5HC'0(N) -0 (37)

as 6 — 0. By Lemma there exists Cy (depending only on the geometry of N)
such that for all 6 < dy we have [|A((G§ — po) * ns) — A(GG — po) * N5l Lo (vy <

Cn|GG = pollre(ny < 2Cn. Therefore the modulus of the difference of the following
two (smooth) functions

W'((GG — po) *ns)

e A((GG — po) *ns) — -

+ e and (—(QU)F/E,MS (Gg - PO)) * s

is at most 2€ Cy + Oy(1), where the infinitesimal of ¢ is given by the norm in plus
O(6%) 1. Recall (36)) and the smallness condition imposed on . Then for sufficiently
small §, writing m = (G§ — po) * 15, we have

W/
eAm — E(m) + pe > % (38)
Finally note that for sufficiently small § we also have m < gy,+1, since G§ — po < Gio+1
and (G — po) * 5 converges uniformly to G§ — po as 6 — 0 (Lemma [A.1]). O

Remark 7.5. (choice of €2, again) We will assume that Lemma is valid for all € < &3,
where once again we change the choice of €9 if necessary.

Flow from m. We consider now the negative gradient flow of (20)F: .., with initial
condition given by the smooth function m, i.e. the solution m; to the PDE
W/
£ %mt = 5Amt — 7(:%) + Ue ’ (39)
mo=1m

where A is the Laplace-Beltrami operator on N. This semilinear parabolic problem
has a solution for ¢ € [0, 00) and m; € C*°(N) for all ¢ > 0, as we will now sketch.

Short-time existence and uniqueness for a weak solution in W12(N) are valid by
standard semilinear parabolic theory (rewrite the problem as an integral equation, then
use a fixed point theorem). To see why we get global existence in our case, integrate
on any interval [0, 7] on which the weak solution is defined: we get

g/OT (/N'gtmt 2) dt+;/N|VmT|2: (40)

= ;/N |Vmg|* — % /N (W(mr) — € pemr) + é /N (W (mo) — € pemo) -

With our choice of W that is quadratic on (+2, +00) we can ensure that @ — Jeu is

bounded below. Then gives a priori bounds [y IVmy|* < Cony . independently of
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t € [0,7T]. Again from 7 moving the term 2 [ (W (my) — € pemy) to the left-hand-
W(w)

— peu}, we also get an a priori L2-bound on

el 2y < C, / (/ \m) c, (41)

with C' independent of ¢. This first bound in provides the assumption under which
short-time existence can be iterated to lead global existence for a weak solution to (39))
in WH2(N).

Writing the PDE in the form %mt — Amy = —a%W’(mt) + £=, we treat the right-
hand-side as the non-homogeneous term f; of a linear parabolic PDE. Thanks to the
quadratic growth of W, there exists a constant Cw (depending only on W) such that
[ fellwrzany < CWHmt||W12 and || %[l z2v) < CwllZtllr2(xy, which are respec-
tively L>® and L? in t by (4 Parabolic regularity gives that my € W*2(N) and
amt € WH2(N) for all t, With [mellw22(v) and ||%HW1,2(N) bounded uniformly in
tlrne (see e.g. |7, Section 7.2.3, Theorem 6]). Bootstrapping gives smoothness of m;.

side and recalling |u|? < Cyy max{2,
my. In conclusion

Lemma 7.6 (mean convexity of my). The positivity condition —(20)F'c . (my) =
e Amy — Y0m) 4y > 0 holds for all t > 0.

Proof. For notational convenience, we write for this paragraph Fy = € Am;— ~+ fte
(right-hand-side of the first line in ) By the previous discussion, F} is smooth on
N for all t € [0,00). Differentiating F; = ¢ Am; — w (mt) + pe (and using € Oymy = Fy)
we get the evolution of F;, given by 0;F; = AF; — %F# So F} solves Oy =
Ay — H( t)% and the constant v = 0 is also a solution to the same PDE. The

condition Ft > 0 is therefore preserved by the maximum principle, since it holds at
t =0 by Lemma [7.4] O

W' (ms)
1>

Lemma m implies in particular that m; : N — R is increasing in t (since 0ym; =

]:' e (my) > 0), therefore limy_,oo my = Moo is well defined pointwise on N. The
I/V1 2(N)-norm of my is bounded uniformly in ¢ by (41)), therefore m; — mqo in WH2-
weak. Moreover |[W'(my)|ly1.2(ny is also uniformly bounded in ¢, since |V(W'(my))| =
(W (m)||Vimy| < [[W”]|co(—a,2))| V| (one can check that —2 < my < 2 for all ¢ by
the maximum principle). Therefore W’ (m;) — W' (ms) in Wh2-weak. By the second
bound in we have L!-summability in time, on t € (0,00), for H@tthL2(N) and

therefore there exists ¢t; — oo such that the function %mt : N = R has L?(N)-norm
that tends to 0 along the sequence ¢;. These facts imply that the weak formulation of
the PDE in (39)) passes to the limit as t; — oo and gives that mq, solves —F'¢ ,. = 0in
the weak sense. Standard elliptic theory (or passing parabolic estimates for m; to the
t — oo limit) then show that ms, € C™ solves —F'c ,,_ (M) = 0 in the strong sense.

