
SEMICLASSICAL ANALYSIS

JEFFREY GALKOWSKI

1. Introduction

These notes are being prepared for a course in Fall 2021 in the London Taught Course Center.
The goal of the course is to introduce the basic structure of semiclassical analysis and to give
several applications. Although we will spend some time covering the method of stationary phase,
we will avoid spending a great deal of time on the technical details for the calculus, instead taking a
more axiomatic approach and giving applications of the theory to solutions of partial differential
equations. We refer the reader to ‘Semiclassical Analysis’ by M. Zworski and Appendix E in
‘Mathematical Theory of Scattering Resonances’ by S. Dyatlov and M. Zworski for the details of
the calculus. We have also used some ideas from the notes by S. Dyatlov written for a course on
semiclassical analysis during the Summer Northwestern Analysis Program in 2019.

1.1. Some basic notation. Throughout these notes we use the following notation.

(1) Dx := −i∂x
(2) 〈ξ〉 := (1 + |ξ|2)

1
2 .

(3) Let B be a Banach space and f : (0, 1)→ (0,∞). We say that u = Oε(f(h))B if there are
h0 > 0 and C > 0 depending on the parameters ε such that

‖u‖B ≤ Cf(h), 0 < h < h0.

(4) Let B be a Banach space and f : (0, 1)→ (0,∞). We say that u = o(f(h))B if

lim sup
h→0+

‖u‖B
f(h) = 0.

(5) We say that u = Oε(h∞)B if there is h0 > 0 depending on the parameters ε and for all
N > 0 there is CN > 0 depending on N and ε such that

‖u‖B ≤ CNhN , 0 < h < h0.

(6) M(m× n) - the set of m× n matrices
(7) S(d× d) - the set of d× d symmetric matrices.

2. Stationary phase and the method of steepest descent

In both harmonic analysis and the study of partial differential equations, methods for un-
derstanding asymptotics for various integrals are indispensable. In this section, we study the
asymptotics of the integrals

(2.1) Rh(φ, a) :=
∫
e−φ(x)/ha(x)dx, Ih(φ, a) :=

∫
eiφ(x)/ha(x)dx,

1
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where 0 < h < 1 is an asymptotic parameter tending to 0, a ∈ C∞c (Rd), and φ ∈ C∞(Rd;R).
These integrals are ubiquitous in the analysis of partial differential equations, but can also be
found in simple asymptotic formulae such as Stirling’s formula for n! (see Exercise 2.4). Because
they are heuristically simpler, we will start by studying Rh.

We will study asymptotics as h→ 0 in the following sense. We write

Bh ∼
∑

bjh
j

if for all N ≥ 0, there is CN such that for 0 < h < 1,∣∣∣Bh −
N−1∑
j=0

bjh
j
∣∣∣ ≤ CNhN .

If there are bj and M ∈ R such that Bhh
−M ∼

∑
j bjh

j , we say that Bh has a full asymptotic
expansion in powers of h. Note that the sum on the right-hand side need not converge and, in
fact, for any sequence {bj}∞j=0, one can find Bh such that Bh ∼

∑
j bjh

j . This result is known as
Borel’s lemma.

2.1. The method of steepest descent. We start by studying the asymptotics for Rh as in (2.1).
We will assume throughout that there is x0 ∈ supp a such that φ(x0) > φ(x) for all x 6= x0 with
x ∈ supp a and ∂2φ(x0) is non-degenerate. Under these assumptions, it is natural to think that,
as h → 0, the main contribution to Rh(φ) comes from a neighborhood of x0. Indeed, one can
easily check that for any ε > 0, there is Cε > 0 such that

(2.2)
∣∣∣ ∫

Rd\B(x0,ε)
e−φ(x)/ha(x)dx

∣∣∣ ≤ Cεe−1/(Cεh), 0 < h < 1.

Because of this, we will be able to assume that a is supported in an arbitrarily small neighborhood
of x0 when studying Rh(φ, a). Since we may assume a is supported in an arbitrarily small
neighborhood of x0, it is natural to guess that Rh(φ, a) can be (at least heuristically) understood
by replacing φ by its Taylor polynomial,

φ(x) ≈ φ(x0) + 〈φ′(x0), x− x0〉+ 1
2〈∂

2φ(x0)(x− x0), (x− x0)〉+O(|x− x0|3).

We first notice that φ′(x0) is 0 since φ is maximal at x0 and hence

φ(x) ≈ φ(x0) + 1
2〈∂

2φ(x0)(x− x0), (x− x0)〉+O(|x− x0|3).

Now, since ∂2φ is non-degenerate and φ has a maximum at x0, we have ∂2φ(x0) > 0 and hence

(2.3) φ(x) ≥ φ(x0) + c|x− x0|2

Since are interested in asymptotics modulo powers of h, it is natural then to examine where
e−φ/h ≥ ε > 0. Based on (2.3), one can check that this is only true when |x−x0| ≤ Ch

1
2 , a region

with volume Ch
d
2 . Thus, it is natural to expect

(1) The main term in Rh(φ, a) is ∼ e−φ(x0)/hh
d
2 .

(2) The full asymptotic formula for main term involves only the behavior of a and φ in an h
1
2

neighborhood of x0, and hence can be written in terms of the derivatives of these functions
at x0.
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2.2. Quadratic phase asymptotics. Although there are many proofs of the asymptotic formula
for Rh(φ, a), we choose one which adapts easily to the case of Ih(φ, a). The Fourier transform
will be a useful tool for this proof and we write

û(ξ) :=
∫
e−i〈x,ξ〉u(x)dx

for the Fourier transform of u. Recall also Parseval’s formula

(2.4)
∫
u(x)v(x)dx = 1

(2π)d û(ξ)v̂(ξ),

the Fourier inversion formula

(2.5) u(x) = 1
(2π)d

∫
ei〈x,ξ〉û(ξ)dξ.

and the relationship between derivatives and the Fourier transform

(2.6) Dα
xu
∧

(ξ) = ξαû(ξ), Dx := −i∂x,

where, for α ∈ Nd, we use the notation ξα :=
∏d
i=1 ξ

αi
i .

We begin by studying the Fourier transform of a Gaussian.

Lemma 2.1. Let Q ∈ M(d × d) be a positive definite, symmetric matrix with real coefficients.
Then,

e−
1
2 〈Qx,x〉
∧

(ξ) = (2π)d/2

(detQ)1/2 e
− 1

2 〈Q
−1ξ,ξ〉.

Proof. We compute

e−
1
2 〈Qx,x〉
∧

(ξ) =
∫
e−i〈x,ξ〉−

1
2 〈Qx,x〉dx

=
∫
e−

1
2 〈Q(x−Q−1iξ),x−Q−1iξ〉− 1

2 〈Q
−1ξ,ξ〉dx.

We now deform the contour in x to the contour Γ(y) = y − Q−1iξ. Since Q is positive definite,
the contributions from ∞ in x vanish and we have

e−
1
2 〈Qx,x〉
∧

(ξ) = e−
1
2 〈Q

−1ξ,ξ〉
∫
e−

1
2 〈Qy,y〉dy.

Now, since Q is symmetric, we can make an orthogonal change of variables in y so that
1
2〈Qy, y〉 = 1

2
∑
i

λiy
2
i ,

and hence ∫
e−

1
2 〈Qy,y〉dy. =

d∏
i=1

∫
e−

1
2λiy

2
i dyi =

d∏
i=1

(2π)1/2

λ
1
2
i

= (2π)d/2

(detQ)1/2 .

