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1 Introduction

The last fifteen years have seen a growing interest regarding links between
the theory of vector bundles and the geometry of submanifolds. Striking ex-
amples of intimate correlations were found in many geometrical and physical
problems. Donaldson and Thomas exhibited in [4] relations between some
invariants in complex geometry and spaces of solutions to Yang-Mills equa-
tions. Tian showed in [19] that some particular sequences of Yang-Mills fields
present a loss of compactness along calibrated rectifiable currents. Taubes
(see [18]) proved that Seiberg-Witten invariants in a symplectic 4-manifold
coincide with Gromov invariants. Mirror symmetry (see in particular [17])
described, in the framework of a String Theory model, a phenomenon re-
garding Special Lagrangian cycles (see [9] for an overview).

A common feature in these situations is the important role played by
the so-called calibrations. This notion is strongly related to the theory of
minimal submanifolds. For a history of calibrations the reader may consult
[11]. In the fundational essay [8] the authors exhibited and studied several
rich “Calibrated geometries”.

In [1], together with T. Rivière, we analyzed the regularity of Special
Legendrian integral cycles in S5. That result is generalized in this work to
contact 5-manifolds with certain almost complex structures.
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Setting and main result. LetM =M5 be a five-dimensional manifold
endowed with a contact structure1 defined by a one-form α that satisfies
everywhere

α ∧ (dα)2 6= 0. (1)

Remark that the existence of a contact structure implies the orientability
ofM. We will assumeM oriented by the top-dimensional form α ∧ (dα)2.

Condition (1) means that the horizontal distribution H of 4-dimensional
hyperplanes {Hp}p∈M defined by

Hp := Ker αp (2)

is “as far as possible” from being integrable. The integral submanifolds of
maximal dimension for the contact structure are of dimension two and are
called Legendrians.

Given a contact structure, there is a unique vector field, called the Reeb
vector fieldRα (or vertical vector field), that satisfies α(Rα) = 1 and ιRαdα =
0.

An almost-complex structure on the horizontal distribution is and endo-
morphism J of the horizontal sub-bundle which satisfies J2 = −Id. Given a
horizontal, non-degenerate two-form β, i.e. a two-form such that ιRαβ = 0
and β ∧ β 6= 0, we say that an almost-complex structure J is compatible
with β if the following conditions are satisfied:

β(v, w) = β(Jv, Jw), β(v, Jv) > 0 for any v, w ∈ H. (3)

In this situation, we can define an associated Riemannian metric gJ,β on the
horizontal sub-bundle by setting

gJ,β(v, w) := β(v, Jw).

We can extend an almost-complex structure J defined on the horizontal
distribution, to an endomorphism of the tangent bundle TM by setting

J(Rα) = 0. (4)

Then it holds J2 = −Id+Rα ⊗ α.
With this in mind, extend the metric to a Riemannian metric on the

tangent bundle by

g := gJ,β + α⊗ α. (5)

This extensions will often be implicitly assumed. Remark that Rα is
orthogonal to the hyperplanes H for the metric g:

g(Rα, X) = β(Rα, JX) + α(Rα)α(X) = 0 for X ∈ H = Ker α. (6)
1For a broader exposition on contact geometry, the reader may consult [2] or [10].
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Example: We describe the standard contact structure on R5. Using coor-
dinates (x1, y1, x2, y2, t) the standard contact form is ζ = dt−(y1dx

1+y2dx
2).

The expression for dζ is dx1dy1 + dx2dy2 and the horizontal distribution is
given by

Ker ζ = Span{∂x1 + y1∂t, ∂x2 + y2∂t, ∂y1 , ∂y2}. (7)

The standard almost complex structure I compatible with dζ is the en-
domorphism {

I(∂xi + yi∂t) = ∂yi
I(∂yi) = −(∂xi + yi∂t)

i ∈ {1, 2}. (8)

I and dζ induce, as described above, the metric gζ := dζ(·, I·) +α(·)α(·)
for which the hyperplanes Ker ζ are orthogonal to the t-coordinate lines,
which are the integral curves of the Reeb vector field. The metric gζ projects
down to the standard euclidean metric on R4, so the projection

π : R5 → R4

(x1, y1, x2, y2, t) → (x1, y1, x2, y2)
(9)

is an isometry from (R5, gζ) to (R4, geucl).

The following will be useful in the sequel:

Remark 1.1. Observing (7), we can see that, for any q ∈ R4, all the hyper-
planes Hπ−1(q) are parallel in the standard euclidean space R5. Thus the lift
of a vector in R4 = {t = 0} with base-point q to an horizontal vector based
at any point of the fiber π−1(q) has always the same coordinate expression
along this fiber.

We will be interested in two-dimensional Legendrians which are invariant
for suitable almost complex structures defined on the horizontal distribution.
What we require for an almost-complex structure J on the horizontal sub-
bundle is the following Lagrangian condition

dα(Jv, v) = 0 for any v ∈ H. (10)

This requirement amounts to asking that any J-invariant 2-plane must be
Lagrangian for the symplectic form dα. It is also equivalent to the following
anti-compatibility condition

dα(v, w) = −dα(Jv, Jw) for any v, w ∈ H. (11)

It is immediate that (11) implies (10). On the other hand, using (10):

0 = dα(J(v+w), v+w) = dα(Jv, v)+dα(Jw,w)+dα(Jv,w)+dα(Jw, v) =

= dα(Jv,w) + dα(Jw, v) ,
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so
dα(Jv,w) = dα(v, Jw) for any horizontal vectors v and w.

Writing this with Jv instead of v, and being J an endomorphism of H, we
obtain (11).

By an integral cycle S we mean an integer multiplicity rectifiable cur-
rent without boundary. These are the generalized submanifolds of geometric
measure theory. They have the fundamental property of possessing at almost
every point x an oriented approximate tangent plane TxS. For the topic, we
refer the reader to [6] or [7]. We will deal with integral cycles of dimension
2.

For the sequel, we recall the notion of calibration, confining ourselves
to 2-forms. For a broader exposition, and for the connections to mass-
minimizing currents, the reader is referred to [8], [11] and [9].

Given a 2-form φ on a Riemannian manifold (M, g), the comass of φ is
defined to be

||φ||∗ := sup{〈φx, ξx〉 : x ∈M, ξx is a unit simple 2-vector at x}.

A form φ of comass one is called a calibration if it is closed (dφ = 0); when
it is non-closed it is referred to as a semi-calibration.

Let φ be a calibration or a semi-calibration; among the oriented 2-dimen-
sional planes that constitute the Grassmannians G(x, TxM), we pick those
that, represented as unit simple 2-vectors, realize the equality 〈φx, ξx〉 = 1.
Define the set G(φ) of 2-planes calibrated by φ as

G(φ) = ∪x∈M{ξx ∈ G(x, TxM) : 〈φx, ξx〉 = 1}.

Given a (semi)-calibration φ, an integral cycle S of dimension 2 is said to be
(semi)-calibrated by φ if

for H2-almost every x, TxS ∈ G(φ).

If dφ = 0, a calibrated cycle is automatically homologically mass-minimizing.
However we will be typically concerned with semi-calibrated cycles: these
are generally only almost-minimizers (also called λ-minimizers) of the area
functional: in the last section we will see some cases when they are also
minimal, in the sense of vanishing mean curvature.

The main result in this work is the following

Theorem 1.1. LetM be a five-dimensional manifold endowed with a contact
form α and let J be an almost-complex structure defined on the horizontal
distribution H = Ker α, such that dα(Jv, v) = 0 for any v ∈ H.

4



Let C be an integer multiplicity rectifiable cycle of dimension 2 in M
such that H2-a.e. the approximate tangent plane TxC is J-invariant2.

Then C is, except possibly at isolated points, the current of integration
along a smooth two-dimensional Legendrian curve.

In [1], together with T. Rivière, we proved the corresponding regularity
property for Special Legendrian Integral cycles3 in S5. From Proposition 2
in [1], it follows that theorem 1.1 applies in particular to Special Legendrians
in S5 and therefore generalizes that result (also compare Proposition 2 of
the present paper, where we describe a direct application of this theorem to
semi-calibrations).

In this work we looked for a natural general setting in which an analysis
analogous to the one in [1] could be performed. This lead to the assumptions
taken above, in particular to conditions (10) and (11).

The key ingredient that we need for the proof of theorem 1.1 is the
construction of families of 3-dimensional surfaces4 which locally foliate the
5-dimensional ambient manifold and that have the property of intersecting
positively the Legendrian, J-invariant cycles. In [1], due to the fact that we
were dealing with an explicit semi-calibration in a very symmetric situation,
the 3-dimensional surfaces could be explicitly exhibited (section 2 of [1]).
Here we will achieve this by solving, via fixed point theorem, a perturbation
of Laplace’s equation. After having achieved this, the proof can be completed
by following that in [1] verbatim.

The same idea was present in [15], where, in an almost complex 4-
manifold, the authors produced J-holomorphic foliations by solving a per-
turbed Cauchy-Riemann equation. In the present work, the equation turns
out to be of second order and, in order to prove the existence of a solution,
we need to work in adapted coordinates (see proposition 3 and the discussion
which precedes it).

The existence of foliations that intersect positively a calibrated cycle fails
in general. The lack of such foliations can make the regularity issue consider-
ably harder: in particular the description of the current as a multiple valued
graph fails and the PDE describing the current can become supercritical (see
[16] for details).