Lemma 7.7 (stability of meo). The limit mo, of the flow my (ast — o0) is a stable
solution of F'c . = 0.

Proof. This is a consequence of the “mean convexity” of m; (Lemma and of the
maximum principle. We give the explicit argument. Recall from the previous discussion
that m is stationary, i.e. F'c . (moo) = 0. Also recall that the second variation at
u: N — R of the functional (20)F; , (for a constant u) on the test function ¢ is given
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by the quadratic form Q(¢, ¢) = [y € V|2 + wqg (the term involving u disappears

because it is linear) and the Jacobi operator is given by —e A¢ + WQS
Let p; be its first eigenfunction, then p; is (strictly) positive and smooth on N.
Consider, for s € (—0,9) (for some small positive §), the functions me, — sp1. Then
their first variation satisfies
d W (meo — $p1)

55 (F20)F e p(moc = 5p1)) = =€ Apy + - p1.

If mo, were unstable, then the first eigenfunction would satisfy —e Apy +
A1p1 for some Ay < 0 and therefore

9
O0s|,_,

(—(20)F e (Moo — sp1)) = A1p1 <0

on N. Then we could choose sg > 0 sufficiently small so that

W'((meo — sp1))

—(20)F'c pe (Moo — sp1) = € A(mee — sp1) — + e <0 (42)
on N for s € [0, sg]. Note that ms, — sp1 is smooth on N.

Since —(20)F'c . (my) > 0, at any ¢t € [0,00) we have m; > myg, in particular
Moo > Mmg. Choose s sufficiently small so that s < sp and my — sp1 > mg. Let
7 > 0 be the first time for which m;, has a point = such that m,(z) = (me — sp1)(x).
Then mq, — sp1 — m; is a smooth non-negative function on N with a minimum at x,
$0 A(meo — sp1)(x) > Am,(x). Moreover we have W/ (mo, — sp1) = W/'(m,) at .

Recalling that € Am, — W + pe > 0 on N (preservation of mean convexity) we get
eA(meo — sp1)(z) — M + e > 0, contradicting . O

Proposition 7.8. If Ricy > 0 then any stable solution to F'c, =0 on N must be a
constant (here p is any given constant.)

Proof. Let u be a stable solution to F'c ,(u) = 0. We test the stability inequality
Q(-,+) > 0 on a test function of the form |Vu|¢ for ¢ € C?(N). We get (this expression
of @ follows using Bochner’s identity, see [6], [36], [5])

Vu Vu
A 2+RicN<,>>5 Vu2d>2§/ e |Vul2|Vel|?,
/N\{WZO} (' : Nl [a] ) ) S VU0 [ e VulVe

where |A:|> = |D?*ul? — |V|Vu|[? > 0. We plug in ¢ = 1 so the positiveness of Ricy
gives Vu = 0. O

Lemma [7.7] and Proposition [7.8] give that ms is a constant. There exist exactly
two stable constant solutions of F'c ,, = 0. Indeed, any constant k satisfying ' , = 0
must satisfy W/(k) = e u (and therefore W (k) ~ ¢, €? u? for some ¢y depending on
W), so we obtain three constants, one slightly larger than —1, one slightly larger than
+1, one slightly smaller than 0, when ¢ is sufficiently small. It is easily verified that
the constant close to 0 is unstable, while the other two are stable. In our case, since
Moo > mo and mo > 1/2 on an open neighbourhood of M, we conclude that my is
the constant slightly larger than +1, which we will denote by k,_:

Moo = Ky, - (43)
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Flow from g¢,+1. We now want to consider the negative (20)F: ,.-gradient flow {h;}
starting at g, 11. We first make the initial datum smooth, by considering mollifiers 7
for 6 € (0, 9] as in Appendix [A]and ¢ sufficiently small to preserve the strict inequality

with m = my, i.e. to ensure gs,4+1 * 15 > mg for § € (0,6]. The family

6 € (0,8] = gigy1*m5 € WHH(N) (44)

is continuous in 0 and extends by continuity at 6 = 0 with value g4 41 (see Remark
. Continuity is also valid for § € (0,8] — g4+1 *ns € C°(IN). As a consequence,
E-(gty+1%ns) varies continuously with § and therefore, upon choosing ¢ possibly smaller,
we also have, in addition to and to g44+1 * 175 > Mo, that the following holds for
all 9 € (0, 4],