�

Now that we have computed the Fourier transform of a quadratic exponential, we can compute
the asymptotics of Rh(1

2〈Qx, x〉, a).
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Lemma 2.2. Let Q ∈ M(d × d) be a positive definite, symmetric matrix with real coefficients.
Then, for a ∈ C∞c (Rd),

Rh(1
2〈Qx, x〉, a) ∼ (2πh)

d
2

(detQ)
1
2

∑
j

(−1)jhj

2jj! 〈Q
−1Dx, Dx〉ja(x)

∣∣
x=0

Proof. We start by applying Parseval’s formula (2.4) and using Lemma 2.1 with Q replaced by
h−1Q,

Rh(1
2〈Qx, x〉, a) = h

d
2

(2π)d/2
∫
e−

h
2 〈Q

−1ξ,ξ〉â(ξ)dξ.

Now, by Taylor’s formula∣∣∣e−h2 〈Q−1ξ,ξ〉 −
N−1∑
j=0

(−1)jhj〈Q−1ξ, ξ〉
2jj!

∣∣∣ ≤ CNhN |ξ|N .
Therefore,∣∣∣Rh(1

2〈Qx, x〉, a)− h
d
2

(2π)
d
2

N−1∑
j=0

∫ (−1)jhj〈Q−1ξ, ξ〉
2jj! â(ξ)dξ

∣∣∣ ≤ CNhN ∫ |ξ|N |â(ξ)|dξ.

Next, notice that by the Fourier inversion formula (2.5)∫
(〈Q−1ξ, ξ〉)j â(ξ)dξ = (2π)d(〈Q−1Dx, Dx〉)ja(x)

∣∣
x=0,

and thus it remains to estimate∫
|ξ|N |â(ξ)|dξ ≤

∫
〈ξ〉−d−1〈ξ〉N+d+1|â(ξ)|dξ ≤ Cd‖〈ξ〉N+d+1â(ξ)‖L∞ ≤ Cd

∑
|α|≤N+d+1

‖∂αx a‖L1 .

(We leave the proof of the last estimate to the exercises, see Exercise 2.3.) �

2.3. The method of steepest descent. We now return to the general case of Rh(φ, a). We
will actually be able to reduce this to the case of a quadratic phase using the following well known
lemma.

Lemma 2.3 (Morse Lemma). Suppose that φ ∈ C∞(Rd;R) such that φ(0) = ∂xφ(0) = 0 and
det ∂2φ(0) 6= 0. Then there are neighborhoods, U , V of 0 and f : U → V a diffeomorphism such
that

φ ◦ f(x) = 1
2〈∂

2φ(0)x, x〉,

and f(0) = 0, ∂xf(0) = I.

Proof. Since φ(0) = ∂φ(0) = 0, Taylors formula shows that

φ(x) =
∫ 1

0
(1− t)2∂2

t ϕ(tx)dt = 1
2〈Qx, x〉,

with Q ∈ C∞(Rd; S(d× d)) and
Q(0) = ∂2φ(0).
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Now, we want to find a map B ∈ C∞(Rd;GL(d,R)) such that

(2.7) 〈Q(x)x, x〉 = 〈Q(0)B(x)x,B(x)x〉.

Note that to obtain (2.7), it is sufficient to find B(x) such that

(2.8) Bt(x)Q(0)B(x) = Q(x).

We define the map F : M(d× d)→ S(d× d) by

F (B) := BtQ(0)B.

It is then necessary to find a right inverse, R for F near Q(0) such that R(Q(0)) = Id and then
to put f(x) := R(Q(x))x.

We now use the inverse function theorem to find a right inverse for F near Q(0). Observe that

F (I) = Q(0),

and hence it is enough to show that ∂F (I) : M(d×d)→ S(d×d) has a right inverse R̃ : S(d×d)→
M(d× d).

For this, we compute
(∂F (I))E = EtQ(0) +Q(0)E

Now, putting E = 1
2Q(0)−1D for some D ∈ S(d× d), we have

(∂F (I))E = 1
2DQ(0)−1Q(0) +Q(0)1

2Q(0)−1D = D.

Therefore, the map, R̃ : D 7→ 1
2Q(0)−1D is a right inverse for ∂F (I), and hence, by the inverse

function theorem, F has a right inverse near F (I) = Q(0) as claimed.
�

We can now find an asymptotic formula for Rh(φ, a).

Theorem 2.1 (The method of steepest descent). Let a ∈ C∞c (Rd) and φ ∈ C∞(Rd;R) such that
there is x0 ∈ supp a satisfying φ(x) < φ(x0) for all x ∈ supp a with x 6= x0 and det ∂2φ(x0) 6= 0.
Then for j = 0, 1, . . . there are differential operators Lj of order less than or equal to 2j such that

Rh(φ, a) ∼ e−φ(x0)/h (2πh)
d
2

(det ∂2φ(0))1/2

∑
j

hjL2j(a)
∣∣
x=x0

,

and L0(a) = a.

Proof. Let φ̃(x) = φ(x + x0) − φ(x0). Then φ̃(0) = ∂φ̃(0) = 0. Therefore, by the Morse Lemma
(Lemma 2.3), there are neigbhorhoods U, V of 0 and a diffeomorphims f : U → V such that

φ̃ ◦ f = 1
2〈∂

2φ(x0)x, x, 〉.

Now, let χ ∈ C∞c (Rd) with χ ≡ 1 near 0 and suppχ ⊂ V . Then,

Rh(φ, a) =
∫
e−φ(x)/ha(x)dx = e−φ(x0)/h

∫
eφ̃(x)a(x+ x0)dx.
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By (2.2), there is C > 0 such that for 0 < h < 1∣∣∣ ∫ eφ̃(x)(1− χ(x))a(x+ x0)dx
∣∣∣ ≤ Ce−1/(Ch).

Therefore, changing variables, y = f−1(x),

Rh(φ, a) = e−φ(x0)/h
∫
e−

1
2 〈∂

2φ(x0)y,y〉χ(f(y))a(f(y) + x0)| det ∂f(y)|dy +O(e−φ(x0)/h−1/(Ch))

Since ∂2φ(x0) > 0, we may apply Lemma 2.2 to see that

Rh(φ, a) ∼ e−φ(x0)/h (2πh)d/2

(det ∂2φ(x0))1/2

∑
j

hj

2jj!〈[∂
2φ(x0)]−1Dy, Dy〉j(a(f(y) + x0)| det ∂f(y)|)

∣∣
y=0.

Now, the theorem follows from the fact that f(0) = 0 and ∂yf(0) = I. �

2.4. Stationary phase asymptotics. We now turn our attention to Ih(φ, a). It turns out that
the proof of an asymptotic formula for Ih(φ, a) is almost the same as that for Rh(φ, a). However,
the the reason that critical points of φ play such an important role is somewhat less obvious. One
of the messages of this section is that rapid oscillation can produce decay of an integral, so one
should think that only the regions where the integrand is not rapidly oscillating contribute. Many
readers may have seen this, for instance, in the fact that sin(nx) ⇀

L2([0,2π])
0 as n → ∞. Another

place where this appears is in the Riemann Lebesgue lemma.
We now give a more quantitative version of this idea.