Positive foliations are typical of “pseudo-holomorphic behaviours”; they
exist in dimension 4 (see [18] and [15]) and in this work we show that this is
the case also in dimension 5 under the mildest possible assumptions.

2Representing a 2-plane as a simple 2-vector v∧w, the condition of J-invariance means
v ∧w = Jv ∧ Jw. With (4) in mind, we see that a J-invariant 2-plane must be tangent to
the horizontal distribution.

3Special Legendrian cycles are briefly described in section 4, where the reader may also
find other examples where theorem 1.1 applies.

4This existence result is where (10) and (11) play a determinant role.
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We remark that the proof of the regularity result, an overview of which
is presented at the end of section 3, basically follows the structure of [18]
and [15], with the due changes since there is a fifth dimension to deal with,
which introduces new difficulties (compare also the introduction of [1], pages
6-11).

The results needed for the proof of theorem 1.1 are in section 3 and
the reader may go straight to that. In section 2 we show the existence of J-
structures satisfying (10) or (11) and discuss how they are related to 2-forms,
in particular to semi-calibrations. In the last section we discuss examples
and possible applications of theorem 1.1.

Aknowledgments: I am very grateful to Tristan Rivière for having
encouraged me to work on this topic and for always being avaliable for dis-
cussion with helpful comments and suggestions.

2 Almost complex structures and two-forms.

2.1 Self-dual and anti self-dual forms.

On a contact 5-manifold (M, α), take an almost-complex structure I
compatible with the symplectic form dα, and let g be the metric defined by
g(v, w) := dα(v, Iw) + α⊗ α.

The metric g induces a metric on the horizontal sub-bundle H, which
also inherits an orientation fromM.

Any horizontal two-form can be split in its self-dual and anti self-dual
parts as follows.

Let ∗ be the Hodge-star operator acting on the cotangent bundle T ∗M.
Define the operator

? : Λ2(TM)→ Λ2(TM), ?(β) := ∗(α ∧ β), (12)

and remark that ? naturally restricts to an automorphism of the space of
horizontal forms Λ2(H):

? : Λ2(H)→ Λ2(H), ?(β) := ∗(α ∧ β). (13)

This operator satisfies ?2 = id.
This yields the orthogonal eigenspace decomposition

Λ2(H) = Λ2
+(H)⊕ Λ2

−(H), (14)

where Λ2
±(H) is the eigenspace relative to the eigenvalue ±1 of ?. These

eigenspaces are referred to as the space of self-dual and the space of anti
self-dual two-forms5.

5This is basically how self-duality was defined in [19].
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In other words, we can restrict to the horizontal sub-bundle with the
inherited metric and orientation and define the Hodge-star operator on hor-
izontal forms by using the same definition as the general one, but confining
ourselves to the horizontal forms. We get just the ? defined above.

2.2 From a two-form to J.

In a contact 5-manifold (M, α), given a horizontal two-form ω (with
some conditions), is there an almost complex structure compatible with ω
and satisfying dα(Jv, v) = 0 for any v ∈ H ?

In this section, by answering positively the above question, we will also
estabilish the existence of such anti-compatible almost complex structures.

Assume that, on a contact 5-manifold (M, α), a two-form ω is given,
that satisfies

ω ∧ dα = 0 (15)

and
ω ∧ ω 6= 0. (16)

Conditions (15) and (16) automatically give that ω is horizontal6, ιRαω = 0.
Without loss of generality, we may assume that

ω ∧ ω = f(dα)2 for a strictly positive7 function f . (17)

Take an almost-complex structure I compatible with the symplectic form
dα, and let g = gdα,I be the metric defined by g(v, w) := dα(v, Iw) + α⊗ α.

Decompose ω = ω+ + ω−, where ω+ is the self-dual part and ω− is the
anti self-dual part. By definition dα is self-dual for g: so we have

ω− ∧ dα = 〈ω−, dα〉dvolg|H = 0 ,

since Λ2
+ and Λ2

− are orthogonal subspaces. Therefore (15) can be restated
as

ω+ ∧ dα = 0. (18)

Consider now the form8

ω̃+ :=

√
2

‖ω+‖
ω+.

6This can be checked in coordinates pointwise. Alternatively one can adapt the proof
of [3], Proposition 2.

7Indeed, the non-zero condition in (16) implies that (17) holds with f either every-
where positive or everywhere negative. The case f < 0 can be treated after a change of
orientation onM just in the same way.

8The notation ‖ ‖ denotes here the standard norm for differential forms coming from
the metric on the manifold. It should not be confused with the comass, which is denoted
by ‖ ‖∗. They are in general different: for example, in R4 with the euclidean metric
and standard coordinates (x1, x2, x3, x4), the 2-form β = dx1 ∧ dx2 + dx3 ∧ dx4 has norm
‖β‖ =

√
2 and comass ‖β‖∗ = 1.
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It is self-dual and of norm
√

2, so there exists a unique almost complex
structure on the horizontal bundle that is compatible with g and ω̃+. It is
defined by

J := g−1(ω̃+).

We want to show that dα(Jv, v) = 0 for any v ∈ H.
To this aim, it is enough to work pointwise in coordinates. We can choose

an orthonormal basis for H (at the chosen point) of the form {e1 = X, e2 =
IX, e3 = Y, e4 = IY } and denote by

{e1, e2, e3, e4} (19)

the dual basis of orthonormal one-forms. Then dα has the form e12 +e34,
where we use eij as a short notation for ei∧ej . The forms e12 +e34, e13 +e42

and e14+e23 are an orthonormal basis for Λ2
+. The fact that ω+ is orthogonal

to dα implies that

ω+ = a(e13 + e42) + b(e14 + e23). (20)

and ‖ω+‖2 = 2(a2 + b2), therefore ω̃+ = cos θ(e13 + e42) + sin θ(e14 + e23)
for some θ depending on the chosen point, cos θ = a√

a2+b2
, sin θ = b√

a2+b2
.

Then the explicit expression for J is

J(e1) = cos θe3 + sin θe4

J(e2) = − cos θe4 + sin θe3

J(e3) = − cos θe1 − sin θe2

J(e4) = cos θe2 − sin θe1

(21)

and an easy computation shows that dα(v, J(v)) = 0 for any v ∈ H.

Next we prove that this J is compatible with ω, in the sense of (3).
The almost complex structure J is surely compatible with ω+, since this

form is just a scalar multiple of ω̃+, and the metric associated to (ω̃+, J) is
‖ω+‖√

2
g when restricted to the horizontal bundle.

Let us now look at ω−. It is interesting to observe that

ω−(v, w) = ω−(Jv, Jw). (22)

This can be once again checked pointwise in coordinates, as above. An
orthonormal basis for Λ2

+ is given by the forms e12 − e34, e13 − e42 and
e14 − e23, therefore ω− is a linear combination of these forms, each of which
can be checked to satisfy the invariance expressed in (22) with respect to J .

On the other hand, these anti self-dual forms do not give a positive real
number when applied to (v, Jv) for an arbitrary v ∈ H. However, due to
(17) we can show that ω(v, Jv) = ω+(v, Jv) + ω−(v, Jv) > 0 for any v.
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Indeed, write again

ω+ = a(e13 + e42) + b(e14 + e23), (23)

ω− = A(e12 − e34) +B(e13 − e42) + C(e14 − e23). (24)

So we can compute

ω+ ∧ ω+ = (a2 + b2)(dα)2 and ω− ∧ ω− = −(A2 +B2 + C2)(dα)2. (25)

Condition (17), recalling that ω+ ∧ ω− = 0, then reads

f(dα)2 = ω+ ∧ ω+ + ω− ∧ ω− =
(
(a2 + b2)− (A2 +B2 + C2)

)
(dα)2 (26)

with a positive f , so (a2 + b2) > (A2 +B2 + C2). Observe that

ω−(ei, J(ei)) = ±B cos θ ± C sin θ,

with cos θ = a√
a2+b2

, sin θ = b√
a2+b2

. We can bound | ± B cos θ ± C sin θ| ≤
√
B2 + C2, so

ω(ei, J(ei)) = ω+(ei, J(ei)) + ω−(ei, J(ei)) =
√
a2 + b2 + ω−(ei, J(ei))

≥
√
a2 + b2 −

√
A2 +B2 + C2 > 0.

This means that the almost complex structure J is compatible with ω in
the sense of (3) and they induce a metric g̃(v, w) := ω(v, Jw) for which J is
orthogonal and ω is self dual and of norm

√
2. This gives a positive answer

to the question raised in the beginning of this section.

Moreover we get

Proposition 1. Given a contact 5-manifold (M, α), there exist almost com-
plex structures J such that dα(v, Jv) = 0 for all horizontal vectors v.

Indeed, we can get a two-form ω satisfying (15) and (17). This can be
done locally9 and then we can get a global form by using a partition of
unity onM. The previous discussion in this subsection then shows how to
construct the requested almost complex structure from ω, thereby proving
that anti-invariant almost complex structures exist.

Also remark that the almost complex structure J anti-compatible with
dα that we constructed is orthogonal for the metric g associated to dα and

9For example, work on an open ball where we can apply Darboux’s theorem (see [2] or
[10]), which allows us to work with the standard contact structure of R5 described in the
introduction (compare the explanation at the beginning of section 3.1).
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I. Indeed, after having built the two-form ω satisfying (15) and (17), we
defined J from its self-dual part (suitably rescaled) and from the metric g.