1
Ec(gto+1 *n5) < Ec(Gto+1) + T (45)

4
We now let hg = g4,+1%n;5 be the initial condition for the negative (20)F; ;. -gradient
flow:

€
ho = go+1 * 15
By the maximum principle, since mg < hg, the two flows and preserve my < hy
for all tm Since gyy+1 < 1 by construction, we also have hg < k., therefore h; < k,,
for all £ > 0 by the maximum principle. On the other hand we saw that m; — k. as

t — oo, therefore (with smooth convergence, in particular we have continuity in ¢ for
t €[0,00] — hy € WEL2(NV))

oy W/ (ht)
{Eatht—gAht—(t"_,qu (46)

hy = k. as t— oo. (47)

Evaluation of E: on the path h;. Let us estimate the value of & along this path.
For this, note that F. . is decreasing along the flow {h;}, therefore & (h;) < E.(h) +
2829" 1 (N) for all t (where we used hy < 2 for all ¢). This implies that & is
bounded above indepedently of €; more precisely, recalling that &.(hg) < 2H"(M) —
7+ O(e|loge|), we can absorbe £29{"*}(N) in the error O(e|loge|) for € sufficiently
small. In other words we obtain, for €5 < €1 sufficiently small, the upper bound

£.(hy) < 20" (M) — ZT + O |Toge ) (48)

for all ¢ and for all € < 5.

To complete the path, we connect hoo = k. to +1 (through constant functions):
ke =(1—t)k, +1t (49)

for ¢ € [0,1]. The energy E.(k;) is decreasing in ¢ € [0, 1], since W is an increasing
function on [1, k. ]. Therefore the same upper bound that we had in holds:

E.(ky) < 23" (M) — %T + 0| loge ) (50)

for all ¢t and for all € < €.

13We have smoothed the initial data in order to use basic linear parabolic theory to obtain smooth-
ness at all times and thus use the classical maximum principle. The other option is to use g¢,+1 as
initial condition and prove that it becomes smooth after a short time.
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8 Conclusion of the proof of Theorems [1.3], and

In the previous sections we exhibited (given M as in Theorem [1.3| which also fixed
B and 7 by Remark m and Lemmam for all sufﬁ(nently small € ( namely € < g2) the
following six continuous paths in W5h2(N): (25 reversed, ., ., ., ., .
In the order just given, the endpoint of each partlal path matches the starting point of
the next one, therefore their composition in the same order provides a continuous path
in WH2(N) for all € < €9, that starts at the constant —1 and ends at the constant +1
and such that

"(B
& along this path is < 2" (M) — min {iT, 3%2()} + O(e|loge]),

thanks to . . . . . Choosing €3 sufficiently small to ensure that

£E<ez = |O( |loge )| < min{%,H"(B)} the above bound gives, for all € < €3, that

7—[”2(3) }

The path is in the admissible class for the minmax construction in [14], therefore
the maximum on this specific path controls from above the minmax value c. achieved
by the index-1 solution u. obtained from [14] (for all € < €3). Summarising, for every
M C N as in Theorem there exist €3 > 0, 7 > 0 and B C M (non-empty) such
that for all € < €3

the maximum of & on the path is at most 24" (M) — min { 5

e = Ex(ue) < 2H" (M) - mm{; WD >}. (51)

This concludes the proof of the strict inequality in Theorem

For Theorem it suffices to observe that the integral varifold V' produced in [14]
is (thanks to [40], [37]) such that each connected component of regy, (the smoothly
embedded part of spt ||V||) has the properties needed so that it can be used in place of
M in Theorem or in above; moreover, the mass ||V||(N) of V is lime, 0 ce,
(see Section . Letting M be any connected component of regy, and denoting by
0 € N its (constant) multiplicity, using we get OH" (M) < ||V||(N) < 2H™(M).
This implies § = 1 and the multiplicity assertion in Theorem is proved.

The fact that the minimal hypersurface is two-sided then follows immediately, since
under multiplicity-1 convergence (and by the lower energy bounds in [I4]) we have that
Ug; — Uoo iN BV (N), where uq is a non-constant function that takes values in {—1, +1}
and, moreover, V' is the multiplicity-1 varifold associated to the reduced boundary of
the set (of finite perimeter) {us = +1} (there is no “hidden boundary” in the limit).
We therefore have a global normal on regy, (the interior- or the exterior-pointing normal
for O{uso = +1}). Theorem is therefore proved.

