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Abstract. Weakly stable constant mean curvature (CMC) hypersurfaces are stable
critical points of the area functional with respect to volume preserving deformations.
We establish a pointwise curvature estimate (in the non-singular dimensions) and a
sheeting theorem (in all dimensions) for weakly stable CMC hypersurfaces, giving an
effective version of the compactness theorem for weakly stable CMC hypersurfaces
established in the recent work of the first- and third-named authors [BW18]. Our
results generalize the curvature estimate and the sheeting theorem proven respectively
by Schoen–Simon–Yau and Schoen–Simon for strongly stable hypersurfaces.

1. Introduction

In the recent work [BW18], a regularity and compactness theory has been developed
(in a varifold setting) for weakly stable constant-mean-curvature (CMC) hypersurfaces.
The question of whether there is an effective version of the compactness theorem of
[BW18], i.e. whether weakly stable CMC hypersurfaces must satisfy a uniform local cur-
vature estimate under appropriate hypotheses, arises naturally from that work. Here
we settle this question by proving, for such hypersurfaces satisfying uniform mass and
mean curvature bounds, a pointwise curvature estimate in the non-singular dimensions
(i.e. in dimensions ≤ 6) and a sheeting theorem (i.e. a pointwise curvature estimate sub-
ject to the additional hypothesis that the hypersurface is weakly close to a hyperplane)
in all dimensions. Our results generalize the foundational works of Schoen–Simon–Yau
[SSY75] that established a pointwise curvature estimate for strongly stable minimal hy-
persurfaces in low dimensions and of Schoen–Simon [SS81] that established a sheeting
theorem in all dimensions for a class of strongly stable hypersurfaces (including CMC
hypersurfaces) subject to an a priori smallness hypothesis on the singular set.

Recall that a smooth immersion x : Σ→ Rn+1 has constant mean curvature if and
only if every compact portion Σ1 ⊂ Σ is stationary with respect to the hypersurface
area functional a(Σ1) for volume-preserving deformations. This condition is equivalent
to the fact that for some constant H, every compact portion Σ1 ⊂ Σ is stationary with
respect to the functional

J(Σ1) = a(Σ1) +Hvol (Σ1)

for arbitrary deformations, where vol (Σ1) is the enclosed volume functional (which can
be expressed as vol (Σ1) = 1

n+1

∫
Σ1
x · ν dΣ where ν is a continuous unit normal to Σ

and dΣ is the volume element with respect to the metric induced by the immersion
x); in this case, H is the value of the scalar mean curvature of Σ with respect to ν.
If Σ has constant mean curvature, then for any given φ ∈ C∞c (Σ) and relative to any
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smooth 1-parameter family of deformations of Σ with initial velocity φν, the second
variation of Σ with respect to J is given by the quadratic form

δ2J(φ, φ) =

∫
Σ

|∇φ|2 − |AΣ|2φ2,

where AΣ is the second fundamental form of Σ and∇ is the gradient on Σ (cf. [BdCE88,
Proposition 2.5]). We say that the CMC hypersurface Σ is weakly stable if every com-
pact portion Σ1 ⊂ Σ is stable, i.e. has non-negative second variation, with respect to the
area functional, or equivalently, with respect to J , for volume-preserving deformations.
Weakly stable CMC hypersurfaces arise as stable critical points for the isoperimetric
problem. The weak stability of Σ is equivalent to the validity of the stability inequality∫

Σ

|AΣ|2φ2 ≤
∫

Σ

|∇φ|2

for any φ ∈ C∞c (Σ) with
∫

Σ
φ = 0 (cf. [BdCE88, Proposition 2.7]), while strong stability

of Σ requires that this inequality holds for arbitrary φ ∈ C∞c (Σ).
The methods used in [SSY75, SS81] for strongly stable hypersurfaces involve the use

of positive test functions φ in the stability inequality, and since these never integrate to
zero, it is not clear how to directly apply these methods in the setting of weak stability.
The strategy employed here is different: we take a geometric approach, combining the
results of [SSY75, SS81] for strongly stable hypersurfaces with the fact that complete
weakly stable minimal hypersurfaces have only one end, a result established by Cheng–
Cheung–Zhou ([CCZ08]) and generalized here (in a fairly straightforward manner) to
allow the hypersurfaces to have a small singular set. This generalization is necessary
for the sheeting theorem. A key difficulty in the proof of the sheeting theorem is to
correctly “localize” the one-end result in order to transfer the “flatness” from large to
small scales (see Remark 6). This is handled by a careful blow-up procedure relying on
the aforementioned regularity and compactness theorems in [BW18] for weakly stable
CMC hypersurfaces and a rigidity theorem (Lemma 5 below), due to Simons ([Sim68]),
for minimal hypersurfaces of spheres.

Our main results are Theorem 1, Theorem 2, Theorem 1′ and Theorem 2′ below.
Theorem 1 gives a pointwise curvature bound valid for mass bounded weakly stable
CMC hypersurface of dimension n with 3 ≤ n ≤ 6 (that are assumed, in case 3 ≤ n ≤ 5,
to be immersed, or in case n = 6, immersed without transverse intersections or im-
mersed with a specific mass bound); Theorem 2 establishes a sheeting result that holds
in arbitrary dimensions for weakly stable CMC hypersurfaces satisfying an arbitrary
uniform mass bound and allowed, a priori, to contain a small set of “genuine” singu-
larities away from which the hypersurfaces are assumed smoothly immersed without
transverse intersections. By virtue of the regularity theory of [BW18], the hypotheses
of absence or smallness of the set of genuine singularities in Theorem 1 and Theorem 2
respectively can immediately be replaced by considerably weaker structural conditions.
These stronger results, which hold in a varifold setting, are given as Theorem 1′ and
Theorem 2′.

It is interesting to note the following: Consider a CMC hypersurface Σ immersed in
Rn+1 with mean curvature H (possibly equal to zero). Recall that the Morse index of
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Σ is defined by setting index(Σ) to be the maximum dimension of a linear subspace
W of C∞c (Σ) so that for any φ ∈ W \ {0}, the second variation δ2J(φ, φ) < 0, or
equivalently, ∫

Σ

|AΣ|2φ2 >

∫
Σ

|∇φ|2.

It is easy to see that if Σ is weakly stable, then index(Σ) ≤ 1. On the other hand,
Theorems 1 and 2 below are false if we replace “Σ is weakly stable” with “Σ satisfies
index(Σ) ≤ 1.” This can be seen by considering rescalings of the higher-dimensional
catenoid (the unique non-flat rotationally symmetric minimal hypersurface in Rn+1)
which converge weakly to a hyperplane with multiplicity two, but do not have bounded
curvature (or satisfy the conclusion of the sheeting theorem). In the context of the
results below, the crucial difference between “weakly stable” and “index(Σ) ≤ 1” is
that weakly stable surfaces cannot have two ends (cf. Appendix A) while index one
surfaces can (e.g., the catenoid).

1.1. Results for hypersurfaces with small singular set. In the non-singular di-
mensions (i.e. in dimensions ≤ 6), we have the following curvature estimates.

Theorem 1. For each H0 > 0 and Λ ≥ 1, there exists C = C(H0,Λ) such that the
following holds: Let 3 ≤ n ≤ 6 and let Σ ⊂ BR(0) ⊂ Rn+1 be a smooth immersed
hypersurface with (Σ \ Σ) ∩ BR(0) = ∅, Hn(Σ) ≤ ΛRn and with constant scalar mean
curvature H such that |H| ≤ H0R

−1. Assume that Σ is weakly stable as a CMC im-
mersion. For n = 6 suppose additionally either that Σ contains no point where Σ
intersects itself transversely (or equivalently, by the maximum principle, for each point
p ∈ Σ where Σ is not embedded, there is ρ > 0 such that Σ∩Bn+1

ρ (p) is the union of two
embedded smooth CMC hypersurfaces intersecting only tangentially), or that Λ = 3− δ
for some δ ∈ (0, 1).

Then

sup
x∈Σ∩BR/2(0)

|AΣ|(x) ≤ CR−1,

where AΣ denotes the second fundamental form of Σ.