By changing the almost complex structure I compatible with dα, we can
get different anti-compatible structures.

We conclude with the following proposition, which gives a condition to
ensure the applicability of theorem 1.1 to a semi-calibration.

Proposition 2. Let (M, α) be a contact 5-manifold, with a metric g de-
fined10 by g = dα(·, I·) for an almost complex structure I compatible with
dα.

Let ω be a two-form of comass 1, ‖ω‖∗ = 1, such that:

ω ∧ dα = 0, ω ∧ ω = (dα)2.

Then ω is self-dual with respect to g. Moreover the almost complex structure
J := g−1(ω) is anti-compatible with dα and the (semi)-calibrated two-planes
are exactly the J-invariant ones.

Therefore theorem 1.1 applies to such an ω, yielding the regularity of
ω-(semi)calibrated cycles. The Special Legendrian semi-calibration treated
in [1] fulfils the requirements of Proposition 2.

proof of proposition 2. Decompose ω = ω+ + ω− as in (23) and (24).
Evaluating ω on the unit simple 2-vector

1√
a2 + b2 +A2

e1 ∧ (ae3 + be4 +Ae2)

we get
√
a2 + b2 +A2. The condition ‖ω‖∗ = 1 implies a2 + b2 +A2 ≤ 1.

On the other hand, expliciting ω ∧ ω = (dα)2 as in (25), we obtain

a2 + b2 −A2 −B2 − C2 = 1.

Hence −B2 − C2 ≥ 2A2, which trivially yields A = B = C = 0, so ω is
a self-dual form.

A self-dual form of comass 1 expressed as in (23) must be of the form

cos θ(e13 + e42) + sin θ(e14 + e23)

and the corresponding almost-complex structure J = g−1(ω) has the expres-
sion (21) and is anti-compatible with dα.

Take two orthonormal vectors v, w. Since ω(v, w) = 〈v,−Jw〉g, we have
that

ω(v, w) = 1⇔ w = Jv,

from which we can see that the semi-calibrated 2-planes are exactly those
that are J-invariant for this J .

10This is equivalent to asking that dα is self-dual and of norm
√

2 for g.
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2.3 From J to a two-form.

In this subsection, we want to answer the following question, in some
sense the natural reverse to the one raised in the previous subsection.

Assume that, on a contact 5-manifold (M, α), an almost-complex struc-
ture J on the horizontal distribution H is given, which satisfies dα(Jv, v) =
0 for any v ∈ H. Is there a two-form that is compatible with J in the sense
of (3)?

Let I be an almost-complex structure compatible with the symplectic
form dα, and let g be the metric onM defined by g(v, w) := dα(v, Iw)+α⊗α.

Define a two-form Ω by

Ω(X,Y ) := dα(JX,
1

2
(JI − IJ)Y ).

We can see that Ω is compatible with J as follows

• Ω(JX, JY ) = 1
2dα(JX, JIJY + IY ) =

= −dα(X, 1
2IJY ) + dα(X, 1

2JIY ) = Ω(X,Y ),

• Ω(X, JX) = 1
2dα(X, JIJX + IX) =

= 1
2dα(JX, IJX) + 1

2dα(X, IX) > 0,

where we used the anti-compatibility property (11). It also follows that
the metric g̃(X,Y ) := Ω(X, JY ) + α ⊗ α is related to g by g̃(X,Y ) =
1
2(g(X,Y ) + g(JX, JY )) when restricted to the horizontal sub-bundle.

In local coordinates, also just pointwise for a basis of the form {e1 =
X, e2 = IX, e3 = Y, e4 = IY } as in (19), it can be checked by a direct
computation that Ω also satisfies Ω ∧ dα = 0.

The two-form Ω is a semi-calibration on the manifoldM endowed with
the metric g̃. Indeed, since J preserves the g̃-norm, for any two vectors v, w
at p which are orthonormal with respect to g̃ it holds

Ω(v, w) = 〈v,−Jw〉g̃ ≤ |v|g̃|Jw|g̃ = |v|g̃|w|g̃ = 1,

and equality is realized if and only if Jv = w. This means that a 2-
plane is Ω-calibrated if and only if it is J-invariant, so theorem 1.1 applies
to Ω-semicalibrated cycles11.

If J is an orthogonal transformation with respect to g, the anti-compatibi-
lity with dα yields, for all horizontal vectors X,Y ,

11We remark here that, being semi-calibrated, such a cycle will satisfy an almost-
monotonicity formula at every point, as explained in [12].
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
g(X,Y ) = g(JX, JY ) =

= dα(JX, IJY ) = dα(X, JIJY )
= dα(IX, (IJ)2Y ) = −g(X, (IJ)2Y )

⇒ g(X, (Id+ (IJ)2)Y ) = 0.

Thus (IJ)2 = −Id when restricted to H, so IJ = −JI.
Hence Ω(X,Y ) := dα(X, JIY ). In this case Ω is a self-dual form of norm√

2 and comass ‖Ω‖∗ = 1 with respect to g 12.

3 Proof of theorem 1.1

3.1 Positive foliations

The regularity property in Theorem 1.1 is local. It is therefore enough
to prove the statement for an arbitrarily small neighbourhood B5(p) ⊂ M
of any chosen p ∈M.

From Darboux’s theorem, we know that there is a diffeomorphism13 Φ
from a ball centered at the origin of the standard contact manifold (R5, dt−
y1dx

1− y2dx
2) to such a neighbourhood B5(p), with Φ∗(α) = dt− (y1dx

1 +
y2dx

2). The structure J on M can be pulled-back to an almost complex
structure on R5 via Φ:

(Φ∗J)(X) := (Φ−1)∗[J(Φ∗X)] for X ∈ R5.

Condition (10) yields

d(Φ∗α)((Φ∗J)X,X) = (Φ∗dα)((Φ−1)∗J(Φ∗X), X) =

= dα(J(Φ∗X),Φ∗X) = 0 for any X horizontal vector in R5. (27)

Therefore the induced almost complex structure Φ∗J is anti-compatible
with the symplectic form d(Φ∗α) = dx1dy1 + dx2dy2.

It is now clear that we can afford to work in a ball centered at 0 of the
standard contact structure (R5, ζ) with an almost complex structure J such
that dζ(v, Jv) = 0.

In view of the construction of "positive foliations", we can start with the
following question: given a point in R5 and a J-invariant plane through it,
can we find an embedded Legendrian disk that is J-invariant and has the
chosen plane as tangent?

The following is of fundamental importance:
12Observe that, in this case, we have that pointwise {Id, I, J, IJ} form a quaternionic

structure.
13In the usual terminology, for example see [10] or [2], it is called a contactomorphism

or contact transformation.
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Remark 3.1. Given a legendrian immersion of a 2-surface in R5, any tangent
plane D to it necessarily satisfies the condition dα(D) = 0 (see [13]). (11)
is therefore a necessary condition for the local existence of J-invariant disks
through a point in any chosen direction.

On the other hand, always from [13], we know that every Lagrangian
in R4 can be uniquely lifted to a Legendrian in R5 after having chosen a
starting point in R5.

In this subsection we will prove, in particular, the sufficiency of condition
(11) for the local existence of a J-invariant Legendrian for which we assign
its tangent at a chosen point.

With a slight abuse of notation, we can view J(0) as an almost complex
structure on R4. With the notation in (9) and remark 1.1 in mind, we
define the almost complex structure J0 on the horizontal distribution of R5

by J0[(π−1)(V )] := (π−1)[J(0)(V )], for any vector V in R4 with arbitrary
base-point.

By definition, J and J0 agree at the origin. Let us analyse, in a first
moment, the case J = J0 everywhere. Due to the fact that J0 is projectable
onto R4 things get simple and we can explicitly find an embedded Legendrian
disk that is J0-invariant and with tangent at 0 the given D. This goes as
follows: the plane D is J(0)-invariant in R4, and by the condition dα(D) = 0
it is lagrangian for the symplectic form dα. Therefore, by the result in [13],
the plane can be lifted to a legendrian surface D̃ in R5 passing through 0.
This surface is then trivially J0-invariant, due to the fact that J0 projects
down to J(0), and the tangent to D̃ at 0 is D since H0 = R4.

What about the case of a general J? We want to use a fixed point
argument in order to find a J-invariant Legendrian close to D̃. To achieve
that, we need to ensure that we are working in a neighbourhood of the origin
in R5 where J − J0 is bounded in a suitable Cm,ν-norm.

Dilate R5 about the origin as follows:

Λr : (x1, y1, x2, y2, t)→
(
x1

r
,
y1

r
,
x2

r
,
y2

r
,
t

r

)
.

This dilation changes the contact structure: indeed, pulling-back the stan-
dard contact form by Λ−1

r , we get

r2

(
1

r
dt− (y1dx

1 + y2dx
2)

)
;

thus the horizontal hyperplanes are

Span{∂x1 + ry1∂t, ∂x2 + ry2∂t, ∂y1 , ∂y2}.
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The dilation has therefore the effect of "flattening" (with respect to the
euclidean geometry) the horizontal distribution14.

We also pull back by Λr the almost complex structure J and for r small
enough we can ensure that ‖Λ∗rJ − J0‖C2,ν = r‖J − J0‖C2,ν(Br) is as small
as we want.