Remark 8.1. Note that regy, has to be connected, since each connected@ component
of it is unstable (because it is two-sided and Ricy > 0) and therefore the Morse
index of regy, is at least the number of its connected components. On the other hand,
by multiplicity-1 convergence (or by [I5], [9]) the Morse index of regy is < 1. An
alternative argument for the connectedness, that does not rely on two-sidedness, can

We point out that connectedness of reg,, and of spt ||V|| are in fact the same thing by the varifold
maximum principle.
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be given by means of the maximum principle for stationary varifolds (JI7] [40]) and the
Frankel propertyﬁ for Ricy > 0 (using the regularity results [37], [40]).

Remark 8.2. In view of discussing Remark we collect the three instances in which
the curvature assumption Ricy > 0 was used in the proof of Theorems
The first was in obtaining the sign condition Adz; < 0 in Lemma and the area
bounds in Lemma The second, in Lemma was to conclude that ¢ : M — N is
unstable as a minimal immersion. The third, in Proposition [7.8 was to conclude that
every stable solution to ]-"S/’# =0 on N (for p constant) is a constant function.

The weaker assumptions stated in Remark are easily seen to be sufficient for the
proof. Lemma [3.6] only requires Ricy > 0. Similarly, in Lemma [.] it suffices to use
Ricy > 0 to conclude H™(I';) < 2H™(M); this inequality is enough for the estimates
that follow Lemma and lead to @D

Let us assume that {Ricy = 0} has vanishing H"-measure. To carry out the
proof of Lemma , in particular to obtain the negativity of — [,, Ricy(v,v)dH",
it suffices to notice that the integrand is negative on a subset of M of full measure.
For Proposition the conclusion will be in a first instance that Vu vanishes except
possibly on {Ricy = 0}; the smoothness of any solution to F7 , = 0 and the fact that
{Ricy = 0} has empty interior then imply that Vu vanishes identically.

Let us assume now that {Ricy = 0} C U2, A; as in Remark Then for a sta-
tionary varifold (2|M| in our case) the support cannot be contained in U°;A; (and
therefore M \ {Ricy = 0} has positive measure). This follows from the maximum
principle [I8|, using the boundaries of A; as barriers (e.g. flowing them by mean cur-
vature until they touch the support of the varifold). Then we follow Lemma and
the negativity of the term — | 1 Ricn (v, v)dH™ follows from the previous observation.
For Proposition the conclusion will be in a first instance that Vu vanishes except
possibly on {Ricy = 0}. On an arbitrary connected component of N \ {Ricy = 0}
then, u has to be a constant k; this constant must also be a solution to ‘Fé,u =0on N.
Then k£ and u are both solutions to .7-";’# = 0 and they coincide on a non-empty open
set; taking the difference of the two PDEs, by unique continuation we obtain u—k = 0,
in particular u is constant.

A Mollifiers

We explain in detail the mollification procedure used in Section For this ap-
pendix, notation is reset. Let (N, g) be a closed Riemannian manifold of dimension
n+1land f: N — Rin W4 (N). We are going to produce, for every § > 0 sufficienly
small, a smooth function f5: N — R such that f5 — f strongly in W12(N) as § — 0
(even WP for every p < oo, but we will not need this). The function f5 is defined as a
convolution f xns, for a suitable mollifier 75. Moreover we will check that, if addition-
ally Vf € BV(N), then we have, for all § sufficiently small, that A f5 = (Af)*ns+ Es,
where (Af)*n;s is the convolution of the Radon measure A f with the mollifier ns and
hence it is identified with its (smooth) density with respect to H"*!, and Ej is a smooth
function bounded in L*° by a constant that only depends on N. It would not suffice
for our scopes in Section to have a convolution procedure that gives A fs — Af as
measures, therefore we give an ad hoc contruction here.

15The proof of the Frankel property can be adapted because we have local stability for V and so the
shortest geodesic between two connected components of spt |V|| must have endpoints on the smooth
parts (not on the singular set), by the same reasoning used in Lemma see also [42], Theorem 2.10].
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We begin with the definitions. The standard smooth bump function on R is n(z) =

1
e 1-22 for |z| < 1, and n(x) = 0 for |z| > 1. In the following, 6 < inj(NN). We then let
ns : N X N — R be defined as

watonyy = | amwtmn (U52) for dla,y) <6
s(a,y) =4 © ;
0 for d(xz,y) > ¢

here d is the Riemannian distance on N (note that in the first line y belongs to the
geodesic ball centred at z with radius §) and we set ¢, = || B0 n(|x]) dC™ =

(n+1)wp+1 fO )s™ds, where the integration is with respect to the Lebesgue (n+1)-
dimensional measure. Therefore for every z, using normal coordinates centred at =z,
the function 75 o exp, integrates to 1 in the ball of radius J in the tangent space to N
at x, endowed with the Euclidean metric.