We note that when n = 2 (cf. [Ye96, EM12]) stronger estimates are available—i.e.,
without the bounded area assumption—as consequences of the strong Bernstein type
theorems available [BdC84, BdCE88, Pal86, DS87, LR89]. As such, we will not consider
this case here.

Remark 1. In case n = 6, the reason for the additional restrictions in Theorem 1
(that either Σ has no transverse points or Λ = 3 − δ) is that it is not known if a
pointwise curvature estimate holds for 6-dimensional immersed strongly stable minimal
hypersurfaces satisfying an arbitrary mass bound; such an estimate is only known
to hold if the minimal hypersurface is either embedded ([SS81]) or is immersed and
satisfies a mass bound corresponding to Λ = 3 − δ for some δ ∈ (0, 1) ([Wic08]). See
Proposition 3 below.

In all dimensions, we have the following sheeting theorem.
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Theorem 2. Let Λ, H0 > 0 and n ≥ 3. Suppose that Σn ⊂ BR(0) ⊂ Rn+1 is an
immersed hypersurface with Hn(Σ) ≤ ΛRn, with constant scalar mean curvature H
such that |H| ≤ H0R

−1 and with Hn−7+α((Σ \ Σ) ∩BR(0)) = 0 for all α > 0 (in other
words, Σ may have a co-dimension 7 singular set). Suppose that Σ contains no point
where Σ intersects itself transversely (or equivalently, by the maximum principle, for
each p ∈ Σ where Σ is not embedded there is ρ > 0 such that Σ∩Bn+1

ρ (p) is the union
of exactly two embedded smooth CMC hypersurfaces intersecting only tangentially),
and that Σ is weakly stable as a CMC immersion. There exists δ0 = δ0(n,H0,Λ) and
C = C(n,H0,Λ) so that if additionally

Σ ⊂ {|xn+1| ≤ δ0R}

then Σ ∩ BR/2(0) separates into the union of the graphs of functions u1 ≤ · · · ≤ uk
defined on Bn

R/2(0) := BR/2(0) ∩ {xn+1 = 0} satisfying

sup
Bn

R/2
(0)

(
|Dui|+R|D2ui|

)
≤ Cδ0

for i = 1, . . . , k; moreover, each ui is separately a smooth CMC graph.

Remark 2. The constants in Theorems 1 and 2 depend on an upper bound for the
mean curvature H0. This cannot be removed; indeed, consider the hypersphere Σ =
∂Br(0), which is a weakly stable CMC embedding. Note that as r → 0, the curvature
of Σ blows up (in spite of the fact that Σ is eventually contained in any slab).

1.2. Results for varifolds. In view of [BW18, Theorem 2.1], Theorems 1 and 2 above
imply the following stronger results for integral varifolds. We refer to [BW18, Section
2.1] for precise definitions. Here we recall, slightly imprecisely, that:

• a classical singularity of an integral varifold V is a point p such that, in a
neighbourhood of p, spt ‖V ‖ (where ‖V ‖ denotes the weight measure associated
with V ) is given by the union of three or more embedded C1,α hypersurfaces-
with-boundary that intersect pairwise only along their common boundary L
containing p and such that at least two of the hypersurfaces-with-boundary
meet transversely along L;

• a (two-fold) touching singularity of an integral varifold V is a point p ∈ spt ‖V ‖
such that spt ‖V ‖ is not embedded at p and in a neighborhood of p, the spt ‖V ‖
is given by the union of exactly two C1,α embedded hypersurfaces with only
tangential intersection;

• (see [Sim83] for details) the first variation of an integral varifold V is a con-
tinuous linear functional on C1

c ambient vector fields and it represents the rate
of change of the varifold’s weight measure (area functional) computed along
ambient deformations induced by the chosen vector field; when the first vari-
ation is a Radon measure (i.e. it extends to a continuous linear functional on
C0
c vector fields) the varifold is said to have locally bounded first variation;

when, in addition, this Radon measure is absolutely continuous with respect to
the weight measure ‖V ‖, and its Radon–Nikodym derivative (called generalized
mean curvature of V ) is in Lp(‖V ‖), the first variation of V is said be locally
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summable to the exponent p (with respect to the weight measure ‖V ‖). By
the fundamental regularity theory of Allard, the class of integral n-varifolds V
with first variation locally summable to an exponent p > n is compact in the
varifold topology under uniform mass and Lp mean curvature bounds, and such
a V enjoys an embryonic regularity property: there exists a dense open subset
of spt ‖V ‖ in which spt ‖V ‖ is C1,α embedded, with α = 1 − n

p
if n < p < ∞

and α ∈ (0, 1) arbitrary of p =∞ (see [All72]).

In low dimensions, we have the following curvature estimates:

Theorem 1′. Let Λ, H0 > 0. For 3 ≤ n ≤ 6, suppose that V ∈ IVn(BR(0)) is an
integral varifold with ‖V ‖(BR(0)) ≤ ΛRn. Assume that the following hypotheses hold:

(1) the first variation of V is locally summable to an exponent p > n (with respect
to the weight measure ‖V ‖);

(2) V has no classical singularities;

(3) whenever p is a (two-fold) touching singularity there exists ρ > 0 such that

Hn ({y ∈ spt ‖V ‖ ∩Bρ(p) : Θ(‖V ‖, y) = Θ(‖V ‖, p)}) = 0,

where Θ is the density;

(4) the C1 embedded part of spt ‖V ‖ (non-empty by Allard’s regularity theorem) has
generalized mean curvature h with |h| = H for a constant H ≤ H0 (see [BW18]
for the variational formulation of this assumption, which makes sense for a C1

hypersurface and leads to its C2 regularity by standard elliptic regularity theory);

(5) the C2 immersed part of spt ‖V ‖ (which is a CMC immersion in view of (4))
is weakly stable, i.e. stable for the area measure under volume-preserving vari-
ations.

Then Σ = spt ‖V ‖ ∩ BR(0) is a smooth immersion and there is C = C(H0,Λ) so
that

sup
x∈Σ∩BR/2(0)

|AΣ|(x) ≤ CR−1,

where AΣ denotes the second fundamental form of Σ.

We also have the following sheeting theorem in all dimensions:

Theorem 2′. Let Λ, H0 > 0. For any n ≥ 3 suppose that V ∈ IVn(Bn+1
R (0)) is an

integral varifold with ‖V ‖(Bn+1
R (0)) ≤ ΛRn. Assume that the following hypotheses hold:

(1) the first variation of V is locally summable to an exponent p > n (with respect
to the weight measure ‖V ‖);

(2) V has no classical singularities;

(3) whenever p is a (two-fold) touching singularity there exists ρ > 0 such that

Hn
(
{y ∈ spt ‖V ‖ ∩Bn+1

ρ (p) : Θ(‖V ‖, y) = Θ(‖V ‖, p)}
)

= 0,

where Θ stands for the density;

(4) the C1 embedded part of spt ‖V ‖ (non-empty by Allard’s regularity theorem) has
generalized mean curvature h with |h| = H for a constant H ≤ H0 (see [BW18]
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for the variational formulation of this assumption, which makes sense for a C1

hypersurface and leads to its C2 regularity by standard elliptic methods);

(5) the C2 immersed part of spt ‖V ‖ (which is a CMC immersion in view of (4))
is weakly stable, i.e. stable for the area measure under volume-preserving vari-
ations.

There exists δ0 = δ0(n,H0,Λ) so that if additionally

spt ‖V ‖ ⊂ {|xn+1| ≤ δ0R}

then spt ‖V ‖∩BR/2(0) separates into the union of the graphs of functions u1 ≤ · · · ≤ uk
defined on Bn

R/2(0) := BR/2(0) ∩ {xn+1 = 0} satisfying

sup
Bn

R/2
(0)

(
|Dui|+R|D2ui|

)
≤ δ0

for i = 1, . . . , k; moreover, each ui is separately a smooth CMC graph.