Lemma 2.4 (non-stationary phase). Suppose that a ∈ C∞c (Rd) and φ ∈ C∞(Rd;R) such that
|∂φ(x)| > 0 for all x ∈ supp a. Then,

Ih(φ, a) = O(h∞).

Proof. Observe that since |∂φ(x)| > 0 on supp a, there is c > 0 such that |∂φ(x)| > c on supp a.
Let L := 〈∂xφ,hDx〉

|∂xφ(x)|2 . Then,

L(e
i
h
φ) = e

i
h
φ.

Therefore, integration by parts shows that

Ih(φ, a) =
∫
e
i
h
φ(x)(Lt)Na(x)dx, Lt = −〈∂xφ, hDx〉

|∂xφ(x)|2 − h
∆φ
|∂xφ|2

+ h

∑
ij ∂

2
xixjφ∂xjφ

|∂xφ|4
.

In particular, h−1Lt : CM → CM−1 is uniformly bounded in h has h → 0 and the lemma
follows. �

One may now wonder, ‘From what region do the main contributions to Ih(φ, a) come from?’.
To understand this, we again imagine that x0 is a non-degenerate critical point for φ so that

φ(x) = φ(x0) + 1
2〈∂

2φ(x0)(x− x0), x− x0〉+O(|x− x0|3).

It is now much less clear than when in the case of the method of steepest descent, but we will see
that, once again, the region for |x− x0| ≤ Ch

1
2 plays a crucial role.



SEMICLASSICAL ANALYSIS 7

For simplicity we will assume from now on that φ has a single non-degenerate critical point
on supp a. The case of finitely many such critical points can be reduced to this situation by a
partition of unity. We proceed as in the proof of method of steepest descent. That is, we first
study the case of quadratic phases.

Lemma 2.5. Let Q ∈ S(d× d) be a real, non-singular matrix. Then,

e
i
2 〈Qx,x〉
∧

(ξ) = e
iπ
4 sgn(Q)(2π)d/2

|detQ|1/2
e−

i
2 〈Q

−1ξ,ξ〉.

Proof. Observe that

e
i
2 〈Qx,x〉
∧

(ξ) = lim
ε→0+

∫
e−i〈x,ξ〉+

i
2 〈Qx,x〉−ε|x−Q

−1ξ|2dx

= lim
ε→0+

e−
i
2 〈Q

−1ξ,ξ〉
∫
e
i
2 〈Q(x−Q−1ξ),x−Q−1ξ〉−ε|x−Q−1ξ|2dx

= e−
i
2 〈Q

−1ξ,ξ〉 lim
ε→0+

∫
e
i
2 〈Qy,y〉−ε|y|

2
dy

So, it is enough to compute

lim
ε→0+

∫
e
i
2 〈Qy,y〉−ε|y|

2
dy =

d∏
j=1

lim
ε→0+

∫
e( i2λj−ε)y

2
j dyj ,

where {λj}dj=1 are the eigenvalues of Q.
We first consider the case λj > 0. In this case

Re( i2λj − ε)y
2
j < 0 for 0 ≤ Arg(yj) ≤

π

4 ,

and hence we may deform the contour to Γ+(s) = eiπ/4s to obtain

lim
ε→0+

∫
e( i2λj−ε)yj2dyj = eiπ/4 lim

ε→0+

∫
e(− 1

2λi−iε)s
2
ds = eiπ/4

∫
e−

1
2λis

2
ds = eiπ/4(2π)1/2

λ
1/2
j

.

Next, when λj < 0, we deform the contour to Γ−(s) = e−iπ/4s to obtain

lim
ε→0+

∫
e( i2λj−ε)yj2dyj = e−iπ/4 lim

ε→0+

∫
e(− 1

2 |λi|+iε)s
2
ds = e−iπ/4

∫
e−

1
2 |λi|s

2
ds = e−iπ/4(2π)1/2

|λj |1/2
.

The claim now follows from the definition of sgn(Q). �

We are now in a position to prove the main result of stationary phase.

Theorem 2.2. Let a ∈ C∞c (Rd) and φ ∈ C∞(Rd;R) such that there is x0 ∈ supp a such that
∂φ(x0) = 0, det ∂2φ(x0) 6= 0, and |∂φ(x)| > 0 on supp a \ x0. Then, Then for j = 0, 1, . . . there
are differential operators Lj of order less than or equal to 2j such that

Ih(φ, a) ∼ eiφ(x0)/he
iπ
4 sgn(∂2φ(x0)) (2πh)

d
2

|det ∂2φ(0)|1/2
∑
j

hjL2j(a)
∣∣
x=x0

,

and L0(a) = a.
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The theorem follows from our next lemma and Lemma 2.4 as in the proof of Theorem 2.1.

Lemma 2.6. Let Q ∈ S(d× d) be a non-singular, symmetric matrix with real coefficients. Then,
for a ∈ C∞c (Rd),

Ih(1
2〈Qx, x〉, a) ∼ e

iπ
4 sgn(Q)(2πh)

d
2

| detQ|
1
2

∑
j

hj

ij2jj!〈Q
−1Dx, Dx〉ja(x)

∣∣
x=0

Proof. The proof follows as in Lemma 2.2. �

2.5. Exercises.

Exercise 2.1. Show that for any smooth function f : R→R, f(h) ∼
∑
j
f (j)(0)
j! hj .

Exercise 2.2. Suppose that φ ∈ C∞(Rd;R, a ∈ C∞c (Rd), and there is x0 ∈ supp a such that
φ(x) < φ(x0) for all x 6= x0 with x ∈ supp a. Show that Rh(φ, a) satisfies (2.2)

Exercise 2.3. Let M ≥ 0. Show that there is C > 0 such that if ∂αx a ∈ L1 for |α| ≤M , then there
is

‖〈ξ〉M â(ξ)‖L∞ ≤ C
∑
|α|≤M

‖∂αx a‖L1 .

Exercise 2.4 (Stirling’s formula). Recall that the gamma function Γ : (0,∞)→ R is given by

Γ(s) =
∫ ∞

0
ts−1e−tdt,

and satisfies Γ(n) = (n − 1)!. Use the method of steepest descent to show that n!en
nn has a full

asymptotic expansion in powers of n and find the first two terms of Stirling’s formula.

Exercise 2.5. Prove Theorem 2.2 and Lemma 2.6

Exercise 2.6. Let δSd−1 denote the arc length measure on the unit sphere in Rd. Show that there
are aj,± ∈ C, j = 0, 1, . . . such that

δSd
∧

(ξ) ∼ ei|ξ||ξ|−
d−1

2
∑
j

aj,+|ξ|−j + e−i|ξ||ξ|−
d−1

2
∑
j

aj,−|ξ|−j .

Exercise 2.7. Let χ ∈ C∞c (R) and define χε(ξ) = ε−1χ(ε−1ξ). Show that for all u ∈ L∞(R),
‖χε ∗ û‖L∞ ≤ Cε−

1
2 . Fix δ > 0. Find u ∈ L∞ such that ‖χε ∗ û‖L∞ ≥ cε−

1
2 +δ. (Hint: Take the

Fourier transform and consider functions oscillating very rapidly near 0.