The sectional curvatures of N are bounded in modulus since IV is compact. Recall-
ing Riccati’s equation and the Bishop-Giinther inequalities (see the final inequality in
the proof of [I1, Theorem 3.17|, combined with [I1, (3.23)] in the case P = {z}) there
exist dp < inj(IN) and Cy > 0 such that for all z € N and for § < §y we have

[H"(0B5(x)) = (n + Dwn410"| < On(n+ Dwn18" 2,

where w11 is the Euclidean volume of the unit ball in RnHL

Moreover, denoting by Bs(z) the geodesic ball centred at z, by picking a possibly
smaller dp € (0,inj(N)), we can further ensure that there exists Cy > 0 such that, for
all x € N and for all 6 < dg,

/ na(, ) dH™ (y) = 1+ 0(62), (52)
Bs(x)

where |O(62)| < Cn62. (The constant Cy depends only on the curvature of N, more
precisely on the maximum of the modulus of the sectional curvature.)

Proof of . This follows by using the coarea formula in Bs(z) for the func-
tion d(z,-), for which |Vd(x,-)| = 1. By the choice of Jy above we have a constant
Cn > 0 such that for all z € N and for s < &g, |H"(0Bs(x)) — (n + Dwp415"| <
Cn(n 4 1)wps15"2. Then by the coarea formula we get fB5 ns(z, y)dH" L (y) =

égnﬂ_l foa’H"(aBS( ))n ( )ds < 1 5n+1 (n+1)wpn+1 fo s 77( )ds—l— 5n+1CN(n—i—1 wn+1f s" 2y (%) ds
and using s < 62 in the second term we conclude that fBg(l‘ 775(3: y)dH" L (y) is
bounded above by

1 1 é
(n+1)wn+1/ n (t )dt+526HCN(n+1)wn+1/ s"n (g) ds =1+ Cno>.
0 0

Cn
For the other inequality, namely fB(;(x) ns(x,y)dH" 1 (y) > 1 — Cnd2, one proceeds
similarly.

Final choice of 69. By picking a possibly yet smaller 6y € (0,inj(N)), we can further
ensure the following (see [11I, (3.35)], or also [12, Lemma 12.1]). For all z € N and for
0 < 0o, denoting by H, s the mean curvature function on the geodesic sphere of radius
d around the point  (with respect to the outward-pointing normal, hence H, 5 < 0)
we have (—% is the Euclidean mean curvature of the sphere of radius ¢ in R"*1)

’Hm; n %\ < Cn6  on OBs(x).
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From now on we take § < §y. The convolution of an L function f : N — R with
ns is the function f xns : N — R defined as follows:

(f % 15) (& / Fw)ms (e, y)dH 1 (y). (53)

This is a smooth function thanks to the smoothness of 75 in (z,y). (Smoothness can
be checked in charts using standard properties of convolutions.) Note that we have
chosen a convolution kernel that does not integrate exactly to 1, however suffices
to ensure:

Lemma A.1. Let f € WY°(N). Then
(i) fxns — f uniformly on N;
(ii) fxns — f in WH2(N).

proof of Lemma[A.]] (i). For all z we rewrite [y |f(y) — f(z)|ns(z,y)dH" T (y) as

17 2 — x €T

here 0(52) is the function in . Writing Ly for the Lipschitz constant of f, the

first term is bounded by Ly [ |z — |12fg(’g2) dH" " (y) < Ly6. The second term is

bounded in absolute value by CxL 702 for all sufficiently small §. Therefore | N f(y)—
f(x)|ns(z,y)dH" 1 (y) tends to 0 uniformly in . Then we compute, recalling ,

(f *ms)(z) — /f y)ns(x, y)dH " (y /f lnjg?p) dH" (y) =

= [ ) - st ) + [ 2 (e )

The last term is bounded in absolute value by Cn|| f||co N)52 for all sufficiently small
0. Therefore
(f *ns) — f uniformly on N. (54)

O]

proof of Lemma (11). We can choose a finite cover of N by geodesic balls of radius
do in which we fix a local orthonormal frame. In each ball U C N, we let {v,}}*}
denote the g-orthonormal frame. We can make the non-restrictive assumption that
the collection of open sets U obtained by setting U = {z € U : dist(z,dU) > 8o/2}
still constitutes a finite cover of N. Our final aim is to prove that for each U and for
every £ we have [ |(V(f xns) —V[)- vg|2 — 0 as § = 0. There are only finitely many
open sets U, so this implies that I IV(f *ns) — Vf]> = 0. (Here | | stands for the
g-norm, V for the metric gradient and - for the g-scalar product of vectors.)