Remark 3. The extension of the theorems above to the case of an ambient Riemannian
manifold follows the same arguments, employing the result in [BW]. Similarly, analo-
gous results hold in the case of more general prescribed mean curvature problems. For
example, when Σ as in Theorems 1 or 2 is the boundary of a Caccioppoli set Ω and g
is an ambient function we can define

Jg(Σ) = a(Σ) +

∫
Ω

g

and consider stable critical points of Jg with vol (Σ) = Hn+1(Ω) fixed.

Remark 4. Note that Theorems 1, 2, 1′ and 2′ hold in particular for H = 0; in this
case, the vanishing of the mean curvature prevents touching singularities, therefore
assumption (3) in Theorems 1′ and 2′ is redundant. For H = 0 our results generalize
the works of Schoen–Simon–Yau [SSY75], Schoen–Simon [SS81] and the third author
[Wic14, Theorem 3.3] from strong to weak stability.

Remark 5. The conclusions of Theorems 2 and 2′ clearly fail (even for strongly stable
minimal hypersurfaces) for n ≥ 7 without any flatness assumption, by the construc-
tion of Hardt–Simon [HS85]. We also note that singularities do occur in stable CMC
hypersurfaces (with H 6= 0) of dimension ≥ 7, as shown by a recent construction of
Irving ([Irv17]) modifying the earlier work of Caffarelli–Hardt–Simon (cf. [CHS84]).

1.3. A remark on bounded index minimal surfaces. The discussion in the para-
graph preceding Section 1.1 notwithstanding, the techniques developed in this paper
are relevant for the study of bounded index minimal surfaces in Riemannian (n + 1)-
manifold for n ≥ 7 (i.e., in the singular dimensions). For example, if Σn ⊂ BR(0) ⊂
Rn+1 is a minimal surface with index(Σ) ≤ 1, Hn(Σ) ≤ ΛRn, and Σ ⊂ {|xn+1| ≤ δ0R},
then by a straightforward application of the Schoen–Simon sheeting theorem [SS81],
Σ splits into smooth sheets away from a given point. The argument used to prove
Proposition 6 extends to this situation to conclude that the sheets are connected by
a small region that is close (depending on δ0) to an index one minimal hypersurface
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in Rn+1 (with small singular set), having regular ends. This last condition is the non-
trivial conclusion; it follows from the argument in Proposition 6, transferring flatness
from large scales to small scales (see Remark 6). Using the arguments in [CKM17] (cf.
[BS18]), similar statements hold for index(Σ) ≤ I0. See also [Tys89].

1.4. Outline of the paper. Theorem 1 will be proved in Section 3, building on the
Bernstein-type result given in Proposition 3 below (Section 2). Theorem 2 will be
proved in Section 4, building on a different Bernstein-type result (Proposition 4 in
Section 2). The proofs of both Bernstein-type results rely on a global result for weakly
stable minimal hypersurfaces, namely the fact that they must be one-ended. This is
proved in [CCZ08] in the case of smooth embedded hypersurfaces; this result, recalled
in Theorem 7 of Appendix A, is all that is actually needed for Theorem 1, together with
a classical blow-up argument. For the proof of Theorem 2, we extend the one-ended
conclusion to the situation where the hypersurface may have a codimension-7 singular
set; this is done in Theorem 8 of Appendix A. The proof of Theorem 2 also relies on a
careful blow-up argument for which we need to use certain results from [BW18], which
we recall in Appendix B.

1.5. Acknowledgements. C.B. was supported by an EPSRC grant EP/S005641/1.
O.C. was supported by an EPSRC grant EP/K00865X/1 as well as the Oswald Veblen
Fund and NSF grants DMS-1638352 and DMS-1811059. We are grateful to the referee
for several useful suggestions.

2. Two Bernstein-type theorems

We begin with the following Bernstein type result, which will yield Theorem 1 when
combined with a standard blow-up argument. We note that such a result holds for
n = 2 without the embededness or area growth assumptions, as discussed above. As
a notational remark, we stress that we will always write ∇ to denote the intrinsic
gradient on a hypersurface, and will instead denote by ∇Rn+1

the ambient gradient.

Proposition 3. For 3 ≤ n ≤ 6, suppose that Σn ⊂ Rn+1 is a connected, weakly stable,
immersed minimal hypersurface with no singularities and with Hn(Σ∩BR) ≤ ΛRn for
some constant Λ ≥ 1 and all R > 0. When n = 6 assume either that Λ = 3 − δ for
some δ > 0 or that Σ is embedded. Then Σ is a hyperplane.

Proof. We begin by showing that Σ is (strongly) stable outside of a compact set. If all
of Σ is strongly stable, then by [SSY75, SS81] the proposition follows. If not, we may
choose R > 0 so that Σ ∩ BR is unstable. If Σ \ B2R is unstable, then we may find
functions ϕ1 ∈ C∞c (Σ ∩BR) and ϕ2 ∈ C∞c (Σ \B2R) so that∫

Σ

|AΣ|2ϕ2
i >

∫
Σ

|∇ϕi|2.

By weak stability,
∫

Σ
ϕi 6= 0 for i = 1, 2. Choose t ∈ R so that∫

Σ

ϕ1 + tϕ2 = 0.
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Because ϕ1, ϕ2 have disjoint support, we find that∫
Σ

|AΣ|2(ϕ1 + tϕ2)2 >

∫
Σ

|∇(ϕ1 + tϕ2)|2.

This contradicts the weak stability of Σ. Thus, Σ is stable outside of a compact set.
We first assume that Σ is embedded. We will explain below the modifications for

the cases Σ immersed and 3 ≤ n ≤ 5, or Σ immersed, n = 6 and Λ = 3 − δ. In the
embedded case, we first show that there exists an integer m such that any tangent cone
at infinity is a hyperplane with multiplicity m.

Claim 1. There is m ∈ N so that for any sequence λj → 0, a subsequence of Σj := λjΣ
converges smoothly and graphically on any compact subset of Rn+1\{0} to a hyperplane
of multiplicity m.

Proof of the Claim. By [SS81, Theorem 3] (for n ≤ 5 the estimates in [SSY75] suffice)
the magnitude of the second fundamental form decays as 1

|y| for |y| → ∞, namely there

exist R0 > 0 and a constant C > 0 such that |A|(y) ≤ C
|y| for y ∈ Σ and |y| ≥ R0, where

|y| denotes the Euclidean norm of y in Rn+1. Therefore, there is a subsequence λj → 0
(not relabeled) so that Σj = λjΣ converges smoothly (possibly with multiplicity) on
compact subsets of Rn+1\{0} to C, a smooth minimal surface in Rn+1\{0}. The smooth
convergence implies that C \ {0} is (strongly) stable: by [Sim68] and the dimensional
restriction, C is a flat hyperplane with some multiplicity m ∈ N. Finally, the fact that
the multiplicity m is independent of the sequence (λj) is an immediate consequence of
the monotonicity formula. �

The preceding claim implies that there exists r0 such that, whenever r > r0, the
sphere ∂Bn+1

r (0) intersects Σ transversely: indeed, if that failed, we could produce a
sequence of radii ri →∞ where transversality fails but the corresponding sequence 1

ri
Σ

would fail to converge graphically at some point on ∂Bn+1
1 (0).

Let r > r0. The transversality condition established amounts to the fact that the
gradient of h : Σ \ Br0(0) → R, h(x) = |x| (the ambient distance to the origin) is
everywhere non-vanishing. By [Mil63, Theorem 3.1] this implies that, for any R > r,
Σ ∩ (BR(0) \Br(0)) deformation retracts onto Σ ∩ ∂Br(0). In particular, the num-
ber of connected components of Σ ∩ (BR(0) \Br(0)) equals the number of connected
components of Σ ∩ ∂Br(0). Denoting with D1, . . . , DN the connected components of
Σ ∩ ∂Br(0), we consider, for every R > r, N disjoint open sets AR1 , . . . , A

R
N , each con-

taining a single connected component of Σ ∩ (BR(0) \Br(0)) and labelled so that ARj
contains Dj. Let Ãj = ∪R>rARj : the open sets Ãj for j = 1, . . . , N are disjoint by
construction and cover Σ \Br(0), so the number of ends of Σ is at least N .