Finding Legendrians in the dilated contact structure that are invariant
for Λ∗rJ is the same as finding J-invariant Legendrians in (R5, ζ) in a smaller
ball around 0: we can go from the first to the second via Λ−1

r . It is then
enough to work in (R5, (Λ−1

r )∗ζ), with the almost complex structure Λ∗rJ .
By abuse of notation, we will drop the pull-backs and forget the factor

r2; our assumptions, to summarize, will be as follows:

α =
(

1
rdt− (y1dx

1 + y2dx
2)
)

dα = dx1dy1 + dx2dy2

‖J − J0‖C2,ν(B1) ≤ ε for an arbitrarily small ε.
(28)

Basic example. What can we say about an almost complex structure
J on (R5, ζ) such that dζ(v, Jv) = 0 (and dζ(v, w) = −dζ(Jv, Jw)) for all
horizontal vectors v and w?

These conditions, applied to the vectors ∂x1 + y1∂t, ∂x2 + y2∂t, ∂y1 , ∂y2 ,
together with J2 = −Id, give, after little computation, that J must have the
following coordinate expression for some smooth functions σ, β, γ, δ of five
coordinates15:

J(∂x1 + y1∂t) = σ(∂x1 + y1∂t) + β(∂x2 + y2∂t) + γ∂y2
J(∂x2 + y2∂t) = −σ(∂x2 + y2∂t) + δ(∂x1 + y1∂t)− γ∂y1

J(∂y1) = σ∂y1 + δ∂y2 + 1+σ2+βδ
γ (∂x2 + y2∂t)

J(∂y2) = −σ∂y2 −
1+σ2+βδ

γ (∂x1 + y1∂t) + β∂y1 .

(29)

Local existence of J-invariant Legendrians. The results that we
are going to prove, in particular the proofs of propositions 3, 5 and 6, follow
the same guidelines as the proofs presented in the appendix of [15], with the
due changes. In particular, equation (37) takes the place of equation (A.2)
in [15]. In the 5-dimensional contact case that we are addressing, therefore,
we will face a second order elliptic problem, in contrast to the 4-dimensional
almost-complex case where the equation was of first order.

With remark 3.1 in mind, we will see that, in order to produce a solution
of our problem, we will need to adapt coordinates to the chosen data, i.e.
the point and the direction. Later on, with (50) and (54), we will understand
the dependence on the data for the solutions obtained.

14The dilation
(
x1
r
, y1
r
, x2
r
, y2
r
, t
r2

)
, on the other hand, would leave the horizontal dis-

tribution unchanged. This non-homogeneous transformation would still allow the proof
of proposition 3, but in view of propositions 5 and 6 it is convenient to work with the
"flattened" distribution.

15We assume here that γ 6= 0. Remark that β and γ cannot both be 0, since J2 = −Id.
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At that stage we will be able to produce the key tool for the proof of
theorem 1.1: foliations made of 3-dimensional surfaces having the property of
intersecting any J-invariant Legendrian in a positive way, see the discussion
following proposition 6.

Proposition 3. Let (R5, α) be the contact structure described in (28), with
J an almost-complex structure defined on the horizontal distribution H =
Ker α such that dα(Jv, v) = 0 for any v ∈ H.

Then, if ε is small enough16, for any J-invariant 2-plane D passing
through 0, there exists locally an embedded Legendrian disk that is J-invariant
and goes through 0 with tangent D.

Recalling the discussion at the beginning of this section, we can see that
we are actually showing the following:

Proposition 4. LetM be a five-dimensional manifold endowed with a con-
tact form α and let J be an almost-complex structure defined on the horizontal
distribution H = Ker α such that dα(Jv, v) = 0 for any v ∈ H.

Then at any point p ∈ M and for any J-invariant 2-plane D in TpM,
there exists an embedded Legendrian disk L that is J-invariant and goes
through p with tangent D.

proof of proposition 3. Step 1. Before going into the core of the proof, in
the first two steps we perform a suitable change of coordinates.

The hyperplane H0 coincides with R4 = {t = 0}. Up to an orthogonal
change of coordinates in H0 = R4 (the t-coordinate stays fixed), we can
assume to have D = ∂x1 ∧ J(∂x1), with dα = dx1dy1 + dx2dy2. This can be
done as follows. If D = v ∧ J(v), for a horizontal unit vector v at 0, choose
an orthogonal coordinate system, still denoted by (x1, y1, x2, y2), defined
by {∂x1 , ∂y1 , ∂x2 , ∂y2} := {v, I(v),W, IW}, where I is the standard complex
structure in (8) and W is a vector orthonormal to v and J(v) for the metric
gζ in (9).

There is freedom on the choice of W ; in step 2 we will determine it
uniquely by imposing a further condition17. Before doing this we are going
to make the notation less heavy.

This linear change of coordinates has not affected the fact that the hyper-
planes Hπ−1(q) are parallel18 in the standard coordinates of R5. This means
that, if we take a vector ∂xi [resp. ∂yi ] in R4, with base-point q ∈ R4, its
lift to a horizontal vector based at any point of the fiber π−1(q) has a coor-
dinate expression of the form ∂xi +Kxi∂t [resp. ∂yi +Kyi∂t], where Kxi =
Kxi(x1(q), x2(q), y1(q), y2(q)) and Kyi = Kyi(x1(q), x2(q), y1(q), y2(q)) are

16It will be clear after the proof that ε must be small compared to 1
‖J0‖N2 , where N is

a constant depending on an elliptic operator defined from J0.
17This will be needed in view of Step 4.
18See remark 1.1.
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linear funtions of the coordinates of q (they come from the last coordinate
change).

We are interested in the expression for J in a neighbourhood of the origin.
J acts on the horizontal vectors ∂xi +Kxi∂t, ∂yi +Kyi∂t. However, since the
functions Kxi , Kyi are independent of t, by abuse of notation we will forget
about the ∂t-components of the horizontal lifts and speak of the action of J
on ∂xi , ∂yi , keeping in mind that the coefficients of the linear map J are not
constant along a fiber, i.e. J cannot be projected onto R4.

With this in mind, recalling (29), the expression for J in the unit ball
B1(0) ⊂ R5 is as follows: there are smooth functions σ, β, γ, δ depending on
the five coordinates of the chosen point, such that19

J(∂x1) = σ∂x1 + β∂x2 + γ∂y2
J(∂x2) = −σ∂x2 + δ∂x1 − γ∂y1

J(∂y1) = σ∂y1 + δ∂y2 + 1+σ2+βδ
γ ∂x2

J(∂y2) = −σ∂y2 −
1+σ2+βδ

γ ∂x1 + β∂y1 .

(30)

Step 2. Denote the values of these coefficients at 0 by δ(0) = δ0, β(0) =
β0, σ(0) = σ0, γ(0) = γ0. We take now coordinates, that we underline to
distinguish them from the old ones, determined by the transformation

∂x1 = ∂x1
∂y1 = ∂y1

∂x2 = γ0√
β2
0+γ20

∂x2 −
β0√
β2
0+γ20

∂y2

∂y2 = β0√
β2
0+γ20

∂x2 + γ0√
β2
0+γ20

∂y2

∂t = ∂t .

(31)

In the new coordinates, the endomorphism J at 0 acts on ∂x1 as

J0(∂x1) = σ0∂x1 +
√
β2

0 + γ2
0∂y2

and the symplectic form dα still has the standard expression.
From now on we will write these new coordinates again as (x1, y1, x2, y2, t),

without underlining them.
To summarize what we did in steps 1 and 2: we will now work in the

unit ball of R5 with the symplectic form dα = dx1dy1 + dx2dy2 on the
horizontal distribution and an almost complex structure J such that ‖J −
J0‖C2,ν < ε for some small ε that we will determine precisely later on, and
such that J is expressed by (30) with smooth functions σ, β, γ, δ depending

19In (30) we are assuming that γ 6= 0. This is not restrictive. We can assume to be
working in an open set where at least one of the functions β and γ is everywhere non-zero.
If this is the case for β and not for γ, a change of coordinates sending ∂x2 → ∂y2 and
∂y2 → −∂x2 would lead us to (30) again.
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on the five coordinates and satisfying β0 = 0, γ0 > 0. The J-invariant plane
D is given by D = ∂x1 ∧ J(∂x1).

The double coordinate change in steps 1 and 2 can be characterized
as the unique change of coordinates such that dα = dx1dy1 + dx2dy2 and
D = ∂x1 ∧ J(∂x1) = γ0(∂x1 ∧ ∂y2) (for a positive γ0).

Step 3. We are looking for an embedded Legendrian disk with tangent
D at the origin, therefore we will seek a Legendrian that is a graph over
D = ∂x1 ∧ ∂y2 . Recall from [13] that the projection of any Legendrian
immersion in R5 is a Lagrangian in R4 with respect to the symplectic form
dα. A Lagrangian graph over D = ∂x1 ∧ ∂y2 must be of the form (see III.2
of [8], in particular lemma 2.2)(

x1,
∂f(x1, y2)

∂x1
,−∂f(x1, y2)

∂y2
, y2

)
for some f : D2

x1,y2 → R. (32)

The minus in the x2-component is due to the fact that I(∂y2) = −∂x2 ,
while I(∂x1) = ∂y1 . Our problem can be now restated as follows: find a
function f : D2 → R such that the lift L with starting point 0 of the
Lagrangian disk

L(x1, y2) :=

(
x1,

∂f

∂x1
,− ∂f

∂y2
, y2

)
is J-invariant20.