We divide the proof in two parts. In step 1 we will show that, writing v for one
of the vy, we have (Vf -v)xns — (Vf-v) in L*(U) (by the choice of U, these
convolutions can be defined by staying inside U for 6 < dp/2). In step 2 we will prove
that (Vf-v)xn5 — V(f*ns) - v tends to 0 in L>®(U). The two steps together then give

/U\V(f*n(;)-v—Vf-v\Q%O
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as § — 0, which is our aim.
Step 1. The first observation is that if ¢ € L () then

for H"-a.e. z we have / lq(y) — q(z)|ns(z,y)dH" T (y) = 0 as 6 = 0. (55)
N

This follows by writing, as in Lemma (1), [ylaw) — a(@)|ns(z,y)dH " (y) =

x, n 0(62 n
I la(y) —a(@)| 2581 () + [y la(y) —a(@) | £ 25rsmy s (2, y)dH 1 (y). The second
term tends to 0 as argued earlier. The first term tends to 0 if x is a Lebesgue point of
q (hence for almost all z). Then we have:

/U (V- v)*ns) (@) = (V.f - 0) (@) PdH" (2) =

J
2 T
+(Of 0@ [ AT )

b

/U (VF - 0)(y) — (TF - 0)(@)) n5(z, y) dH™ () +

2
dHnJrl (1’)

<
~—
la+b|2<2a2+2b2

2
dH" ™ (z)+

/U (VF ) @) — (VF - 0)(@)) ns(z, y)dH™ (1)

—0 by for a.e. T
+ON IV F1l7 o0 () 0%

(In the last term, we have included #"+t1(U) < #"*t'(N) in the constant Cy.) The
braced integrand in the first term tends to 0 for a.e. x by , used with V f-v in place of
q. Moreover, the braced expression is bounded for every x by 4||Vf||%oo(N) (1+0(6%))?,
which is summable on N. Hence we can use dominated convergence to conclude that
the first term tends to 0 as 6 — 0. The second tends to 0 a well, therefore we conclude
that

(Vf-v)*ns — (Vf-v) in L*(O).

Step 2. We compute the difference between the two (smooth) functions (V f-v)*ns
and V(f xns) - v and prove that it goes to 0 uniformly on U. We work in normal
coordinates centred at an arbitrary point O € U, namely in the ball D = {zx e R™! .
|z| < do/2}, with exponential map expy : D — Bs,/2(0O) C U. We will evaluate the
difference of the two functions at O, making sure that the result does not depend on O.
Since we are interested in V(f *7s) - v, we need to let = vary in a neighbourhood of O
before evaluating the derivative, therefore we will assume x € {x € R : |z| < 6y/4}
and § < dg/4, so that y stays in D.

We use the customary notation g;; for the metric coefficients, \/m for the volume
density induced by g. We denote by h the Lipschitz function on D given by f oexpg :
D — R and by p: D x D — R the mollifier p(x,y) = ns(expp(z),expp(y)), for an

arbitrary § < %O. We point out that p(0,y) = = 5& 7 (‘%') because we are in normal

coordinates, where |- | denotes the Euclidean length. We write V, to denote the metric
gradient in D, (V,)! = ¢¥ Oz;. Let vy be represented, in the chart, by > vy0;. We

fix an arbitrary ¢ and write, for notational ease, v = (v!,...,v"") = (v}, ... ,v?“).
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We will write - between two vectors to denote the scalar product induced by g, so
Voh-v=>3"0¢i;9"0y hvj = 070, D! =0y, hv? (= dh(v)). We restrict to 2 € Dy, /4
and we compute for § < % the coordinate expression for V(f ;) - v (integration is in
dy unless otherwise bpec1ﬁed).

o, ( / h(y)p(x,wm(y)dy) W (a) = (56)
) / h()0, (0.5 — ))v/]g](4) + v/ (2) / h()Ds, (o) — p(0,y — 2))v/]gl(v)
D D