The result of [CCZ08] (see Theorem 7 below) gives that Σ is one-ended, i.e. N = 1,
and so, for all r > r0, Σ∩ ∂Br(0) is connected. On the other hand, Sn−1 is simply con-
nected and, as such, does not admit a nontrivial connected cover. Therefore, recalling
claim 1, we conclude that m = 1, or equivalently, that the density of Σ at infinity is
1. Hence by the monotonicity formula Σ is a cone with density at the vertex (which is
equal to the density at infinity) equal to 1. Since the density of Σ at any other point
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is also 1, it follows again by the monotonicity formula that Σ is translation invariant
along every direction so it is a hyperplane.

We now consider the case where ϕ : Σ→ Rn+1 is only assumed to be immersed and
either 3 ≤ n ≤ 5 or n = 6 and Λ = 3−δ. In this case, we still have, by the local uniform
mass bounds, that for any sequence λj → 0, a subsequence of (λj)# |ϕ(Σ)| converges
as varifolds to a stationary cone C. By the locally uniform pointwise curvature bounds
(given by [SSY75] for 3 ≤ n ≤ 5 or by [Wic08] for n = 6 and Λ = 3− δ), it follows that
spt ‖C‖ is smoothly immersed away from the origin, and the convergence is smooth
and graphical in compact subsets of Rn+1 \ {0}; moreover, since Σ \ B2R is stable,
it also follows that the stability inequality

∫
|AC|2ζ2 ≤

∫
|∇ ζ|2 holds true for every

ζ ∈ C1
c (spt ‖C‖ \ {0}), i.e. that spt ‖C‖ \ {0} is stable as an immersion. (Indeed if

Mj is any sequence of immersed minimal hypersurfaces of an open set U ⊂ Rn+1 with
no singularities and with ∂ Mj ∩ U = ∅, and if lim supj→∞ Hn(Mj ∩ K) < ∞ and
lim supj→∞ supx∈Mj∩K |AMj

(x)| < ∞ for each compact K ⊂ U , then for any given

compact set K ⊂ U , there is a fixed radius σ = σ(K) > 0 independent of j such
that (after passing to a subsequence without changing notation) for every j and every
p ∈Mj ∩K, Mj ∩Bσ(p) is the union of smooth embedded graphs with small gradient

over some hyperplanes Pj,1, . . . , Pj,Nj
passing through p (with

∑Nj

k=1 |Pj,k| equal to the
tangent cone to Mj at at p), where Nj ≤ N for some N independent of j and p; if
V is the varifold limit of (Mj), then for any z ∈ spt ‖V ‖ ∩ U , choosing a sequence of
points zj ∈ Mj with zj → z and applying this fact to Bσ(zj) ∩Mj, we get, passing
to a subsequence, that the hyperplanes Pj,k → Pk for k = 1, . . . , Q for some Q ≤ N ,
and so we can write Mj ∩ Bσ/2(zj) as a union of embedded minimal graphs over the
fixed planes P1, . . . , PQ with small gradient. By the higher derivative estimates for
solutions to uniformly elliptic equations, we then see that spt ‖V ‖ ∩ Bσ/4(z) is the
union of smoothly embedded minimal graphs over P1, . . . , PQ, i.e. that spt ‖V ‖ ∩ U
is immersed, and that the convergence of (Mj) is smooth and graphical (via normal
sections over spt ‖V ‖ ∩ U) in any compact subset of U . From this, it is easy to verify
that if Mj are stable, i.e. if

∫
Mj
|AMj

|2ζ2 ≤
∫
Mj
|∇ ζ|2 for each ζ ∈ C1

c (Mj) then∫
|Aspt ‖V ‖|2ζ2 ≤

∫
∇ ζ|2 for each ζ ∈ C1

c (spt ‖V ‖).)
By Simons’ theorem ([Sim68, Theorem 6.1.1]; see the argument in [Sim83, Appendix

B] which is valid when the cone, as in our case, is immersed and stable as an immer-

sion away from the origin), we conclude that C =
∑M

`=1m`|L`| for some hyperplanes
L1, . . . , LM and positive integers m1, . . . ,mM . Arguing by contradiction (as in the em-
bedded case), this shows that ϕ is transverse to ∂Bn+1

r (0) for all r > r0 sufficiently
large. Again, as in the embedded case, we thus find that the number of connected
components of ϕ−1(BR(0) \ Br(0)) is equal to the number of connected components
of ϕ−1(∂Br(0)) for any R ≥ r > r0. Because Σ has only one end by Theorem 7,
there is only one such component. This proves both that C is supported on a sin-
gle hyperplane, and that it has multiplicity one. Thus, Σ is a flat hyperplane by the
monotonicity formula. This completes the proof. �

The proof of Theorem 1 will be achieved by employing Proposition 3 and a standard
blow-up argument (see Section 3). We now present a version of Proposition 3 that holds
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in all dimensions. This, in conjunction with the sheeting-away-from-a-point result for
weakly stable CMC hypersurfaces from [BW18] (recalled in Appendix B, Theorem 10
below), will imply Theorem 2 using a less standard rescaling argument. We point
out that, in the proof of the next proposition, we make use of the one-end result of
[CCZ08] for weakly stable CMC hypersurfaces, genralized here to allow a co-dimension
7 singular set. This generalisation is given in Appendix A, Theorem 8.

Proposition 4. For n ≥ 3, suppose that V is a stationary integral n-varifold in Rn+1

with spt ‖V ‖ a connected set, sing V ⊂ B1(0) (so spt ‖V ‖ is smooth in Rn+1\B1(0)) and
with dimH (sing V ) ≤ n−7. Assume that the regular part Σ = reg V (= spt ‖V ‖\sing V )
is weakly stable and that V satisfies area growth ‖V ‖(BR(0)) ≤ ΛRn for some constant
Λ ≥ 1 and all R > 0. Finally, assume that for some ε > 0, Σ satisfies

(1) |AΣ|(x)|x| ≤
√
n− 1− ε

for x ∈ Σ \B1, where | · | denotes the length in Rn+1. Then spt ‖V ‖ is a hyperplane.

Proof. We begin by proving that Claim 1 from Proposition 3 holds in this setting as
well. For a sequence λj → 0, we consider Vj := (λj)# V . Passing to a subsequence,
Vj converges to a cone C in the sense of varifolds. Moreover, the assumed curvature
estimates contained in (1) imply that spt ‖C‖\{0} is smooth and Σj converges smoothly
to spt ‖C‖ (possibly with multiplicity) on compact subsets of Rn+1 \ {0} (here, we use
the fact that the estimate (1) is scale invariant). The curvature estimates pass to the
limit, implying that |Aspt ‖C‖|(x)|x| <

√
n− 1 for all x ∈ spt ‖C‖ \ {0}. Appealing to

Lemma 5 below, we find that C is a flat hyperplane with some multiplicity m ∈ N.
This establishes Claim 1 in this setting (that the multiplicity m is independent of the
sequence follows again by monotonicity, as before).

Thus, any tangent cone at infinity of V is a multiplicity m plane. By Theorem 8,
applied to V , Σ has exactly one end. Arguing as we did in the proof of Proposition
3, we can use the graphical convergence on compacts sets in Rn+1 \ {0} (which follows
from the curvature estimate (1)) and the fact that Sn−1 does not admit any multiple
cover, to obtain that, outside of B1, V must agree with the varifold given by Σ with
multiplicity m. Because the density at infinity of V must be m, there must be equality
in the monotonicity formula starting at any point in Σ (which also has density m)
which easily implies that the support of V is a hyperplane. �

Lemma 5. Suppose that C is a n-dimensional minimal cone in Rn+1 that is smooth
away from 0 and satisfies |AC|(x)|x| <

√
n− 1. Then C is a flat hyperplane.