The J-invariance condition is a constraint on the tangent planes: it is
expressed by the following equation for the lift L of L:

J

(
∂L
∂x1

)
= (1 + λ)

∂L
∂y2

+ µ
∂L
∂x1

, (33)

with λ and µ unknown, real-valued functions. However, thanks to what
we observed in step 1, the tangent vectors ∂L

∂x1
and ∂L

∂y2
to the lift L at

any point have the first four components which equal ∂L
∂x1

and ∂L
∂y2

at the
projection of the chosen point, independently of where we are lifting along
the fiber; the fifth component of ∂L

∂x1
and ∂L

∂y2
is uniquely determined by the

other four and by the point (x1, y1, x2, y2) in R4. We will therefore consider
equation (33) only for ∂L

∂x1
and ∂L

∂y2
.

We denote the partial derivatives ∂f(x1,y2)
∂x1

, ∂f(x1,y2)
∂y2

, ∂
2f(x1,y2)
∂x21

, ∂
2f(x1,y2)
∂x1∂y2

20By lift of L with starting point 0, we mean that the t-component of L(0, 0) is 0.
At this point we can see how, in the 5-dimensional contact case, the necessity of lifting

naturally leads to a second-order equation. In the 4-dimensional almost-complex case, one
does not need to worry about lifting.
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and ∂2f(x1,y2)
∂y22

respectively by f1, f2, f11, f12 and f22. Then

L(x1, y2) =


x1

f1

−f2

y2

 ,
∂L

∂x1
=


1

f11

−f12

0

 ,
∂L

∂y2
=


0

f12

−f22

1

 . (34)

It should be however born in mind that J does depend on where we are
lifting! After little manipulation, making use of (30), the equation in (33)
reads:


σ − δf12 − µ

σf11 − (1− γ)f12 − λf12 − µf11

∆f + β + 1+σ2+βδ−γ
γ f11 + σf12 + λf22 + µf12

γ − 1 + δf11 − λ

 =


0
0
0
0

 , (35)

with σ, β, γ, δ evaluated at the lift of L = (x1, f1,−f2, y2) in R5 with
starting point 0.

From the first and fourth line of (35) we get

µ = −δf12 + σ, λ = γ − 1 + δf11. (36)

The second line of (35) can be checked to hold automatically true with
these values of µ and λ. Then we need to find f solving the third line of
(35) with the µ and λ given in (36). We stress once again that (35) should
be solved for f with σ, β, γ, δ depending on the lift of (x1, f1,−f2, y2). Let
us write the third line of (35) explicitly. It reads

2∑
i,j=1

Mijfij = δ(f2
12 − f11f22)− β +

2∑
i,j=1

Aijfij , (37)

where M and A are the matrices

M =

(
1+σ2

0
γ0

−σ0

−σ0 γ0

)
, A =

(
1+σ2+βδ

γ − 1+σ2
0

γ0
σ − σ0

σ − σ0 γ0 − γ

)
. (38)

M is a positive definite matrix and satisfies, for any vector (ξ1, ξ2) ∈ R2, the
ellipticity condition

2∑
i,j=1

Mijξiξj ≥ k(ξ2
1 + ξ2

2) for a positive k.

Remark also that, at the origin, β(0) = 0 and A is the zero matrix. The zero
function f = 0, describes the disk D. We want to solve equation (37) by a
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fixed point method in order to find a solution f close to 0. We will write
Mf for the elliptic operator on the left hand side of (37).

Consider the functional F defined as follows: for h ∈ C2,ν let F(h) be
the solution of the following well-posed elliptic problem:{

M [F(h)] = δh(h2
12 − h11h22)− βh +Aijhhij

F(h) |∂D2 = 0 ,
(39)

where by δh, βh and Aijh we mean respectively the functions δ, β and Aij
evaluated at the lift21 of (x1, h1,−h2, y2) in R5 and considered as functions
of (x1, y2). A fixed point of F is a solution of (37). We know from elliptic
regularity that F(h) belongs to the space C2,ν and Schauder estimates give

‖F(h)‖C2,ν ≤ N‖δh(h2
12 − h11h22)− βh +Aijhij‖C0,ν (40)

for an universal constant N (depending on k). To make the notation simpler
in the following, we will assume N > 2.

We are about to show the following claim: for ‖J−J0‖C2,ν small enough,
the functional F is a contraction from the closed ball{

h ∈ C2,ν : ‖h‖C2,ν ≤
1

48 max{1, |δ0|}N

}
(41)

into itself.
First of all, let us compute, for h, g ∈ C2,ν ,

M [F(h)−F(g)] = δh(h2
12 − g2

12 + g11g22 − h11h22)+

(g2
12 − g11g22)(δh − δg) + (βg − βh) +Aijhhij −Aijggij =

= δh[(h12 + g12)(h12 − g12) + g11(g22 − h22) + h22(g11 − h11)]+ (42)

+(g2
12 − g11g22)(δh − δg) + (βg − βh) +Aijh(hij − gij) + (Aijh −Aijg)gij .

Remark that we have bounds of the form{
‖δh‖C1 ≤ ‖δ‖C0 + 2‖∇δ‖C0‖h‖C2 ,

‖δh − δg‖C1 ≤ 2(‖δ‖C2‖h‖C2 + 2‖∇δ‖C0)‖h− g‖C2 ,
(43)

where the norms are taken in the unit ball B5
1(0). Similar bounds hold

true for β and Aij .
For ‖J − J0‖C2,ν small enough, in particular if ‖δ‖C2 ≤ 2|δ0|, Schauder

theory applied to equation (42) with boundary data (F(h)−F(g)) |∂D2 = 0
gives

‖F(h)−F(g)‖C2,ν ≤
21As always, we are lifting the point (0, h1(0, 0),−h2(0, 0), 0) ∈ R4 to the point

(0, h1(0, 0),−h2(0, 0), 0, 0) ∈ R5. This determines the lift of (x1, h1,−h2, y2) uniquely.
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N
(
4|δ0|(‖h‖C2,ν + ‖g‖C2,ν ) + 4‖g‖2C2,ν + 4‖β‖C2 + 6‖A‖C2

)
‖h− g‖C2,ν .

(44)
Let us now estimate, again by (40)

‖F(h)‖C2,ν ≤ 4N |δ0|‖h‖2C2,ν + 2N‖A‖C1‖h‖C2,ν + ‖β‖C1 . (45)

If ‖β‖C2 + ‖A‖C2 ≤ 1
24 max{1,|δ0|}N2 , which surely holds for ‖J − J0‖C2,ν

small enough, by (44) and (45) we get that F is a contraction of the fore-
mentioned ball (41). By Banach-Caccioppoli’s theorem, there exists a unique
fixed point f of F , so we get a solution to equation (37) of small C2,ν-norm.

More precisely, from (45) we get

‖f‖C2,ν ≤ K(ε), (46)

where K(ε) is a constant that goes to zero as ε→ 0.
The lift of (x1, f1,−f2, y2) is an embedded, J-invariant, Legendrian disk

that we denote L0,D. This disk, however, does not necessarily pass through
the origin.

Step 4. In step 3 we constructed a J-invariant disk that is a small C2,ν-
perturbation of D but that might not pass through 0.

We need to generalize the construction performed in step 3. Let us
set up notations: we are working in the unit ball of R5, with coordinates
(x1, y1, x2, y2, t), such that the point p in the statement of Proposition 3 is
the origin 0 and D is the plane ∂x1 ∧ JP (∂x1) at the origin. The almost
complex structure J satisfies ‖J − J0‖C2,ν < ε for some positive ε as small
as we want. An upper bound for ε was described in step 3.

Denote by Zr := {(0, y1, x2, 0, t) : x2
2 + y2

1 ≤ r2, |t| ≤ r}. For any point
P ∈ B1(0) ⊂ R5, the set of J-invariant planes at P can be parametrized by
CP1: we will use the following identification between HP and C2

∂x1 = (0, 1), JP (∂x1) = (0, i), ∂y1 = (1, 0), JP (∂y1) = (i, 0). (47)

Passing to the quotient, we get a pointwise identification ηP between
{Π : Π is a J-invariant 2-plane in HP } and CP1. In this identification, for
any point P the planes ∂x1 ∧ JP (∂x1) are represented by [0, 1] ∈ CP1.

We denote by UPr the set of J-invariant planes at P which are identified
via ηP with Ur := {[W1,W2] ∈ CP1 : |W1| ≤ r|W2|}. This allows us to
regard the set

{(P,X) with P ∈ Zr and X ∈ UPr }

as the product manifold
Zr × Ur.

For any couple (P,X) ∈ Z1 × U1, we can set coordinates adapted to
(P,X) as follows: after a translation sending 0 to P , we can rotate the
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coordinate axis by choosing vX , the orthogonal projection of ∂x1 onto the
closed, 2-dimensional, unit ball in X and setting the new ∂x1 to be vX

|vX | .
With this choice, we can perform the same change of coordinate22 that we
had in steps 1,2 and 3.

Now, using a fixed point argument as in step 3, we can associate to any
couple (P,X) ∈ Z1 × U1 a J-invariant disk that we denote by LP,X .

The estimate given by (46) implies that |TLP,X − X| ≤ K(ε), so in
particular we have TLP,X ∈ U1+K(ε).