1 11

Working on the first term, and using the notation p(0,-) = po(-), we have

/h 9;00)(y — 2)v/19l(y /hx+z 8;00)(2)V/[4l(x + 2)dz =

:/((9jh)(x+z)po(z)\/;\(:b+z)dz+/ h(z + 2)po(2)(0; \/|? x4+ z)d
D D

117
m:j,:y /D(é’jh)(y)po(y — )/ |gl(y)dy + I1T =
= [ @mWre Vi) + [ @ -pe) + o0y - )Vl +IT

v

Consider the first term from the last line, recalling that v/ (z) multiplies I in (56)):

o () / (0;1) (W), y) v Tg1(w) =
D
_ /D o (1) (050 (W)p(1)VTgl () + /D (v7 () — o7 (1)) @5h) () pl, 1)V T91(0)

—((Vf-0)#15)(expo () v

We now evaluate at £ = 0 to obtain

(V(f*xns)-v)(O) = (Vf-v)*n5)(0) =
= Vo +07(0) IV, +07(0) I1T|,g+ 1],y

It is immediate that IV|,_, = 0. In V we have p(0,y) = 0 for d(0,y) = |y| > 9,
therefore |v7(0) — v?(y)| < C|y| for some constant C' that depends on derivatives of
v in U and can be thus chosen independently of U (there are finitely many U’s) and
of vy (finitely many smooth vector fields). We therefore get that V|, _, is bounded in
modulus by C||V f||L=d(1 + O(5?2)) < C'||V£||1~6 for some C’ that depends only on
the choices of charts and vector fields. In I11|,_,, the integrand is non-zero only for
|z| < 8. Let Cy > 0 be an upper bound for the modulus of the second derivatives of
the volume element in a normal coordinate system of radius dy centred at an arbitrary
point in N (such a constant exists by the compactness of N, the smoothness of the
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metric and the fact that dg < inj(N)). Recalling that in normal coordinates the metric
coefficients have vanishing first derivatives at 0, we get that |I1I||,_, < C||f||cod for all
0 < dg, with a constant C' that only depends on the geometric data. For I1, recall that

plx,y) = 51n+17] (d(z’y)), where d is the Riemannian distance (induced by g); so for
each y we have 0., p(z,y) = cn(ﬁlﬁ n' <d(x’y)> Oz,;d(w,y). On the other hand p(0, y—z) =

o —T 7] ('y ‘) so for each y we have 0,,p(0,y — z) = - st ('y $|) O, ly — x| At
r = 0 we have, for every y # 0, Oy,|y — x| = 0p;d(v,y) = |y‘, because we are in

normal coordinates, and d(0,y) = |y|. Therefore I1|,_, =0.
We have therefore proved that |(V(f x7s) - v)(O) — (Vf - v) x15)(0)| < C§ for C
independent of O, i.e. |[(Vf-v)xns — (V(f *ns)-v)| = 0 uniformly on U. O

Remark A.2. Also note that § € (0,60] — (f xn5) € WH2(N) is continuous, since
ns changes smoothly with § (in fact, this curve is differentiable on (0, dp)). Similarly,
§ € (0,80] — (f xns) € C°(N) is continuous.

Next we are going to be interested in A(f * ns) under the additional assumption
on f that Vf € BV(N). Here A denotes the Laplace-Beltrami operator. Recall that
f *ns is smooth, so A(f *ns) is smooth on N. We shall compare this function with
(Af)xns, where Af is a Radon measure. For a Radon measure p on N we define the
(smooth) function p*ns : N — R as follows:

(nx15) () = / ns(, ) du(y). (57)

Lemma A.3. Let f € WL°(N) with Vf € BV(N). There exists Cy > 0 (depending
only N and oy, once n: R — R is fized) such that, for all § < &y,

I(Af) * 15 = A(f % 15) || Lo vy < ONIIfll Lo (v

Proof. We work in a normal system of coordinates centred at an arbitrary O € N.
Let D be the ball centred at 0 € R™*! of radius &, with expy : D — B, (O) de-
noting the exponential map. We keep notation as in the proof of step 2 of Lemma
(ii), in particular we set p(z,y) = ns(expo(x), expo(y )) and po(-) = p(0,-). The
Laplace Beltrami operator A is, in the coordinate chart, \/» axl ( 4] ng ) ) so Af

is \/“6951 < 9] 9” o ), where h = f o expy. We compute A(f *ns)(x) in the nor-

mal chart, keeping x € {|-| < dp/2} and § < dp/2 so that y € D in the following
computations. Differentiating,

A( / h(y)p(x,wm(y)dy) _ (58)
- /D h(w)A(po(y — 2))v/Tgl() + /D B A (. 9) — p(0,y — 2) Vgl W),

v~

1 11

where derivatives are taken in x and integration is in dy. We compute, for each y:

Aoy =) =~ (VTG ) (0i0) (=) + 9 ) o) 0 )
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1 .
A — )= ———0,, —2)gY(y —x) ) (0 —x
(Bm)ly = ) = s (Villy = 2)9"(y = )) @umo) (v = )+

+9" (y — 2)(07;p0) (y — ).