Proof. Note that M := C ∩ Sn is smooth. By the given curvature estimate, we have
that |AM | <

√
n− 1. By [Sim68, Corollary 5.3.2], M must be totally geodesic. This

proves the assertion. �

Remark 6. Observe that the Simons cone Σ in R8 is (strongly) stable and satisfies
|AΣ|(x)|x| =

√
n− 1 for all x ∈ Σ \ B1. As such, we see that the constant

√
n− 1− ε

in (1) is sharp in the sense that Proposition 4 fails with any larger constant.
The importance of the size of the constant in a (scale invariant) curvature estimate

of the form (1) seems to have been first shown by White in [Whi87]. This has been
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refined in [MPR16, CCE16, CKM17]. A key novelty contained in the present work
is the combination of (1) with Lemma 5 and with Theorem 8, allowing flatness to
propagate from large to small scales. Furthermore, our work here seems to be the first
use of such an estimate in a setting where a priori there could be singularities.

3. Proof of Theorem 1

Because the hypothesis and conclusion are scale invariant, it suffices to take R = 1.
Assume the theorem is false. Then, there is Σj in B2 ⊂ Rn+1, a sequence of embedded
(when Σ is immersed and 3 ≤ n ≤ 5, an identical argument will apply by considering
instead rescalings and limits of the immersions) smooth weakly stable hypersurfaces
with |H| ≤ H0 and Hn(Σj) ≤ Λ, but so

sup
x∈Σj∩B1/2

|AΣj
|(x)→∞

as j → ∞. A standard blow-up argument (which we now recall) produces a surface
which contradicts Proposition 3.

Choose xj ∈ Σj ∩ B1/2 with |AΣj
|(xj) → ∞. Without loss of generality, we may

assume xj → x0. Choose ρj → 0 sufficiently slowly so that ρj|AΣj
|(xj) → ∞. Find

yj ∈ Σj ∩Bρj(xj) maximizing

y 7→ |AΣj
|(y)d(y, ∂Bρj(xj)).

Set σj = d(yj, ∂Bρj(xj)) and λj = |AΣj
|(yj). Clearly σj ≤ ρj and yj → x0, so that

(2) |AΣj
|(y)d(y, ∂Bρj(xj)) ≤ σjλj for y ∈ Σj ∩Bσj(yj).

By the choice of yj we have σjλj ≥ ρj|AΣj
|(xj), which implies λj := |AΣj

|(yj) → ∞
and λjσj →∞ as j →∞. We now define

Σ̃j = λj(Σj − yj).

We claim that Σ̃j has bounded curvature on compact subsets of Rn+1. Indeed, for

x ∈ Σ̃j ∩Bσjλj(0), scaling and (2) yield

|AΣ̃j
|(x) =

1

λj
|AΣj
|(yj + λ−1

j x) ≤ σj

σj − λ−1
j |x|

→ 1

for |x| uniformly bounded. Note that Σ̃j has mean curvature |Hj| ≤ H0/λj → 0.

The monotonicity formula (see e.g. [Sim83]) shows thatHn(Σ̃j∩BR) ≤ Λ̃Rn for some

constant Λ̃ = Λ̃(Λ, n,H0) independent of j. Then, by higher order elliptic estimates,
Σ̃j converges (up to passing to a subsequence) smoothly (possibly with multiplicity)

to a smooth, embedded, complete, weakly stable minimal hypersurface Σ̃∞ in Rn+1.
Because |AΣ̃j

|(0) = 1 for every j, we find that |AΣ̃∞
|(0) = 1, so Σ̃∞ is non-flat. This

contradicts Proposition 3 (applied to Σ̃∞ with multiplicity one).
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4. Proof of Theorem 2

We begin by describing the setup of the proof of Theorem 2. By scaling we may
take R = 10. We consider a sequence of weakly stable hypersurfaces Σj with mean
curvature |H| ≤ H0/10 and Hn(Σj) ≤ Λ10n. We assume that each Σj has a singular
set of co-dimension at least 7 and that Σj satisfies

Σj ⊂ {|xn+1| ≤ 10/j} ∩B10(0).

It follows that Σj converges to the flat disk {xn+1 = 0}∩B10(0) (smoothly away from a
point by Theorem 10) with some positive integer multiplicity k, in the sense of varifolds.
The final aim is to show that the conclusion of Theorem 2 is valid for all sufficiently
large j.

We will first establish the regularity assertion and the curvature estimate in Propo-
sition 6 below; the proof of Theorem 2 will then be completed at the end of the section.
The curvature estimate of Proposition 6 will be a consequence of Proposition 4 and
a blow-up argument. Its scale-breaking nature is reminiscent of the arguments in
[CKM17].

Proposition 6. Fix η > 0. Then, for j sufficiently large, Σj ∩B9 is smooth and there
is zj ∈ B6 so that

|AΣj
|(x)|x− zj| ≤ η

for all x ∈ Σj ∩B9, where | · | stands for the length in Rn+1.

We briefly explain the idea of the proof. The conclusion is non-trivial only when we
are in the second alternative of the partial sheeting result from [BW18] that is recalled
in Theorem 10, Appendix B. This second alternative gives that, away from a point, Σj

is converging smoothly (with sheeting) to a hyperplane with multiplicity. Thus, there
is some y and δ > 0 small so that the conclusion holds outside of Bδ(y).

The strategy of the proof is to pick the smallest ball Bδj(zj) so that the conclusion
for Σj holds outside of the ball. The claim will follow if we can prove that actually

δj = 0, so we will assume that δj > 0. Rescale Σj to Σ̂j so that the ball Bδj(zj) becomes
B1(0) (outside of which, the smoothness and scale invariant curvature estimates hold).

We can pass Σ̂j to the limit, which inherits the curvature estimates (and smoothness)
outside of B1(0). By Proposition 4, the limit is a union of hyperplanes (note that here
we have transferred the flatness estimates contained in the partial sheeting result to the
smaller scale, as pointed out in Remark 6). Now, the partial sheeting result (applied

to Σ̂j) implies, as above, that the convergence of Σ̂j to the limit occurs smoothly away
from a single point. This contradicts our choice of Bδj(zj), since for j large, we could
take a smaller ball around the point where sheeting fails in the rescaled picture. This
will contradict the assumption that δj > 0, and will complete the proof.

Proof of Proposition 6. Clearly, it suffices to assume that η <
√
n− 1. If the the

first case of the conclusion of Theorem 10 holds for every Σj large enough, then the
curvature estimate is true with zj = 0 (and the conclusion of Theorem 2 is valid,
so there is nothing further to prove). So we may assume (by the second case of the
conclusion of Theorem 10) that there is a point y ∈ B5(0) ∩ {xn+1 = 0} such that
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Σj are sheeting away from y, i.e. for any r > 0, Σj ∩ (B9(0) \ Br(y)) is smooth for j
sufficiently large and

(3) sup
x∈Σj∩(B9(0)\Br(y))

|AΣj
|(x)→ 0

as j → ∞. We will subsequently replace Σj by Σj ∩ B9(0) (to avoid any irrelevant
issues with the behavior of Σj near its boundary).

For z ∈ B6(0), we define

δ(Σj, z) := inf

{
r > 0 :

Σr
j := Σj \Br(z) is smooth

and |AΣj
|(x)|x− z| ≤ η for all x ∈ Σr

j

}
.

Note that δ(Σj, y)→ 0 as j →∞, by the partial sheeting result discussed above.
For every j set δj := infz∈B6(0) δ(Σj, z) and choose zj,k with δ(Σj, zj,k)→ δj as k →∞.

Passing to a subsequence, we may assume that zj,k → zj ∈ B6(0). We claim that
δ(Σj, zj) = δj. If not, there is ε > 0 and w ∈ Σj \Bδj+2ε(zj) with either (i) w ∈ sing Σj

or (ii) |AΣj
|(w)|w− zj| > η+ 2ε. Note that w ∈ Σj \Bδj+ε(zj,k) for k sufficiently large.

Thus, in case (i), we find that, by the definition of δ(·, ·), δ(Σj, zj,k) ≥ δj + ε for all
k sufficiently large. This contradicts the choice of zj,k. Similarly, in case (ii) we have
that

|AΣj
|(w)|w − zj,k| > η + ε,

for k sufficiently large, since |w − zj,k| → |w − zj| as k → ∞. Again, this yields a
contradiction, as before.