3. Definitions and an axiomatic approach to the basic pseudodifferential
calculus

In this section we introduce the basic notions of psuedodifferential operators that we will use
throughout these notes. We do not intend to give the details of various technical proofs and
instead treat many of the technical lemmas as axioms.
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3.1. Motivation for pseudodifferential operators. Before moving on, it is worth asking the
questions, ‘Why do we need something other than differential operators and the Fourier trans-
form?’ There are, as usual, many possible answers to this question which range from: ‘They are
a natural mathematical extension of differential operators.’ to ‘The layer potential operators turn
out to be pseudodifferential.’ That is, from a purely abstract answer for the sake of mathematical
to completeness, to the fact that some specific operators which people care about turn out to be
pseudodifferential operators.

We will take an approach somewhere in the middle for our first motivation.

3.1.1. Motivation 1: inversion. Consider for the moment, the Laplace equation posed on L2(Rd)
(−∆ + 1)u = f.

How can we understand solutions to this equation? One option is to apply the Fourier transform
to both side

(−∆ + 1)u
∧

(ξ) = f̂(ξ).
Now, by (2.6), this is

(|ξ|2 + 1)û(ξ) = f̂(ξ) û(ξ) = f̂(ξ)
|ξ|2 + 1 .

Therefore, we can go on our merry way, knowing that

u(x) = 1
(2π)d

∫
ei〈x−y,ξ〉

f(y)
|ξ|2 + 1dydξ,

and that the inverse of −∆ + 1 is a Fourier multiplier.
Now, it is natural to consider a slightly more general problem. Let A(x) ∈ C∞(Rd; S(d× d;R))

such that 〈A(x)v, v〉 ≥ c|v|2 for some c > 0 and all x ∈ Rd. Then, the following equation
(−∇A(x)∇+ 1)u = f

is a natural extension to non-trivial metrics of the Laplace equation. We may even assume that
A(x) = Id outside of a compact set. However, as soon as we try to solve this problem using the
Fourier transform, we realize there is a problem. Namely, we cannot write the Fourier transform
of (−∇A(x)∇ + 1)u as a multiple of that of u. This is simply not true since the operator is
no longer translation invariant. Therefore, if we want to invert this equation, we are forced
into new territory. It will turn out that the new operators one develops for this purpose are
pseudodifferential operators.

Thus, if one wants a class of operators which include elliptic differential operators and is
closed under inversion, then one immediately arrives at something resembling pseudodifferential
operators.

3.1.2. Motivation 2: propagation. Consider the Schrödinger equation in 1-dimension
ih∂tu− h2∂2

xu = 0, u(0) = u0 ∈ L2(R).
Suppose that we put

u0(x) = h−
1
4 e−|x|

2/(2h)e2ix/h + h−
1
4 e−|x|

2/(2h)e−ix/h.
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It will be convenient now to introduce the semiclassical Fourier transform
F(u)(ξ) = û(ξ/h).

Then, it is easy to see that
F(u)(t, ξ) = eit|ξ|

2/hF(u0)(ξ).
In particular, with our choice of u0, we have by Lemma 2.5

F(u0) = (2π)1/2h1/4[e−
(ξ−2)2

2h + e−
(ξ+1)2

2h ],
and hence, completing the square and deforming the contour appropriately,

u(t, x) = 1√
2πh

h
1
4

∫
(ei(xξ+t|ξ|2)/h−|ξ−2|2/(2h) + ei(xξ+t|ξ|

2)/h−|ξ+1|2/(2h))dξ

= h−1/4
√

1 + 2it
(e
−(x+4t)2

2(1+4t2)h
+i t(4−x2)+2x

(1+4t2)h + e
−(x−2t)2

2(1+4t2)h
+i t(1−x2)−x

(1+4t2)h ).

Notice that u(t, x) consists of a wave packet traveling to the left at speed 4 and one traveling to
the right at speed 2.

It is reasonable to ask, ‘Why does a single bump at 0 split into two packets traveling at different
speeds?’. The reader will of course notice the different phases chosen, one given by −x/h and the
other by 2x/h which you could guess are responsible for this behavior. However, there are two
problems with this analysis:

(1) We have no explanation for why different phases result in splitting.
(2) If we change the operator even slightly, e.g. replacing ∂2

x by ∂2
x + V , for some smooth

function V we lose the ability to do this analysis using explicit formulae.

How can we understand this phenomenon in a more robust way? Semiclassical analysis will turn
out to be key to this.

3.2. Basic definitions: Symbol classes, Sobolev spaces, and pseudodifferential oper-
ators. In order to define pseudodifferential operators, we first need to define symbol classes.
Typically, we allow functions and operators to implicitly depend on the small parameter h. We
say that a ∈ C∞(T ∗Rd) is a symbol of order m ∈ R if for all α, β ∈ Nd, there is Cαβ > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−|β|.

In this case, we write a ∈ Sm(T ∗Rd). Throughout these notes we actually work with a somewhat
for restrictive class of symbols. We say that a ∈ Smphg(T ∗Rd) if a ∈ Sm and there are aj ∈ Sm−j
independent of h such that

(3.1) a−
N−1∑
j=0

hjaj ∈ hNSm−N (T ∗Rd).

When a ∈ Sm satisfies (3.1), we say that a ∼
∑
j h

jaj .
We will often write simply a ∈ Smphg when the space is clear from context. We also define

S∞phg =
⋃
m S

m
phg , S−∞phg =

⋂
m S

m
phg , and we define Scomp

phg to be the set of a ∈ S−∞phg which are
supported in some h-independent compact set.
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It will also be be convenient to have a notion of semiclassical Sobolev spaces. The elements of
these spaces are the same as for the standard Sobolev spaces, but the norm is scaled in a way
depending on h. In particular,

Hs
h(Rd) := {u ∈ S ′(Rd) : 〈ξ〉sF(u) ∈ L2}, ‖u‖2Hs

h
:= (2πh)−d‖〈ξ〉sF(u)‖2L2 .

For A : S → S, we say that A = O(h∞)Ψ−∞ if for all N , there is CN > 0 such that

‖A‖H−N
h
→HN

h
≤ CNhN .

We can now introduce the class of pseudodifferential operators on Rd. For m ∈ R, we say that
A is a pseudodifferential operator of order m and write A ∈ Ψm(Rd) if there is a ∈ Smphg such that

A = Oph(a) +O(h∞)Ψ−∞ , [Oph(a)u](x) := 1
(2πh)d

∫
e
i
h
〈x−y,ξ〉a(x, ξ)u(y)dydξ.

Here, the integral in Oph(a)u, can be understood as an iterated integral when u ∈ S and it is not
hard to check (see exercise 3.1) that operators in Ψm are bounded on S and S ′. As with symbols,
we sometimes omit the space Rd from the notation and define Ψ∞ =

⋃
m Ψm, Ψ−∞ =

⋂
m Ψm,

and we define Ψcomp to be those A ∈ Ψ−∞ such that
A = Oph(a) +O(h∞)Ψ−∞

for some a ∈ Scomp
phg .

3.3. Basic properties of pseudodifferential operators. Before proceeding to recall the most
important properties of pseudodifferential operators, we define the symbol map σm : Ψm → Sm

using the following procedure. Let A ∈ Ψm. Then, there is a ∈ Smphg such that A = Oph(a) +
O(h∞)Ψ−∞ . In particular,

a ∼
∑
j

ajh
j

with aj ∈ Sm−j independent of h. We then define σm(A) = a0. We will often abuse notation
slightly and write instead σ(A) = a0.