Hence LP,X is transversal to the 3-dimensional plane {(0, y1, x2, 0, t)}.
Consider the point Q := LP,X ∩ {(0, y1, x2, 0, t)} and the tangent plane to
LP,X at Q. We get a map

Ψ : Z1 × U1 → Z1+K(ε) × U1+K(ε)

Ψ(P,X) = (Q,TQLP,X).

Condition (46) tells us that

‖Ψ− Id‖C2,ν ≤ K(ε), (48)

where K(ε) → 0 as ε → 0. Therefore Ψ is invertible on an open set Ur,
and Ur is ε-close to U1. So, for ‖J − J0‖C2,ν ≤ ε small enough, by inverting
Ψ we get that for every point Q in Zr and any J-invariant disk Y through
Q lying in Uqr , we can find a couple (P,X) ∈ Z1 × U1 such that LP,X goes
through Q with tangent Y .

In particular we can find an embedded, J-invariant Legendrian disk which
goes through 0 with tangent ∂x1 ∧ J∂x1 .

Remark that, due to the smoothness of J , the same proof performed
using the space Cm,ν for any m ≥ 2 rather than C2,ν gives that the disks
LP,X are in fact C∞-smooth.

We have thus proved Proposition 3.

Remark again that we have actually shown more: in the coordinates
described in (47), for each couple (p,X), p ∈ Z1, X ∈ U1 ⊂ CP1 we can
find 23 an embedded, J-invariant Legendrian disk which goes through p with
tangent X.

This will be useful for the next results.

Dependence on the choice of coordinates. In the previous proof we
constructed, from each couple (p,X), p ∈ Z1, X ∈ U1 ⊂ CP1, a disk Lp,X
whose projection Lp,X in R4 is described, in suitable coordinates for which

22In the sequel we will denote by EP,X the affine map which induces this change of
coordinates.

23The above proof actually yielded the result for an open set Ur with r close to 1, but
of course we can assume that it holds for r = 1.
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X = ∂x1 ∧ ∂y2 , as a graph (x1, f1,−f2, y2). To make notations adapted to
what we want to develop in this section, we will write fp,X instead of f for
the function whose gradient describes the graph.

Given (p,X), in step 4 we chose uniquely the change of coordinates
to perform in order to write the equations that lead to the solution fp,X

of (37). We denote the affine map that induces the change of coordinates
by Ep,X . The function fp,X(x1, y2) solves equation (37) with coefficients
δ, β, σ, γ depending on Ep,X , therefore we will now write it as

Mp,X
ij fp,Xij = δp,X

(
(fp,X)2

12 − (fp,X)11(fp,X)22

)
− βp,X +

2∑
i,j=1

Ap,Xij (fp,X)ij ,

(49)
where Mp,X and Ap,X are as in (38) but we explicited the (p,X)-depen-

dence. All the functions in (49) are functions of (x1, y2), but we want to see
how the solution fp,X(x1, y2) changes with (p,X). In this section we will
denote by ∇X and ∇p the gradients with respect to the variables X ∈ U1

and p ∈ Z1. The x1 and y2 derivatives will still be denoted by pedices
i, j ∈ {1, 2}.

Lemma 3.1. As X ∈ U1 and p ∈ Z1 ⊂ R5, the solutions fp,X of the
corresponding equations (49) satisfy

for s, l ∈ {0, 1, 2}, ‖∇sp∇lXfp,X‖C2,ν ≤ K(ε), (50)

where K(ε) is a constant that goes to 0 as ε → 0 (so we can make K(ε) as
small as we want by dilating enough).

Proof. Differentiating (49) w.r.t. X we get:

Mp,X
ij (∇Xfp,X)ij = (∇Xδp,X)

(
(fp,X)2

12 − (fp,X)11(fp,X)22

)
+

+δp,X
(
2(fp,X)12(∇Xfp,X)12 − (fp,X)11(∇Xfp,X)22 − (fp,X)22(∇Xfp,X)11

)
−

−∇Xβp,X + (∇XAp,X)ij(f
p,X)ij +Ap,Xij (∇Xfp,X)ij − (∇XMp,X)ij(f

p,X)ij .

The quantities ∇Xδp,X , ∇XMp,X , etc, are all bounded in C2,ν-norm
by some constant K (uniform in p and X) which depends on ‖J‖C2,ν and
‖E‖C2,ν .

Recalling that ‖fp,X‖C2,ν ≤ K(ε), by elliptic theory we get that ∇Xfp,X
satisfies

‖∇Xfp,X‖C2,ν ≤ K(ε) + ‖∇Xβp,X‖C0,ν .
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Ep,X was chosen so that the function βp,X(x1, y2) satisfies βp,X(0, 0) = 0
for all (p,X). Therefore

for s, l ∈ {0, 1, 2} ∇sp∇lXβp,X = 0 when evaluated at (x1, y2) = (0, 0).

Then it is not difficult to see that

for s, l ∈ {0, 1, 2}, ‖∇sp∇lXβp,X‖C1 ≤ K(ε) for (x1, y2) ∈ D2.

Therefore
‖∇Xfp,X‖C2,ν ≤ K(ε).

In an analogous fashion we can get estimates of the form

for s, l ∈ {0, 1, 2}, ‖∇sp∇lXfp,X‖C2,ν ≤ K(ε).

Legendrians as graphs on the same disk. For each couple (p,X) ∈
Z1 × U1, we have that the embedded disk LΨ−1(p,X) passes through p with
tangent X.

So far, each fp,X was produced in the system of coordinates induced by
Ep,X , so Lp,X was seen as a graph on X. However, thanks to (46), Lp,X is
also a C2,ν-graph over [0, 1] for any X ∈ U1. We will now look at all X ∈ U1

and at all Lp,X as graphs on [0, 1]. In particular we will concentrate on the
planes X through points (0, t) ∈ R4×R and on LΨ−1((0,t),X), the J-invariant
Legendrian which goes through (0, t) with tangent X.

Any X ∈ U (0,t)
1 , which is a J-invariant 2-plane through (0, t), is described

as the graph over ∂x1 ∧ ∂y2 ∼= [0, 1] of an affine R2-valued function

HX : (x1, y2)→ (hX1 ,−hX2 ).

If t = 0, we can use complex notation, identifying H0 = R4 with C2 as in
(47), so

∂x1 = (0, 1), J0(∂x1) = (0, i), ∂y1 = (1, 0), J0(∂y1) = (i, 0). (51)

Then, if X = [W1,W2], we have that HX can be expressed as

HX : z → ζ =
W1

W2
z.

Otherwise, if t 6= 0, HX is just an affine function since J(0,t) 6= J0 in
general.

What about LΨ−1((0,t),X), the projection of LΨ−1((0,t),X) onto R4? It was
described as the graph of the function “gradient of fΨ−1((0,t),X)“ over the unit
disk in the 2-plane given by the second component of Ψ−1((0, t), X).
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Of course, if we want to write it as a graph on ∂x1 ∧ ∂y2 , we will only
be able to do so on a restricted disk, for example {(x1, y2) : |x2

1 + y2
2| ≤ 1

2}.
To simplify the exposition, however, we will assume that fΨ−1((0,t),X) was
defined on a larger disk DX inside X so that, for any X ∈ U1, LΨ−1((0,t),X)

can be written as a graph on the unit disk {(x1, y2) : |x2
1 + y2

2| ≤ 1} in the
∂x1 ∧ ∂y2-plane.

We will denote by D0 the 2-dimensional unit disk, and we will identify
it with {(x1, y2) : |x2

1 + y2
2| ≤ 1} in the ∂x1 ∧ ∂y2-plane.

It is not difficult to see that, for each choice of t and X, there are a diffeo-
morphism d from D0 to the enlarged disk DX and an affine transformation T
of R2 depending on X, t and Ψ−1((0, t), X) such that, over D0, LΨ−1((0,t),X)

is the graph of a function of the form

Ht,X + F t,X : D0 → R2, with F t,X := T ◦ ∇fΨ−1((0,t),X) ◦ d. (52)

Both d and T, due to the estimate (48), have bounded derivatives

n, s, l ∈ {0, 1, 2}, ‖∇nz∇sp∇lXT‖L∞ + ‖∇nz∇sp∇lXd‖L∞ ≤ K <∞, (53)

uniformly in X ∈ U1, p ∈ Z1 and z ∈ D0.
For X ∈ U1, from the definition (52), using (53), (50) and (48), we get,

for n, s, l ∈ {0, 1, 2},

‖∇nz∇sp∇lXF t,X‖L∞ ≤ K‖∇nz∇sp∇lXfΨ−1((0,t),X)‖L∞ ≤ K(ε), (54)

with K(ε)→ 0 as ε→ 0.

Construction of the 3-dimensional surfaces: polar foliation. Us-
ing coordinates as in (51), so that the hyperplane H0 is identified with C2,
we expressed each LΨ−1((0,t),X) as the graph of the following function

Ht,X + F t,X : D0 → R2 = C,

which is a perturbation of the affine function Ht,X representing the projec-
tion on R4 of the disk X through (0, t).