Thus, we have arranged that zj minimizes δ(Σj, ·). Since δ(Σj, y)→ 0, we also have
that δj → 0 and consequently, it follows from the definition of δj and (3) that zj → y.
We claim that δj = 0 for all sufficiently large j. Arguing by contradiction, we assume
(upon extracting a subsequence that we do not relabel) that δj > 0 for all j. Using
this, we now perform the relevant blow-up argument. Define

Σ̃j = δ−1
j (Σj − zj).

Note that as in the proof of Theorem 1, the monotonicity formula implies that Hn(Σ̃j∩
BR(0)) ≤ Λ̃Rn for some Λ̃ = Λ̃(Λ, n,H0). Moreover, the choice of δj implies that Σ̃j\B1

is smooth and satisfies

(4) |AΣ̃j
|(x)|x| ≤ η

for x ∈ Σ̃j \B1. Note also that |HΣ̃j
| ≤ δj

H0

10
→ 0. The area bounds and weak stability

imply, by the regularity and compactness theorems in [BW18] (recalled in Theorem 9,
Appendix B below), that Σ̃j converge in the varifold sense to Ṽ , which is stationary,
weakly stable, has smoothly embedded support outside of a co-dimension 7 singular
set, and satisfies ‖Ṽ ‖(BR(0)) ≤ Λ̃Rn. Furthermore, by the curvature estimates (4),
the support of Ṽ is a smooth hypersurface Σ̃∞ outside of B1(0) satisfying

|AΣ̃∞
|(x)|x| ≤ η
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and the convergence is smooth on compact sets outside B1(0). Thus, by Proposition
4, each connected component of the support of Ṽ is a hyperplane and so the support

of ‖̃V ‖ is made up of finitely many parallel hyperplanes.
Now, we again appeal to Theorem 10 to conclude that the convergence of Σ̃j to Ṽ

occurs smoothly (possibly with multiplicity) away from some fixed point z̃ ∈ spt ‖Ṽ ‖ (if
the sheeting actually occurs everywhere, we simply set z̃ = 0). Note that the curvature
estimates (4) imply that |z̃| ≤ 1.

Define ẑj = zj + δj z̃ and let δ̂j := δ(Σj, ẑj). Since δ̂j ≥ δj/2 (by the definition of δj),
there is wj ∈ Σj \Bδj/2(ẑj) so that either (i) wj ∈ sing Σj, or (ii) |AΣj

|(wj)|wj− ẑj| > η.
We note that in either case we have that

(5) lim inf
j→∞

δ−1
j |wj − ẑj| =∞.

(For if not, then defining w̃j = δ−1
j (wj − zj), we find that, in the scale of Σ̃j discussed

above,
|z̃ − w̃j| = δ−1

j |(ẑj − zj)− (wj − zj)| = δ−1
j |wj − ẑj|

is bounded above (after passing to a subsequence) and bounded below by 1
2

(since

wj 6∈ Bδj/2(ẑj)), but because Σ̃j sheets away from z̃, we find that either (i) or (ii)
would be a contradiction.) Finally, we define

Σ̌j := |wj − ẑj|−1(Σj − ẑj)
and set

w̌j := |wj − ẑj|−1(wj − ẑj), žj := |wj − ẑj|−1(zj − ẑj) = −δj|wj − ẑj|−1z̃.

Note that it follows from (3), (i) and (ii) that wj → y and hence (since zj → y) that
|wj− ẑj| → 0. We have already shown that outside of Bδj(zj), Σj is smooth and satisfies

(4). This implies that Σ̌j is smooth outside of Bδj |wj−ẑj |−1(žj) and additionally satisfies

|AΣ̌j
|(x)|x− žj| ≤ η.

By (5), and recalling that |z̃| ≤ 1, we have that δj|ẑj − wj|−1 → 0 and žj → 0. As
before, we may take the varifold limit V̌ of Σ̌j, and the curvature estimates we have just
established show that this limit occurs smoothly (possibly with multiplicity) outside of
B1/2(0). The curvature estimates pass to the limit so by Proposition 4 each connected

component of spt ‖V̌ ‖ is a hyperplane. Thus, since |w̌j| = 1, we find that w̌j 6∈ sing Σ̌j

and |AΣ̌j
|(w̌j)→ 0, so

|AΣ̌j
|(w̌j)|w̌j| → 0.

Rescaling to the original scale, this contradicts both (i) and (ii) above (concerning wj).
This contradiction establishes that δj = 0 for j sufficiently large.

We have now shown that Σj is smooth away from zj and satisfies

|AΣj
|(x)|x− zj| ≤ η

for all x ∈ Σj \ {zj}. If zj 6∈ Σj there is nothing further to show. Else, arguing as
in the beginning of the proof of Proposition 3, we see that for fixed j and any small
ball Bρ(zj), the hypersurface Σj is strongly stable either in Bρ(zj) or in B9 \Bρ(zj); it
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follows from this fact that for each fixed j, there is ρ > 0 such that Σj is strongly stable
in the annulus Bρ(zj) \ {zj}, and hence in the ball Bρ(zj). Moreover, by the curvature
estimates and Lemma 5, any tangent cone Σj at zj must be supported on a hyperplane.
Thus, Σj is smooth at zj by [BW18, Theorems 3.1 and 3.3]. This completes the proof
of Proposition 6. �

Completion of the proof of Theorem 2. As discussed in the beginning of this section,
Σj converge in the sense of varifolds to the hyperplane {xn+1 = 0} with multiplicity
k. We claim that the curvature of Σj is uniformly bounded on Σj ∩ B9(0). Let
λj = maxΣj∩B9(0) |AΣj

| and assume for a contradiction (upon extracting a subsequence
that we do not relabel) that λj →∞ as j →∞. By applying Proposition 6 iteratively
we may find a further subsequence (not relabeled) so that Σj is a smooth immersion
in the whole ball B9(0) and there is zj ∈ B6(0) and ηj → 0 so that Σj satisfies the
curvature estimates

(6) |AΣj
|(x)|x− zj| ≤ ηj

for all x ∈ B9(0). Note that since zj ∈ B6(0), it follows from (6) that |AΣj
| is uniformly

bounded in the annulus B9(0)\B8(0) and therefore the maximum of |AΣj
| in Σj∩B9(0)

is achieved at a point yj ∈ B8(0). We set

Σ̃j = λj(Σj − yj).
By construction we have |AΣ̃j

|(0) = 1 and that |AΣ̃j
| is uniformly bounded on compact

subsets of Rn+1, so Σ̃j converges smoothly on compact subsets of Rn+1 to a non-flat

smooth hypersurface Σ̃∞. On the other hand, the estimate (6) is scale invariant, so for
z̃j = λj(zj − yj), we see that

|AΣ̃j
|(x)|x− z̃j| ≤ ηj.

Considering x = 0 here, we find that z̃j → 0, since ηj → 0. Hence, passing this
inequality to the limit, we find that

|AΣ̃∞
|(x)|x| = 0,

contrary to the fact that Σ̃∞ is non-flat.
This implies that the curvature of Σj (in the original scale, for the original sequence)

was uniformly bounded in B8(0). Since Σj converges to a hyperplane, the uniform
curvature bounds and standard elliptic estimates conclude the proof. �

Remark 7. It is possible to conclude in a slightly different manner, by using the
curvature estimates from Proposition 6 with η < 1 to prove that the function fj(x) :=
|x − zj|2 is strictly convex (for any j large enough). From this, if we assume sheeting
of Σj away from a point y (second alternative of Theorem 10), it is not hard to argue
(using a max-min argument) that distinct sheets of Σj ∩

(
B9(0) \B1/2(y)

)
cannot

be connected in B1/2(y) (endowing Σj with the topology of the immersion, not of
the embedding); therefore each connected component of Σj in B9(0) contains exactly
one sheet of Σj ∩

(
B9(0) \B1/2(y)

)
. Theorem 2 then follows from Allard’s regularity

theorem applied to each connected component individually, since standard arguments
show that each component converges to the hyperplane with multiplicity 1 in the sense
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of varifolds. This alternative argument seems to be necessary for the applications to
bounded index surfaces mentioned in Section 1.3 (cf. [CKM17]).