We now collect the most important properties of the pseudodifferential calculus in the following
theorem.

Theorem 3.1. (1) Suppose that A ∈ Ψm and σm(A) = 0. Then A ∈ hΨm−1.
(2) Suppose that A ∈ Ψm. Then, A∗ ∈ Ψm and σm(A∗) = σm(A).
(3) Let A ∈ Ψm1 and B ∈ Ψm2. Then AB ∈ Ψm1+m2 and

σ(AB) = σ(A)σ(B).
Moreover, if A = Oph(a) and B = Oph(b), then AB = Oph(e), with e satisfying

(4) Let A ∈ Ψm1 and B ∈ Ψm2. Then [A,B] ∈ Ψm1+m2−1 and

σ([A,B]) = −ih{σ(A), σ(B)}, {a, b} =
d∑
j=1

∂ξja∂xjb− ∂ξjb∂xja.

We will occasionally need the following slightly more precise estimate on the composition
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Theorem 3.2. For all α, β ∈ Nd, there are Cαβ and Mαβ such that for all a ∈ Sm1
phg and b ∈ Sm2

phg ,

Oph(a) Oph(b) = Oph(e),
for some e ∈ Sm1+m2

phg satisfying

sup |〈ξ〉−m1−m2+|β|∂αx ∂
β
ξ e(x, ξ)| ≤ Cαβ

∑
|γ1|+|ν1|≤Mαβ

sup |〈ξ〉−m1+|γ1|∂ν1
x ∂

γ1
ξ a(x, ξ)|

∑
|γ2|+|ν2|≤Mαβ

sup |〈ξ〉−m2+|γ2|∂ν2
x ∂

γ2
ξ b(x, ξ)|.

3.4. The compactified cotangent bundle and wavefront set. Before proceeding to proper-
ties of pseudodifferential operators such as ellipticity, we introduce the wavefront set of a pseu-
dodifferential operator. Before doing so, it will be convenient to introduce the fiber radially
compactified and radially compactifiied cotangent bundle, T ∗Rd. This is a manfold with interior
given by T ∗Rd and

∂T
∗Rd ∼= S∗Rd t T ∗RdSd−1 t S∗RdSd−1 .

We call S∗Rd, fiber infinity, and T ∗Rd
Sd−1 , physical infinity.

We now describe a neighborhood basis for each point (x0, ξ0) ∈ T
∗Rd can be described as

follows. If (x0, ξ0) ∈ T ∗Rd, then, the neighborhoods of (x0, ξ0) are the usual neighborhoods in
T ∗Rd. On the other hand, if (x0, ξ0) ∈ S∗Rd ⊂ ∂T

∗Rd, then a neighborhood basis is given as
follows,

Uε :=
{

(x, ξ) ∈ T ∗M : |x− x0| < ε,
∣∣ ξ
|ξ| − ξ0

∣∣ < ε, |ξ| ≥ ε−1
}
,

if (x0, ξ0) ∈ T ∗
Sd−1Rd ⊂ ∂T

∗Rd, then a neighborhood basis is given as follows,

Uε :=
{

(x, ξ) ∈ T ∗M : | x
|x|
− x0| < ε,

∣∣ξ − ξ0
∣∣ < ε, |x| ≥ ε−1

}
,

and if (x0, ξ0) ∈ S∗
Sd−1Rd ⊂ ∂T

∗Rd, then a neighborhood basis is given as follows,

Uε :=
{

(x, ξ) ∈ T ∗M : | x
|x|
− x0| < ε,

∣∣ ξ
|ξ|
− ξ0

∣∣ < ε, |ξ| > ε−1, |x| ≥ ε−1
}
.

We can now define the essential support of a symbol and the wavefront set of a pseudodifferential
operator.

Definition 3.1. Let a ∈ Sm. For (x0, ξ0) ∈ T ∗Rd, we say that (x0, ξ0) /∈ ess supp(a) if there is a
neighborhood, U of (x0, ξ0) such that for all α, β ∈ Nd, and N ∈ R, there is CαβN > 0 such that
for 0 < h < 1,

|∂αx ∂
β
ξ a(x, ξ)| ≤ CαβNhN 〈ξ〉−N , (x, ξ) ∈ U ∩ T ∗Rd.

Definition 3.2. Let A ∈ Ψm. For (x0, ξ0) ∈ T
∗Rd, we say that (x0, ξ0) /∈ WF(A) if there is

a ∈ Sm such that (x0, ξ0) /∈ ess supp(a) and
A = Oph(a) +O(h∞)Ψ−∞ .

Remark 1. It is easy to see from the definition that for any A ∈ Ψm, WF(A) ⊂ T ∗Rd is closed.
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The crucial feature of the wavefront set is contained in the following lemma.

Lemma 3.1. Suppose that A ∈ Ψm1, B ∈ Ψm2. Then,
WF(AB) ⊂WF(A) ∩WF(B).

As with Theorem 3.1, we do not give the details for the proof of Lemma 3.1. We will instead
treat it as one of the axioms of our operators.

3.5. Boundedness. With Theorem 3.1, it becomes fairly easy to obtain boundedness on L2 for
pseudodfiferential operators of order 0.

Lemma 3.2. Let m < −d and A ∈ Ψm. Then, A : L2(Rd)→ L2(Rd) is uniformly bounded in h.

Proof. It is enough to check that for a ∈ Sm, Oph(a) : L2 → L2 is bounded. Note that Oph(a)
has kernel

K(x, y) = 1
(2πh)d

∫
e
i
h
〈x−y,ξ〉a(x, ξ)dξ.

Put Lt =
1−〈Dξ,

x−y
|x−y| 〉

1+h−1|x−y| so that for any N > 0,

K(x, y) = 1
(2πh)d

∫
e
i
h
〈x−y,ξ〉(Lt)Na(x, ξ)dξ.

Now, it is easy to check that for a ∈ Sm,
|(Lt)Na(x, y, ξ)| ≤ CN 〈h−1|x− y|〉−N 〈ξ〉m ≤ 〈ξ〉m〈h−1|x− y|〉−N

In particular, taking N > d, since m < −d,∫
|K(x, y)|dy ≤ Ch−d

∫
〈h−1|x−y|〉−Ndy ≤ C,

∫
|K(x, y)|dx ≤ Ch−d

∫
〈h−1|x−y|〉−Ndx ≤ C,

we may apply the Schur test for L2 boundedness (see Lemma A.1) to see that Oph(a) is bounded
on L2. �

Lemma 3.3. Suppose that A ∈ Ψ0. Then, A : L2(Rd) → L2(Rd) is uniformly bounded in h.
Moreover, for all δ > 0 there is C > 0 such that

(3.2) ‖A‖L2→L2 ≤ (1 + δ) sup |σ(A)|+ Ch
1
2 .

Proof. We first claim that for all m < 0, any A ∈ Ψm is bounded on L2 uniformly as h → 0.
Indeed, by Lemma 3.2, if m < −d, then A is uniformly bounded on L2.

Now, let m1 < 0 and suppose the claim hold for m ≤ m1. Let m ≤ m1/2 and A ∈ Ψm. Then,
by Theorem 3.1, A∗ ∈ Ψm and A∗A ∈ Ψ2m. In particular, since m ≤ m1/2, 2m ≤ m1, A∗A is
bounded on L2 uniformly as h→ 0 which implies that A : L2 → L2 is also bounded uniformly as
h→ 0. By induction, we then have the claim.