For the construction that we are about to make, we need to fix a smooth
determination of vectors VX ∈ X for X ∈ U1. There are many ways to do
so, we will do it as follows. In our coordinates ∂x1 ∈ [0, 1]. Then, in the
unit disk centered at 0 inside X, chose the vector vX that minimizes24 the
distance to ∂x1 and take VX = vX

|vX | .
For any t ∈ (−1, 1), and for each X ∈ U1, at the point (0, t) ∈ R5 (here

0 ∈ R4), take the 2-plane given by Xt := VX ∧ J(0,t)(VX). In this notation,

24There is no geometric meaning in this particular choice, we are just suggesting a
smooth determination of vectors, any choice would work the same.
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X = X0. For each X and t, consider the Legendrian LΨ−1((0,t),Xt) going
through the point (0, t) with tangent Xt: we will now denote it by L̃t,Xt . As
t ∈ (−1, 1), the union

ΣX
0 := ∪t∈(−1,1)L̃t,Xt (55)

gives rise to a 3-dimensional smooth surface, as can be seen by writing the
parametrizaton of ΣX

0 on D0 × (−1, 1) and using (54) 25.
Each L̃t,Xt has a projection L̃0,Xt onto R4 which has a representation as

the graph on D0 of the function

HXt
+ FX

t
: D0 → R2 = C.

From L̃0,Xt , the surface L̃t,Xt is uniquely recovered by lifting with starting
point (0, t).

Now with a little more effort we can show:

Proposition 5. For X ∈ U1, the 3-surfaces ΣX
0 foliate the set {(ζ, z, t) :

|ζ| ≤ |z| ≤ 1, |t| ≤ 1
2} ⊂ C× C× R = R5.

Remark 3.2. Following the terminology used in [1], we can restate this propo-
sition by saying that there exist locally polar foliations made of 3-surfaces
built from embedded, Legendrian, J-invariant disks.

Proof. Choose any point q = (ζq, zq, tq) ∈ B5 ⊂ R5 = C × C × R which lies
inside the set {|ζ| ≤ |z| ≤ 1, |t| ≤ 1

2}. We need to show the existence and
uniqueness of X ∈ U1 such that q ∈ ΣX

0 .
For X ∈ U1, denote by Q = Q(q,X) the intersection point

Q = Q(q,X) := ΣX
0 ∩ {(ζ, z, t) : z = zq, t = tq}. (56)

This is well-defined because |TΣX
0 −X| ≤ K(ε) and the 3-plane spanned

by X and ∂t is transversal to the 2-plane {(ζ, z, t) : z = zq, t = tq} and they
have a unique intersection point. By intersection theory, for ε small enough,
Q is well defined for all X ∈ U1.

Consider the map

χq : U1 → CP1

X → [ζQ, zq]
(57)

Due to the structure of ΣX
0 , the intersection Q is actually realized, for a

certain t, as
Q = L̃0,Xt ∩ {(ζ, z, t) : z = zq, t = tq} (58)

25Actually, from (54) we get that ΣX0 is C2-smooth. However, (50) and (54) can be
proved in the same way for higher-order derivatives, so we can get that ΣX0 are as smooth
as we want.
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and we can also write

χq(X) = [(HXt
+ FX

t
)(zq), zq] (59)

for the right t.
We will now prove that χq is a C1-perturbation of the identity map,

which is nothing else but

Id : U1 → U1

X → [HX(zq), zq].
(60)

More precisely, we will prove that, independently of q,

‖∇(χq − Id)‖L∞ ≤ K(ε), (61)

for a constant K(ε) that is an infinitesimal of ε.
We can use the chart X = [W1,W2] = W1

W2
on U1 ⊂ CP1. Then we must

estimate

‖∇(χq − Id)‖L∞ =

∥∥∥∥∥∇X
(

(HXt
+ FX

t
)(zq)

zq
− HX(zq)

zq

)∥∥∥∥∥
L∞

≤
∥∥∥∇z∇X (HXt −HX + FX

t
)∥∥∥

L∞
≤∥∥∥∇z∇X(HXt −HX)

∥∥∥
L∞

+
∥∥∥∇z∇XFXt

∥∥∥
L∞
≤ K(ε),

thanks to (54).
Thus χq is a diffeomorphism from U1 to an open subset of CP1 that tends

to U as ε → 0. This means that we can invert χq and, for any chosen q we
can find Xq := (χq)

−1([ζq, zq]) such that q ∈ Σ
Xq
0 .

Construction of the 3-dimensional surfaces: parallel foliation.
We are always using coordinates as in (51), so that H0 is identified with C2.

Choose a J-invariant plane X ∈ U1 passing through 0. We are going to
produce a family of “parallel” 3-dimensional surfaces which foliate a neigh-
bourhood of 0, where parallel means the following: each 3-surface has tangent
planes which are everywhere ε-close to X ∧ ∂t in C2,ν-norm.

This can be done in several ways, we choose the following. Take the
vector v in the unit ball inside X which minimizes the distance to ∂x1 , and
set V = v

|v| . Parallel transport (in the euclidean sense26) the vector V to each
point P in the 2-plane {z = 0, t = 0} and consider the family of J-invariant
planes

{XP } := {V ∧ JP (V )}P∈{z=0,t=0}.

26Again, this is just a possible way of doing it: there is no direct geometric meaning.
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Now, for each P , consider the line of points that project to P via π :
R5 → R4, and denote them by (P, t). Take the Legendrian, J-invariant 2-
surface going through the point (P, t) with tangent Xt

P = V ∧ J(P,t)(V ): we
will denote it by L̃P,t,X . Define the 3-dimensional surface

ΣX
P := ∪t∈(−1,1)L̃P,t,X . (62)

As in (55), this is a smooth 3-surface.

Proposition 6. For a fixed X ∈ U1, the 3-surfaces

{ΣX
P }P∈{z=0,t=0,|ζ|≤1}

foliate the set {(ζ, z, t) : |ζ| ≤ 1, |z| ≤ 1, |t| ≤ 1
2} ⊂ C× C× R = R5.

Remark 3.3. Again, in the terminology of [1], we are showing that there
exist (locally) families of parallel foliations made of 3-surfaces built from
embedded, Legendrian, J-invariant disks. Each family is determined by a
"direction" X at 0.

Proof. Take any q = (ζq, zq, tq) ∈ B5 ⊂ R5 = C × C × R. Denote by
Q = Q(q,X) the intersection point

Q = Q(q, P ) := ΣX
P ∩ {(ζ, z, t) : z = zq, t = tq}. (63)

This is well-defined because |TΣX
P −X| ≤ K(ε) and the 3-plane spanned

by X and ∂t is transversal to the 2-plane {(ζ, z, t) : z = zq, t = tq} and they
have a unique intersection point. By intersection theory, for ε small enough,
Q is uniquely well-defined for all P ∈ {z = 0, t = 0}.

Consider the map

Γq : D2
1 ⊂ {z = 0, t = 0} → R2 ∼= {(ζ, z, t) : z = zq, t = tq}

P → Q = Q(q, P ) .
(64)

With an argument very similar to the one in proposition 5, we can prove
that Γq is a C1-perturbation of the identity map and therefore the family

{ΣX
P }P∈{z=0,t=0,|ζ|≤1} (65)

foliates {|ζ| ≤ 1, |z| ≤ 1, |t| ≤ 1
2}.

Remark, from the construction of these 3-surfaces Σ, that each of them is
made by attaching J-invariant Legendrian disks along a fiber of the contact
structure. This fact yields the following fundamental
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positive intersection property: each Σ constructed above has the
property of intersecting positively any transversal J-invariant Legendrian.

The proof is just analogous to the corresponding corollary 2.1 of [1]. The
key point is that two transversal J-invariant 2-planes in a hyperplane Hp

intersect themselves positively with respect to the orientation inherited by
Hp. The 3-surfaces Σ are smooth perturbations of a 3-plane of the form
X ∧ ∂t for a J-invariant 2-plane X, so the result follows by continuity.

At this stage we have all the ingredients to show theorem 1.1 by following
the proof in sections 3, 4, 5, 6 and 7 of [1]. For the convenience of the reader,
here follows a brief overview of the forementioned proof with references to
the corresponding sections of [1].

3.2 Structure of the proof

A standard blow-up procedure, combined with the almost-monotonicity
formula for semi-calibrated cycles27, yields that C has a “stratified” structure:
the multiplicity is well-defined and integer-valued at every point and, for
Q ∈ N, the set CQ of points having multiplicity ≤ Q is open in M. This
allows a localization of the problem by restricting to CQ and we can prove
the final result by induction on the multiplicity for increasing integers Q.

A first outcome of the existence of foliations with the positive intersection
property, is a self-contained proof of the uniqueness of tangent cones (section
4 of [1]). This result was proved for general semi-calibrated cycles in [12] and
for area-minimizing ones in [21], using different techniques.

Next, still exploiting the algebraic property of positive intersection, we
can locally describe our current C as a multi-valued graph from a two-
dimensional disk into R3 (section 5 of [1]). The inductive step is divided
into two parts: in the first we show that singularities of order Q cannot
accumulate onto a singularity of the same multiplicity (sections 5 and 6 of
[1]). In the second part, we prove that singularities of multiplicity ≤ Q− 1
cannot accumulate on a singularity of order Q (section 7 of [1]).