Appendix A. Weakly stable minimal hypersurfaces have only one end

In this appendix we review a result of Cheng–Cheung–Zhou [CCZ08] for weakly sta-
ble complete, non-compact minimal hypersurfaces immersed in Rn+1 that generalized
earlier work of Cao–Shen–Zhu [CSZ97] establishing the same result for strongly stable
complete, non-compact minimal hypersurfaces. We include their proof here, since for
our purposes we need to extend (as we do below) the argument to the case where the
hypersurfaces are allowed to have a small singular set. We recall that we write ∇ to
denote the intrinsic gradient on a hypersurface, and will specify ∇Rn+1

if we refer to
the ambient gradient.

Theorem 7 ([CCZ08, Theorem 3.2]). A complete connected oriented weakly stable
minimal hypersurface immersed in Rn+1, n ≥ 2, has only one end.

Proof. In R3, a complete oriented weakly stable minimal surface is a plane, by [DS87],
so we need only consider n ≥ 3.

Suppose that Σ is a complete oriented weakly stable minimal hypersurface in Rn+1

with at least two ends. By [CSZ97, Lemma 2], there exists a non-constant bounded
harmonic function u with finite Dirichlet energy,

∫
Σ
|∇u|2 <∞.

Consider ϕ ∈ C1
0(Σ) so that

∫
Σ
ϕ|∇u| = 0 (we will choose a specific ϕ below).

Plugging ϕ|∇u| into the stability inequality for Σ yields∫
Σ

|A|2ϕ2|∇u|2 ≤
∫

Σ

|∇(ϕ|∇u|)|2

=

∫
Σ

|∇|∇u||2ϕ2 +
1

2
∇|∇u|2 · ∇ϕ2 + |∇u|2|∇ϕ|2

=

∫
Σ

|∇|∇u||2ϕ2 − 1

2
∆|∇u|2ϕ2 + |∇u|2|∇ϕ|2

=

∫
Σ

(|∇|∇u||2 − |D2u|2)ϕ2 − RicΣ(∇u,∇u)ϕ2 + |∇u|2|∇ϕ|2,

where we have integrated by parts and used the Bochner formula on Σ

1

2
∆|∇u|2 = |D2u|2 + RicΣ(∇u,∇u).

The Gauss equations (and minimality of Σ) imply that

RicΣ(∇u,∇u) = −|A(∇u, ·)|2 ≥ −|A|2|∇u|2.
Moreover, because u is harmonic, we have the improved Kato inequality

|D2u|2 − |∇|∇u||2 ≥ 1

n− 1
|∇|∇u||2.

Combined with the stability inequality as above, this yields∫
Σ

|∇|∇u||2ϕ2 ≤ (n− 1)

∫
Σ

|∇u|2|∇ϕ|2.
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We now choose ϕ appropriately. First, we argue that
∫

Σ
|∇u| =∞. Let p ∈ Σ such

that |∇u|(p) > 0. Write BΣ
r (p) for the intrinsic ball of radius r around p in Σ. For

almost every R ≥ 1, we have

0 < ‖∇u‖2
L2(BΣ

1 (p)) ≤ ‖∇u‖
2
L2(BΣ

R(p)) =

∫
BΣ

R(p)

|∇u|2 =

∫
∂BΣ

R(p)

u
∂u

∂ν
≤ ‖u‖L∞

∫
∂BΣ

R(p)

|∇u|,

so because u is bounded, there is some constant C = C(u, p) > 0 so that∫
∂BΣ

R(p)

|∇u| ≥ C > 0.

Hence, by the co-area formula∫
BΣ

R(p)\BΣ
1 (p)

|∇u| ≥
∫ R

1

∫
∂BΣ

r (p)

|∇u| ≥ C(R− 1),

which tends to infinity as R→∞.
For a, b, R to be chosen with R > a > 0, we define (for t ∈ [0, 1])

ϕt(x) :=



1 dΣ(x, p) < a

(a+R− dΣ(x, p))/R a ≤ dΣ(x, p) < a+R

t(a+R− dΣ(x, p))/R a+R ≤ dΣ(x, p) < a+ 2R

−t a+ 2R ≤ dΣ(x, p) < a+ 2R + b

t(dΣ(x, p)− (a+ 3R + b))/R a+ 2R + b ≤ dΣ(x, p) < a+ 3R + b

0 dΣ(x, p) ≥ a+ 3R + b.

For ε > 0 fixed, choose R so that (n− 1)R−2
∫

Σ
|∇u|2 < ε. Then,∫

Σ

ϕ0|∇u| ≥
∫
BΣ

a (p)

|∇u| > 0

and ∫
Σ

ϕ1|∇u| ≤
∫
BΣ

a+R(p)

|∇u| −
∫
BΣ

a+2R+b(p)\Ba+2R

|∇u|.

Since we have seen that
∫

Σ
|∇u| =∞, we may take b = b(a, ε) sufficiently large so that∫

Σ

ϕ1|∇u| < 0.

Thus, there is some t = t(b, ε) ∈ (0, 1) so that∫
Σ

ϕt|∇u| = 0.

Choosing ϕt in the above computation, we note that |∇ϕt| ≤ R−1, so∫
Σ

|∇|∇u||2ϕ2
t ≤ (n− 1)

∫
Σ

|∇u|2|∇ϕt|2 ≤ (n− 1)R−2

∫
Σ

|∇u|2 < ε.

Thus, we find that ∫
BΣ

a (p)

|∇|∇u||2 < ε.
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Since a and ε were arbitrary, we find that ∇|∇u| = 0 along Σ, so |∇u| is constant.
Since Σ has infinite volume and |∇u| ∈ L2(Σ), we find that |∇u| = 0. Thus, u is
constant, a contradiction. This completes the proof. �

We now explain how the preceding argument generalizes to the case where the min-
imal hypersurface is allowed to have a small singular set.

Theorem 8. For n ≥ 3, suppose that V is a stationary integral n-varifold in Rn+1

with spt ‖V ‖ connected, dimH (sing V ) ≤ n− 7 and with sing V ⊂ B1(0). Assume that
the regular part spt ‖V ‖ \ sing V is weakly stable. Then spt ‖V ‖ has exactly one end at
infinity.

Proof. Let M = spt ‖V ‖\sing V and suppose that M has two (or more) ends at infinity.
The proof proceeds as in the smooth case (Theorem 7 above) with a few additional
arguments. First we note that by [Ilm96, Theorem A (ii)], sing V does not disconnect
spt ‖V ‖, so M is connected. This is needed at the end of the proof in order to have
that the identical vanishing of ∇u implies the global constancy of u (and not just the
local constancy), which provides the desired contradiction.

The next argument concerns the existence of a non-constant bounded harmonic
function u with finite energy on M . This is proved in the case sing V = ∅ in [CSZ97,
Lemma 2] (and is used, as noted, in Theorem 7 above). The completeness assumption
in [CSZ97, Lemma 2] is not necessarily fulfilled by M , so it does not seem possible to
simply invoke that result. We note, however, that completeness is used in [CSZ97] only
to infer that each end has infinite volume ([CSZ97, Lemma 1]); this fact on the other
hand follows directly from the monotonicity formula. Then we can follow verbatim the
arguments in [CSZ97, Lemma 2], only with the following additional care. When we
exhaust the hypersurface with domains Di we should remove, from the Di constructed
in [CSZ97], the closure of a smooth tubular neighbourhood of sing V (whose size shrinks
as i → ∞). This will produce further boundary components, in addition to those in
[CSZ97], on which we will set boundary value 0 when solving the Dirichlet problem
[CSZ97, (2)].