We now need to show that if A ∈ Ψ0, then A : L2 → L2 is uniformly bounded. Let M =
(1 + δ) supT ∗Rd |σ0(A)|, and put

b(x, ξ) = (M − |σ0(A)|2(x, ξ))
1
2 .

One can check that since M2 − |σ0(A)|2 ≥ c > 0, b ∈ S0
phg . (See, exercise 3.4.)
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Now, since
σ0(Oph(b)∗Oph(b)− (M2 −A∗A))) = 0,

by the first part of Theorem 3.1, we have
Oph(b)∗Oph(b) = M2 −A∗A+ hE

for some E ∈ Ψ−1. Therefore, since Oph(b)∗Oph(b) ≥ 0,
‖Au‖2L2 ≤M2‖u‖2L2 + h〈Eu, u〉.

But, since E ∈ Ψ−1, E : L2 → L2 is uniformly bounded in h, and hence
‖Au‖2L2 ≤ (M2 + Ch)‖u‖2L2 ,

which completes the proof of the lemma after recalling that
√
a+ b ≤

√
a+
√
b �

3.6. Ellipticity and inverses. We now define the notion of ellipticity for pseudodifferential
operators.

Definition 3.3. Let A ∈ Ψm. For (x0, ξ0) ∈ T ∗Rd, we say that A is elliptic at (x0, ξ0), and write
(x0, ξ0) ∈ ell(A), if there is a neighborhood, U ⊂ T ∗Rd of (x0, ξ0) and c > 0 such that

|σ(A)(x, ξ)| ≥ c〈ξ〉m, (x, ξ) ∈ U ∩ T ∗Rd.

Remark 2. It is easy to see from the definition that for any A ∈ Ψm, ell(A) ⊂ T ∗Rd is open.

Ellipticity gives an appropriate conditions which guarantee that A is invertible on a subset of
T
∗Rd in the following sense.

Lemma 3.4 (Elliptic parametrix). Suppose that A ∈ Ψm1 and B ∈ Ψm2 with WF(B) ⊂ ell(A).
Then there are EL, ER ∈ Ψm2−m1 such that

B = ELA+O(h∞)Ψ−∞ , B = AER +O(h∞)Ψ−∞ .

As with many constructions in semiclassical analysis, this lemma is proved by an iterative
construction. The nonlinear part of the construction is done by solving a top order equation,
and then each successive iteration involves only the solution of a linear equation. In the case of
the elliptic parametrix construction, this is particularly simple since the equations involved are
algebraic.

Proof. Let e = σ(B)/σ(A). Then, since WF(B) ⊂ ell(A), |σ(A)| > c > 0 on suppσ(B), and
hence, by Exercise 3.4, e ∈ Sm2−m1

phg . Putting EL,0 := Oph(e), we have

σm2(EL,0A−B) = 0,
and therefore,

EL,0A = B + hR1,

with R1 ∈ Ψm1−1.
Suppose we have found ei, i = 0, 1, . . . , N − 1, ei ∈ Sm2−m1−i

phg such that supp e ⊂WF(B), and,
with EL,N−1 :=

∑N−1
j=0 hj Oph(ej), we have

(3.3) EL,N−1A = B + hNRN ,
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for some RN ∈ Ψm2−N . Now, since supp ei ⊂WF(B), WF(EL,N−1) ⊂WF(B) and hence,

WF(RN ) = WF(h−N (B − EL,N−1A)) ⊂WF(B).
Therefore WF(RN ) ⊂ ell(A) and hence eN := −σ(RN )/σ(A) ∈ Sm2−N−m1

phg and

(EL,N−1 + hN Oph(eN ))A−B = hN (RN + Oph(eN )A) ∈ hNΨm2−N ,

and
σ(RN + Oph(eN )A) = 0.

Therefore,
(EL,N−1 + hN Oph(eN ))A−B = hN+1RN+1,

for some RN+1 ∈ Ψm2−N−1. In particular, putting EL,N =
∑N
j=0 h

j Oph(ej), we have (3.3) with
N − 1 replaced by N . In particular, there are ej ∈ Ψm2−m2−j for j = 0, 1, . . . such that (3.3)
holds for any N . Setting EL ∼

∑
j h

j Oph(ej), completes the proof of the first equality.
The proof of the second equality is nearly identical and we leave the details to the reader. �

We now record a few corollaries. of Lemmas 3.3 and 3.4.

Corollary 3.1. Let m ∈ R and A ∈ Ψm. Then, for all s ∈ R, A : Hs
h → Hs−m

h is uniformly
bounded as h→ 0.

Proof. Recall that
‖u‖2Hs

h
= (2πh)−d‖〈ξ〉sFu‖2L2 = ‖Oph(〈ξ〉s)u‖2L2 .

We start by showing that for any m, any A ∈ Ψm is uniformly bounded L2 → H−mh and from
Hm
h → L2. For this, we observe that

‖Au‖H−m
h

= ‖Oph(〈ξ〉−m)Au‖L2 .

Therefore, since 〈ξ〉−m ∈ S−mphg , Oph(〈ξ〉−m)A ∈ Ψ0 and hence, there is C > 0 such that

‖Au‖H−m
h
≤ C‖u‖L2 .

In particular A : L2 → H−mh is uniformly bounded. Now, since A∗ ∈ Ψm, A∗ : L2 → H−mh is
uniformly bounded, and hence A : Hm

h → L2 is uniformly bounded as claimed.
Now, let s ∈ R. Then, by Lemma 3.4, there is E ∈ Ψ−s such that

Es Oph(〈ξ〉s) = I +R,

with R = O(h∞)Ψ−∞ . Therefore,
‖Au‖Hs−m

h
= ‖Oph(〈ξ〉s−m)AEs Oph(〈ξ〉s)u‖L2 + ‖Oph(〈ξ〉s−m)ARu‖L2

Now, since Es ∈ Ψ−s, Oph(〈ξ〉s−m)AEs ∈ Ψ0, and hence
‖Oph(〈ξ〉s−m)AEs Oph(〈ξ〉s)u‖L2 ≤ C‖Oph(〈ξ〉s)u‖L2 = C‖u‖Hs

h
.

Next, observe that Oph(〈ξ〉s−m)A ∈ Ψs, and hence, is uniformly bounded Hs
h → L2. Therefore,

for any N ≤ s
‖Oph(〈ξ〉s−m)ARu‖L2 ≤ ‖Ru‖Hs

h
≤ CNhN‖u‖H−N

h
≤ CNhN‖u‖Hs

h
.
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All together, we have that there is C > 0 such that
‖Au‖Hs−m

h
≤ C‖u‖Hs

h
,

and hence the corollary is proved. �

Corollary 3.2. Suppose that A ∈ Ψm and ell(A) = T
∗Rd. Then, there is h0 > 0 such that for

0 < h < h0, A : Hs
h → Hs−m

h is invertible and A−1 ∈ Ψ−m.

Proof. Since ell(A) = T
∗Rd, by Lemma 3.4, there is EL ∈ Ψ−m such that

ẼLA = I +R,

with R = O(h∞)Ψ−∞ .
Let s ∈ R. Then, since ‖R‖L2→L2 ≤ Ch, there is h0 such that for 0 < h < h0, ‖R‖L2→L2 ≤ 1

2 .