Therefore
A(po(y — ) — (Apo)(y — ) = (¢ (z) — g7 (y — 2)) (O} p0)(y —x)—  (59)
1 ) ) )
7836 1] x 781 %] T — al .
( i (VIels)@) + e (Vi) y>)>< ) (4~ @)

and we can rewrite I as follows (so that in the second term we will be able to use (59))):

/ Wz + 2)(Dpo) (2) V1l (& + 2)d= + / h(y) (Apo(y - ) — (Do) (y — ) VIglw) -

117

We want to evaluate at x = 0. Let pg = pg o expa1 and recall that f = ho expal,
then the first term on the right-hand-side of the last equality, evaluated at x = 0, is
[ [ Apo dH™ L. Integrating by parts we rewrite is as [y Af po dH™ ™! and we get

T, = / Ah(2)po(2) /gl (2)dz + TTT|,_y =

/ Ah()p(0,9)v/ ]9 ()dy + T1T],_g = (Af) % 1)(O) + 11|, .

Recall (58} .; the statement of Lemma will therefore follow by estimating I7|,_, and
III|, taking care that the estimates should be independent of O. For I11],_,, we
(

use ) and the followmg two facts. Firstly, [0 ]po y)dy = cﬂ% ( Iz, afjnl(o,y)dy)

and [ 9;p(y)dy = cn (fBl i1 (0, y)dy) (the two integrals on the right-hand-sides are
Euclidean and depend only on the explicitly given 7, so they will be absorbed into
constants). Secondly, since we are in normal coordinates, g/ (0) = 6%, 0z,,9ij = 0 at
0 for all k; since N is compact, there exists a constant Cy s, such that in any normal
system of coordinates centred at a point of N and with radius dy (< inj(V)), the second
derivatives of the metric coefficients are bounded in modulus by Cy s5,. Therefore

< CN,50|y" Us-

l97(0) = g9 (y)| < O 50\y| and | —d— du.l, (VI0l")(@ )
ing these two facts in , and noting that |y| < 0 on the set where the inte-
grand of I11I|,_, does not vanish, we get that III|,_, is bounded in modulus by
[ £z Cn.N 50l c2®) = Cll f]| Lo, with C depending only on fixed geometric data.
For II|,_, we need to compare, for each y # 0, A(p(x,y)) and A(po(y — x)), both
evaluated at z = 0. Let us write ms(-) = cn§++1n (3), mgs : R — R. Then, denoting
by d the distance induced by g and by | | the Euclidean distance, by | |, the vector
length for g, and by V the g-gradient, we get for each y # 0 (derivatives with respect
to -)

A(p(-,y) = A (ms(d(-y))) = ms(d(- )| V(- y)lj + mi(d(-, ) Ad( y),
Alpo(y =) = A(ms(ly =) = ms(ly =D [ VIy = | |5 +ms(ly — DAl = -|.
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Evaluating at - = 0 we note that m (d(0, y))|Vd(0, y)\g = mg(|y\)]V|yH§ and, moreover,
my(d(0,y)) = my(|y|), because in normal coordinates we have d(0,y) = |y| and V|y —
| =Vd(-,y) = _IZT at the point - = 0 (for any chosen y # 0). We therefore need to
compare, for any y # 0, Ad(-,y) and Aly — -] at 0. The former is the opposite of the
mean curvature at 0 of a geodesic sphere centred at y with radius d(0,y) (as usual, we
compute the scalar mean curvature with respect to the outward-pointing normal to the
sphere). On the other hand, recall that computing A at 0 is the same as computing the
Euclidean Laplacian, therefore —A|y —-| at 0 is the Euclidean mean curvature at 0 of a
Euclidean sphere centred at y with radius |y|, hence Aly—-| = —ﬁ at 0. The difference
Ad(-,y)—Aly—-| is therefore bounded in modulus by Cx|y|, thanks to the initial choice
of dp. Since we can take |y| < ¢ in II|,_, (because p = 0 otherwise) we can estimate
(A(p(z,y)) — A(po(y — 2)))|,—o in modulus by ||mj| L Cné < (;n%CnCN; integrating
on {|y| <} we get that I1|,_, is bounded in modulus by C,Cn || f| L.

We have thus obtained [(Af)*n5 —A(f*ns)|(O) < C|| f|| L with C depending only
on (N, g) and on the fixed entities dg, 7. The arbitraryness of O gives the result. [
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