One more additional argument is needed in view of the fact that the test function
ϕt|∇u| constructed in Theorem 7 might fail, a priori, to be an admissible function for
the stability inequality. Indeed, ϕt|∇u| is not compactly supported on M and we do
not have sufficient control of |∇u| near sing V. (If e.g. |∇u| were bounded near sing V , a
straightforward capacity argument would suffice.) In order to overcome this difficulty,
we first observe an energy growth estimate for u in balls centred on sing V (inequality
(7) below) which is obtained as follows: Since ∆u = 0 on M , we see by integrating by
parts and using the Cauchy–Schwarz inequality that for any φ ∈ C1

c (M),∫
M

|∇u|2φ2 = −
∫
M

2φu∇u∇φ ≤ 2

(∫
M

φ2|∇u|2
)1/2(∫

M

u2|∇φ|2
)1/2

,

from which we immediately get (using also the bounds −1 ≤ u ≤ 1)∫
M

|∇u|2φ2 ≤ 4

∫
M

u2|∇φ|2 ≤ 4

∫
M

|∇φ|2.
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Consequently, a standard capacity argument that only needs that the 2-capacity of
sing V is 0 (true in view of Hn−2(sing V ) = 0) gives that the inequality∫

M

|∇u|2φ2 ≤ 4

∫
M

|∇φ|2

holds for all φ ∈ C1
c (Rn+1). In particular, choosing any p ∈ sptV and φ ∈ C1

c (B2r(p))
to be a standard bump function that is identically equal to 1 on Br(p) and identically

equal to 0 on the complement of B2r(p) with |∇Rn+1
φ| ≤ 2

r
, the preceding inequality

and the monotonicity formula give

(7)

∫
Br(p)∩M

|∇u|2 ≤ Crn−2,

where C is independent of r.
With this we proceed as follows: Let δ > 0 and let {Bri(xi)}Ni=1 be a cover of sing V

(compact since sing V ⊂ B1(0)) with
∑N

i=1 r
n−4
i ≤ δ (possible since dimH (sing V ) ≤

n − 7). Defining a cutoff function ζδ = mini∈{1,...,N} ζi, where ζi ∈ C1(Rn+1) with
0 ≤ ζi ≤ 1, ζi = 0 in Bri(xi), ζ = 1 in Rn+1 \ B2ri(xi) and |Dζi| ≤ 2r−1

i , in view of (7)
we see that∫
M

|∇ζδ|2|∇u|2 ≤ 2
N∑
i=1

∫
B2ri

|∇ζi|2|∇u|2 ≤ 8
N∑
i=1

r−2
i

∫
B2ri

|∇u|2 ≤ 8C
N∑
i=1

rn−4
i ≤ 8Cδ

whence

(8)

∫
M

|∇ζδ|2|∇u|2 → 0

as δ → 0. We can now adapt the arguments in Theorem 7: let ε > 0 be arbitrary and
choose R > 0 so that (n − 1)R−2

∫
Σ
|∇u|2 < ε. For every δ > 0 choose a compactly

supported function ϕt,δ that is constructed in the manner ϕt is constructed in Theorem
7 so as to ensure

∫
ζδϕt,δ|∇u| = 0 (one can work with the function ϕt defined above

and set a ≥ 1 so that ϕt is 1 on the singular set and ζδ|∇u| = |∇u| on BΣ
a+2R+b(p) \

BΣ
a+2R(p); the t for which the zero-average condition is met will depend however on

δ, hence the dependence of ϕt,δ on δ). As δ → 0, since |ϕt,δ| ≤ 1 and |∇ϕt,δ| ≤ 1
R

are uniformly bounded, and moreover b(ε, a) can be chosen independently of δ, we get
for a sequence δj → 0+ that ϕt,δj → ϕ̃ for a compactly supported Lipschitz function
satisfying

∫
ϕ̃|∇u| = 0 and ϕ̃ identically 1 on BΣ

a (p).
Plugging the (admissible) test function ζδϕt,δ|∇u| in the stability inequality we get,

arguing as in the proof of Theorem 7 by means of Bochner’s formula and Gauss equa-
tions, ∫

M

|∇|∇u||2(ζδϕt,δ)
2

≤ (n− 1)

∫
M

|∇u|2|∇(ζδϕt,δ)|2

= (n− 1)

∫
M

|∇ζδ|2ϕ2
t,δ|∇u|2 + 2ϕt,δζδ|∇u|2∇ζδ · ∇ϕt,δ + ζ2

δ |∇ϕt,δ|2|∇u|2;
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using the Cauchy–Schwarz inequality for the middle term on the right-hand side, setting
δ = δj and letting j → ∞ we obtain (recalling (8)) that the first and second term on
the right-hand side vanish in the limit; moreover, with the choices of ε and R recalled
above, using that ζδj ↑ 1, ϕt,δj → ϕ̃ as δj → 0, and that |∇ϕt,δj | ≤ 1

R
, we get∫

M

|∇|∇u||2ϕ̃2 ≤ ε,

which allows us to conclude, in view of the arbitrariness of ε, that |∇u| = 0 on Σ and
obtain the desired contradiction with the non-constancy of u. �

Appendix B. Results from [BW18]

We recall here the regularity/compactness results from [BW18] that are used in the
proof of Theorem 2. The first one is a combination of [BW18, Theorem 2.1] and [BW18,
Theorem 2.3].

Theorem 9 (regularity/compactness for weakly stable CMC hypersurfaces).
Let n ≥ 2, R, K0, H0 ∈ (0,∞) be fixed. Denote by SH0,K0(Bn+1

R (0)) the class of all
hypersurfaces M in Bn+1

R (0) such that

• M is an immersed, smooth, weakly stable, CMC hypersurface (not necessarily
complete) in Bn+1

R (0), with integer multiplicity (constant on every connected
component of the immersion);

• Hn−7+α
(
M \M

)
= 0 for all α > 0 (i.e. M is allowed to have a singular set of

co-dimension at least 7);

• M has no transverse points; equivalently (by the strong maximum principle), at
every p ∈M where M is not embedded, there exists ρ > 0 such that M∩Bn+1

ρ (p)
is the union of exactly two embedded complete smooth CMC hypersurfaces in
Bn+1
ρ (p) that intersect only tangentially;

• the modulus H of the mean curvature of M is ≤ H0;

• Hn(M) ≤ K0.

Then SH0,K0(Bn+1
R (0)) is a compact family in the varifold topology. Moreover, if

Vn ∈ SH0,K0 and Vn ⇀ V the (constant) mean curvature of V is given by limn→∞Hn,
where Hn is the (constant) mean curvature of Vn.

The next result is a synthesis of [BW18, Theorem 2.1], [BW18, Theorem 3.1], [BW18,
Theorem 3.3] and [BW18, Lemma 8.1].

Theorem 10 (sheeting away from a point for weakly stable CMC hypersur-
faces). Let Vj → V , where Vj ∈ SH0,K0(Bn+1

R (0)) (with the notations from the previous
statement) and V is a sum of parallel hyperplanes, each with a constant integer multi-
plicity. Then, up to a rotation of coordinates

• either, for every k large enough, we have

sptVk restricted to
(
Bn

R
2
(0)× R

)
= ∪qj=1graphuj,
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where uj ∈ C2,α (Bn
R
2

(0);R), uj are separately smooth CMC graphs (possibly

with tangential intersections) with small gradients and u1 ≤ u2 ≤ . . . ≤ uq,

• or there exists a point y ∈ spt ‖V ‖ ∩
(
B
n

R/2(0)× R
)

and a subsequence Vj′ such
that, for any r > 0, the following holds: for j′ large enough (depending on r) Vj′
is strongly stable in (Bn

R(0)× R)\Bn+1
r (y) and moreover Vj′ converges smoothly

(with sheeting and possibly with multiplicity) to V away from y, in the following
sense. With the notation V =

∑
qi|Wi| (where each Wi is one of the parallel

hyperplanes of suppV ),
∑

i qi = q and y ∈ W1, if r < dist(W1,Wi) for i 6= 1,
then for j′ large enough (depending on r), the following decomposition holds:

sptVj′ restricted to
(
Bn

9R
10

(0)× R
)
\Bn+1

r (y) = ∪q1j=1graphuj
⋃
∪qj=q1+1graphuj

where uj ∈ C2,α (Bn
9R
10

(0) \ Bn
r (y);R) for j = 1, ..., q1, uj ∈ C2,α (Bn

9R
10

(0);R) for

j = q1 + 1, ..., q and the uj are separately smooth CMC graphs (possibly with
tangential intersections) with small gradients and u1 ≤ u2 ≤ . . . ≤ uq.
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