In particular, I +R : L2 → L2 is invertible for 0 < h < h0. Now,
(I +R)−1 = I −R+ (I +R)−1R2.

Therefore, since R = O(h∞)Ψ−∞ , and (I +R)−1R = R(I +R)−1, (I +R)−1 = I +O(h∞)Ψ−∞ . In
particular, (I +R)−1 ∈ Ψ0 and (I +R) is invertible on Hs

h for every s.
Put EL = (I +R)−1ẼL. Then, E ∈ Ψ−m, and

ELA = I.

A similar argument shows that there is ER ∈ Ψ−m such that AER = I and hence that A is
invertible and ER = EL = A−1.

�

3.7. G̊arding inequalities. We now record the easy G̊arding inequality.

Lemma 3.5 (Easy G̊arding inequality). Let γ ∈ R and suppose that A ∈ Ψm and Reσ(A)(x, ξ) ≥
γ〈ξ〉m for all (x, ξ). Then, for all ε > 0, there is h0 > 0 such that for 0 < h < h0,

Re〈Au, u〉 ≥ (γ − ε)‖u‖
H
m/2
h

Proof. Let s ∈ R and observe that

(3.4) 2 Re〈Au, u〉 = 〈C Oph(〈ξ〉m/2)u,Oph(〈ξ〉m/2)u〉,
where

C = E∗m(A+A∗)Em,
and Em = Oph(〈ξ〉m/2)−1 ∈ Ψ−m/2. In particular, C ∈ Ψ0 self adjoint and σ(C) ≥ 2γ. In
particular, by Corollary 3.2, for every s < 2γ, there is h0 such that C − s is invertible for
0 < h < h0. Moreover, one can check that this h0 can be taken uniform in s < 2γ − ε (see
Exercise 3.6). Therefore, for any ε > 0, there is h0 > 0 such that for 0 < h < h0, the spectrum
of C is contained in [2γ − ε,∞) and hence,

〈Cv, v〉L2 ≥ 2(γ − ε)‖v‖2L2 ,

and using (3.4), the proof is complete. �
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3.8. Pseudodifferential operators on manifolds. Everything we have written above has a
generalization to a compact manifoldM , with T ∗Rd replaced by T ∗M , and T ∗Rd replaced by T ∗M .
The crucial fact used to define these operators is that the class of pseudodifferential operators is
invariant under coordinate changes. We will not spend time on the technical difficulties inherent
in defining pseudodifferential operators on manifolds, and instead use the previous sections as
though they were written for pseudodifferential operators on manifolds.

3.9. Exercises.
Exercise 3.1. Show that for all m ∈ R and A ∈ Ψm, we have A : S(Rd) → S(Rd), and A :
S ′(Rd)→ S ′(Rd). (Hint: For the second part, use duality.)
Exercise 3.2. Suppose that a, b ∈ C∞c (T ∗Rd). Show that Oph(a) Oph(b) = Oph(c), and

c ∼
∞∑
j=0

hjij

j! 〈Dx, Dη〉ja(x, ξ)b(y, η)
∣∣y=x
η=ξ

.

Exercise 3.3. This exercise proves what is known as Borel’s Theorem: Suppose that aj ∈ Sm−j
for j = 0, 1, . . . . Then there exists a symbol a ∈ Sm such that

a ∼
∞∑
j=0

hjaj .

(1) Let χ ∈ C∞c (R) with χ ≡ 1 on [−1, 1]. Show that if {λj}∞j=0 ⊂ R with λj →∞, the sum

a(x, ξ) :=
∞∑
j=0

hjχ(λjh〈ξ〉−1)aj

converges.
(2) Show that there is λj increasing with λj → ∞ such that for any multiindeces α, β ∈ Nd

with |α|+ |β| ≤ j, we have

hj |∂αx ∂
β
ξ χ(λj〈ξ〉−1h)aj | ≤ 2−jhj−1〈ξ〉m−j−|β|+1.

(3) With the choice of λj from part (2), show that for any α, β ∈ Nd with |α|+ |β| ≤ N ,∣∣∣∂αx ∂βξ (a− N∑
j=0

aj
)∣∣∣ ≤ CαβNhN 〈ξ〉m−|β|−N ,

and conclude that
a ∼

∑
j

hjaj .

Exercise 3.4. Show that if b ∈ S0
phg is real valued, and b ≥ c > 0, then

√
b ∈ S0

phg . Show that if
b ∈ Sm1

phg and a ∈ Sm2
phg with |a| > c〈ξ〉m2 on supp b, then, b/a ∈ Sm1−m2

phg .

Exercise 3.5. Show that if P ∈ Ψm and u ∈ L2 is tempered and satisfies
Pu = 0.

Then, for any E ∈ Ψ0 with WF(E) ⊂ ell(P ),
‖Eu‖Hs

h
= O(h∞).
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Exercise 3.6. Suppose that A ∈ Ψ0 and σ(A) ≥ c > 0. Follow the construction in Lemma 3.4,
using Theorem 3.2, to see that for any γ < c, there is Eγ ∈ Ψ0 such that

EγA = I +O(h∞)Ψ−∞ ,

and that for any ε > 0 {Eγ}γ≤c−ε is uniformly bounded in Ψ0.

4. Damped wave equation

In this section, we study decay for the damped wave equation

(4.1) (∂2
t −∆g + a(x)∂t)u = 0, u|t=0 = u0 ∈ H1, ∂tu|t=0 = u1 ∈ L2(M),

where ∆g is the (negative definite) Laplace operator on a compact, Riemannian manifold (M, g),
and a ∈ C∞(M ; [0,∞)). We define the energy of a solution, u to (4.1) by

(4.2) E(t) := 1
2

∫
M
|∂tu|2 + |∇gu|2gdx.

We then have the following elementary energy estimate.

Lemma 4.1. The map t 7→ E(t) is non-increasing. In particular,

(4.3) E′(t) = −Re
∫
M
a|∂tu|2dx

Proof. Observe that

E′(t) = Re
∫
M

(∂tu∂2
t u+ 〈∇g∂tu,∇gu〉gdx

= Re
∫
M

(∂tu(∂2
t u−∆gu)dx

= Re
∫
M
−a|∂tu|2dx ≤ 0.

�

Because of (4.3), it is natural to try to understand when solutions the the damped wave equation
can be observed by a. In particular, when∫ T

0

∫
a|∂tu|2dx > cE(0).

If this were the case, it is not hard to check that there is exponential decay of the energy.
We will use semiclassical tools to find conditions on a which guarantee exponential decay of

u. In order to do this, we first introduce a tool that has found many applications in microlocal
analysis.
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4.1. Defect measures. The concept of a defect measure gives a precise notion of where a se-
quence of functions {uh}0<h<h0 lives in the limit h → 0. More precisely, we consider a family
sequence of functions {uhn}∞n=1 with hn → 0 such that

(4.4) sup
n
‖uhn‖L2 ≤ C <∞.

Let µ be a radon measure on T ∗M . We say that the sequence {uhn} satisfying (4.4) has defect
measure µ if

lim
n→∞

〈Auhn , uhn〉L2 =
∫
σ(A)dµ

for all A ∈ Ψcomp.