In the first part of the inductive step, we translate the J-invariance con-
dition into a system of first-order PDEs for the multi-valued graph (section 5
of [1]). These equations are “perturbations” of the classical Cauchy-Riemann
equations, although in this case we have two real variables and three func-
tions. We prove a W 1,2-estimate on the average of the branches of the

27Recall that in section 2.3 we remarked that J-invariant 2-planes are just the semi-
calibrated ones for a suitable 2-form Ω, therefore an almost-monotonicity formula (see [12])
holds with respect to the metric induced by J and Ω. Precisely, for any point x0, denoting

by Br the geodesic ball of radius r, we have that
M(C Br(x0))

r2
= R(r) + O(r) for a

function R which is monotonically non-increasing as r ↓ 0 and tends to the multiplicity at
x0 as r ↓ 0, and a function O(r) which is infinitesimal.
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multi-valued graph (theorem 5.1 of [1]). Then (section 6 of [1]) we complete
the proof of the first part of the inductive step by suitably adapting the
unique continuation argument used in [18].

For the second part of the inductive step (section 7 of [1]) we use a
homological argument. On a space modelled on C × R, we produce a S2-
valued function u which allows to “count” the lower-multiplicity singularities
by looking at its degree on the level sets of |u| (lemma 7.4 of [1]). A lower
bound for the degree (lemma 7.5 of [1]) then yields the result. This argument
is inspired to the one used in [18], however the fifth coordinate induces a more
involved and rather lengthy argument.

4 Final remarks

Examples. Let us illustrate some examples where the regularity result
of theorem 1.1 applies.

• Let Y be a Calabi-Yau 3-fold and denote by Θ the so-called holomorphic
volume form and by β the symplectic form. Any28 hypersurface M5 ⊂ Y of
contact type inherits a contact structure from the symplectic structure of Y
(see [10]), namely the structure associated to the one-form α = ιNβ, where
N denotes a unit Liouville vector field and ι denotes the interior product.
The form Re(ιNΘ) fulfils the requirements of proposition 2.

A typical situation is the following: let Y = C3, with the standard com-
plex structure I, and Θ = dz1 ∧ dz1 ∧ dz3. Take f to be a smooth and
strictly plurisubharmonic function on C3. Choose M5 to be any level set
{f = k}, for k ∈ R; this is a hypersurface of contact type, with N = ∇f

|∇f |
the normalized gradient field (see [5]). The 2-form

ω = Re(ιNΘ)

(restricted to M) is a horizontal two-form for this contact structure and
satisfies ω∧dα = 0, ω∧ω = (dα)2. Moreover ω is of comass 1 (for the metric
induced onM by C3), it is therefore a semi-calibration. Then we deduce from
proposition 2 that integral cycles semi-calibrated by ω are smooth except
possibly at isolated point singularities.

This yields, for example, a regularity result on some Special Lagrangian
cycles in C3 that are invariant under a non-zero vector field. Recall that a
current is Special Lagrangian if it is calibrated by the (closed) form Re(Θ) =
Re(dz1 ∧ dz1 ∧ dz3). In particular Special Lagrangians are mass-minimizers.

For example, a Special Lagrangian cycle that is invariant under the gra-
dient flow of a smooth and strictly plurisubharmonic function f : C3 →

28A Calabi-Yau 3-fold has real dimension 6. By hypersurface we mean here that the
real codimension is 1.
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(−∞,+∞) has, in every bounded region, a singular set made of at most
finitely many flow lines of ∇f .

• In the previous framework, we can also recover the Special Legendrians
in S5. Consider the canonical embedding E : S5 ↪→ C3 and denote by N the
radial vector field N := r ∂∂r in C3. The sphere inherits from the symplectic

manifold (C3,

3∑
i=1

dzi ∧ dzi) the contact structure given by the form

γ := E∗ιN (

3∑
i=1

dzi ∧ dzi).

The 3-form Ω = Re(dz1∧dz2∧dz3) is known as Special Lagrangian calibration
in C3. The Special Legendrian semi-calibration is defined as the following
2-form on S5 (of comass 1):

ω := E∗ιNΩ = Re(z1dz
2 ∧ dz3 + z2dz

3 ∧ dz1 + z3dz
1 ∧ dz2).

ω-semicalibrated cycles are known as Special Legendrians.
We remark that there is a natural projection Π : S5 → CP2 (Hopf projec-

tion) whose kernel is given by the Reeb vectors of the contact distribution.
The Reeb vector field can be integrated to obtain closed orbits which are
nothing but the Hopf fibers eiθp, for p ∈ S5 and θ ∈ [0, 2π). Every Special
Legendrian curve is projected via Π to a minimal Lagrangian in CP2 (see
[13]).

• The same as in the first example of this section applies, more generally,
in a contact 5-manifold with an SU(2)-structure, as defined in [3]. In the
mentioned work, it is proved that, if the data are analytic and hypo, then this
5-manifold embeds in a Calabi-Yau 3-fold. Our regularity result, however,
only requires the SU(2)-structure on a contact 5-manifold.

• A special case of interest is that of a Sasaki-Einstein 5-manifold (see
[2] and the related notion of hypo-contact SU(2)-structures in [3]). In this
case, denoting by α the contact form, the structure I, compatible with dα,
is integrable on the horizontal subbundle and there exists a holomorphic
2-form Ω that is parallel along the horizontal subbundle: with reference to
proposition 2, we can take ω = Re(eiφΩ), for a fixed φ ∈ [0, 2π], and get the
regularity for ω-semicalibrated cycles.

It is interesting that, in such a contact manifold, a legendrian curve is
minimal (i.e. the mean curvature vanishes) if and only if it is semicalibrated
by ω = Re(eiφΩ), for a fixed φ ∈ [0, 2π].

This is the analog of what happens for Lagrangians in Calabi-Yau man-
ifolds (see [8] III.2.D) and the proof is just the same as in that case.
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• Let us look at the following situation, [14]. Let S3 be the unit sphere
in R4 and consider the following Riemannian 5-manifold

N5 = {(e1, e2) ∈ S3 × S3 : 〈e1, e2〉R4 = 0},

endowed with the metric inherited from R4 × R4.
The tangent space to N5 at a point (e1, e2), is identified with those

U = (U1, U2) ∈ R4 × R4, such that 〈U1, e1〉R4 = 0, 〈U2, e2〉R4 = 0 and
〈U1, e2〉R4 + 〈U2, e1〉R4 = 0.

At every (e1, e2) ∈ N5, consider the tangent vector v = (−e2, e1) ∈
T(e1,e2)N

5 and take the orthogonal hyperplane H(e1,e2) = v⊥ ⊂ T(e1,e2)N
5.

The distribution H defines a contact structure on N5. It can be described by
the one-form α(e1,e2)(U) = 1

2 (〈e1, U2〉R4 − 〈e2, U1〉R4) with associated sym-
plectic form Ω(U, V ) = 〈U1, V2〉R4 − 〈V1, U2〉R4 .

By integrating the Reeb vectors v, we get closed fibers isomorphic to S1

of the form

{(cos θe1 − sin θe2, sin θe1 + cos θe2)}θ∈[0,2π).

The map29

Π : N5 → G2(R4) ∼= CP1 × CP1

(e1, e2) → e1 ∧ e2

is an orthogonal projection whose kernel is given by the Reeb vectors.
Define the following 2-form on N5

ω(U, V ) := e1 ∧ e2 ∧ (U1 ∧ V2 − V1 ∧ U2),

for U, V tangent vectors to N5 at (e1, e2).

It can be checked that ω is a horizontal form of comass 1 and our regularity
result applies to ω-semicalibrated cycles.

• In [20], the authors introduce the notions of Contact Calabi-Yau mani-
folds and Special Legendrians in Contact Calabi-Yau manifolds. With regard
to the notation in [20], the two-form Re ε is a calibration (it is assumed to be
closed) and Proposition 2 yields the regularity of calibrated cycles in dimen-
sion 5. We still get the regularity result if we drop the closedness assumption
on ε.

What else? We conclude with a short motivational digression regarding
theorem 1.1, in connection to general calibrations.

For a general calibrating 2-form ϕ in a 5-dimensional manifold M , let
us look, at every point, at the set Gϕ of calibrated 2-planes: as explained
in [8] (Thm. II 7.16) or [9] (Thm. 4.3.2), there exist suitable orthogonal

29Here G2(R4) denotes the Grassmannian of 2-planes in R4. We have the identification
G2(R4) ∼= CP1 × CP1 by splitting into the self-dual and anti self-dual components.
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coordinates at the chosen point such that Gϕ is the same as the set of 2-
planes calibrated by one of the following canonical forms

dx1 ∧ dx2 + dx3 ∧ dx4 or dx1 ∧ dx2.

At the points where the first case is realized, we can define an almost complex
structure J such that calibrated 2-planes are identified with the J-invariant
ones. If moreover the manifold M is contact, then, as we already discussed,
a calibrated manifold (or also an integer multiplicity rectifiable current) can
have as tangents only those J-invariant planes which are Lagrangian for
the symplectic form on the horizontal distribution. Therefore, if we require
the calibration to admit, for every point p and calibrated 2-plane Π at p, a
calibrated submanifold passing through p with tangent Π, the corresponding
J must fulfil conditions (10) and (11).

In many instances, a calibration is considered interesting if it admits a lot
of calibrated submanifolds30. Indeed, the richer the family of calibrated sub-
manifolds is, more examples of area-minimizing surfaces and their possible
singularities can we get. On a contact 5-manifold, therefore, our assumption
on J includes, in some sense, the most generic cases of calibrations.

This 5-dimensional situation can be considered as the analogue of the
one addressed in [15] and [18] in dimension 4, or in [16] for general even
dimension, where the corresponding regularity for J-holomorphic cycles is
proven.
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