Theorem 4.1 (Existence of defect measures). Suppose that {uhn}∞n=1 satisfies (4.4), then there
is a subsequence {hnk}∞k=1 and a radon measure µ such that {uhnk}

∞
k=1 has defect measure µ.

Proof. Let {am}∞m=1 ⊂ C∞c (T ∗M) be dense in C0
c (T ∗M). Then, observe that by (3.2),

sup
n
|〈Oph(am)uhn , uhn〉| ≤ Cm

In particular, there is a subsequence, nk,1 such that

lim
k→∞
〈Oph(am)uhnk,1 , uhnk,1)〉 =: L(a1).

Then, for each m ≥ 2, we find a nk,m a subsequence of nk,m−1 such that

lim
k→∞
〈Oph(am)uhnk,m , uhnk,m)〉 =: L(am).

Taking nk := nk,k, we then have that

lim
k→∞
〈Oph(am)uhnk , uhnk)〉 = L(am)

for all m. Moreover, by (3.2), the map

L : span{am}∞m=1 → C

is a bounded functional on subspace of C0
c (T ∗M). In particular, by the Hahn-Banach theorem,

since {am}∞m=1 it has an extension to a bounded linear functional on C0
c (T ∗M) and, in particular,

is given by

L(a) =
∫
adµ

for some finite radon measure µ.
Now, suppose that a, b ∈ C∞c (T ∗M), and sup |a− b| < ε. Then, using (3.2) again,

lim sup
k→∞

|〈Oph(a− b)uhnk , uhnk 〉| ≤ 2ε.

In particular, together with density of {am}∞m=1 in C∞c , this implies that µ is the defect measure
for uhnk . �

Lemma 4.2. Suppose that {uhn}∞n=1 satisfies (4.4) and has defect measure µ. Then µ is positive.
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Proof. Let a ∈ C∞c (T ∗M) with a ≥ 0. We claim that∫
adµ ≥ 0,

and hence that µ ≥ 0. To see this, let ε > 0. Let δ > 0. Then, by the easy G̊arding inequailty
(Lemma 3.5),

lim
n→∞

〈Oph(a)uhn , uhn〉 ≥ −δ‖uhn‖2L2 ≥ −Cδ.
Since the left hand side is independent of δ, and δ > 0 is arbitrary, the claim follows. �

Lemma 4.3. Suppose that {uhn}∞n=1 satisfies (4.4) and has defect measure µ. Then µ is finite
and

µ(T ∗M) ≤ lim sup
n→∞

‖uhn‖2L2 .

Proof. Now, let K ⊂ T ∗M compact and aK ∈ C∞c (T ∗M ; [0, 1]) with a ≡ 1 on K. Then, since µ
is positive, for any δ > 0,

µ(K) ≤
∫
adµ = lim

n→∞
〈Oph(aK)uhn , uhn〉 ≤ (1+δ) sup |aK | lim sup

n→∞
‖uhn‖2 ≤ (1+δ) lim sup

n→∞
‖uhn‖2,

and, since δ > 0 is arbitrary, we have
µ(K) ≤ lim sup

n→∞
‖uhn‖2L2 .

Letting K ↑ T ∗M completes the proof of the lemma. �

Note that while Theorem 4.1 guarantees the existence of defect measures, it says nothing
about uniqueness. Indeed, it is certainly possible to find sequences with subsequences having
many different defect measures.
Remark 3. We will often abuse notation and omit the sequence from a family of functions
{uh}0<h<h0 , saying only that uh has defect measure µ.

4.2. Defect measures and partial differential equations. We now study how the defect
measures of solutions to partial differential equations behave.
Lemma 4.4. Let P ∈ Ψm. Suppose that uh has defect measure µ, and satisfies

Pu = o(1)L2 .

Then, suppµ ⊂ {σ(P ) = 0}.

Proof. Suppose that a ∈ C∞c (T ∗M), and supp a ⊂ {σ(P ) 6= 0}. Then, supp a ⊂ ell(P ), and hence,
by Lemma 3.4, there is E ∈ Ψcomp such that

Oph(a) = EP +O(h∞)Ψ−∞ .

In particular,
〈Oph(a)uh, uh〉 = 〈EPuh, uh〉+O(h∞) = o(1),

since Puh = o(1)L2 , and E : L2 → L2 is uniformly bounded. In particular,∫
adµ = lim

h→0
〈Oph(a)uh, uh〉 = 0.

�
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One should think of Lemma 4.4 as saying that a solution to Pu = 0 lives microlocally on the
set where σ(P ) = 0. This should be familiar from the case of Fourier multipliers, where one can
literally say that if m(D)u = 0, then supp û ⊂ {m(ξ) = 0}.

Our next lemma shows that solutions to partial differential equations are invariant under the
flow associated to the partial differential operator.

Lemma 4.5. Let P ∈ Ψm self adjoint with symbol p = σ(P ). Suppose that uh has defect measure
µ, and satisfies

Pu = o(h)L2 .

Then, H∗pµ = 0, where Hp is the Hamiltonian flow for p.

Proof. Observe that ∫
Hpadµ = lim

h→0

i

h
〈[P,Oph(a)]u, u〉

= lim
h→0

i

h
[〈(P Oph(a)−Oph(a)P )u, u〉

= lim
h→0

i

h
[〈Oph(a)u, Pu〉 − 〈Oph(a)Pu, u〉 = 0.

�

If we return to our motivating example of propagation (Section 3.1.2), we can now explain why
the solution to the Schrödinger equation splits into two packets. We know that defect measure
for u are invariant under −∂t − 2ξ∂x. Therefore, since the initial data consists of two packets
localized at (0,−1) and (0, 2), we obtain propagation tot he right at speed 2 and propagation to
the left at speed 4.

4.3. Observation for the Helmholtz equation. We will actually derive estimates on the
solution to (4.1) from estimates on Helmholtz equation:

(−h2∆g − 1)u = 0.

We introduce the following geometric control condition.

Definition 4.1. Let U ⊂ S∗M . Then U satisfies the geometric control condition if for all
(x, ξ) ∈ S∗M , the geodesic through (x, ξ) enters U in finite time.

Theorem 4.2. Suppose U satisfies the geometric control condition. Then for all a ∈ S0(T ∗M ; [0, 1])
with |a| > 0 on U , there are h0 > 0, C > 0 such that for all 0 < h < h0, u ∈ L2 with −h2∆u ∈ L2,

(4.5) ‖u‖L2 ≤ C‖Oph(a)u‖L2 + Ch−1‖(−h2∆− 1)u‖L2 .

Proof. As with many defect measure arguments, we argue by contradiction. Suppose that there
is no C > 0 such that (4.5) holds. Then, there are hn → 0 uhn ∈ L2, with ‖uhn‖L2 = 1 such that

‖Ophn(a)un‖L2 + h−1
n ‖(−h2

n∆− 1)un‖L2 ≤
1
n
.
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By Theorem 4.1, we may assume uhn has defect measure µ. We now drop the index n, observing
simply that

Oph(a)u = o(1)L2 , (−h2∆− 1)u = o(h)L2 .

We first observe that, since suppµ ⊂ S∗M by Lemma 4.4, for χ ∈ C∞c (T ∗M) with χ ≡ 1 on
S∗M , we have
(4.6)∫

|a|2dµ =
∫
S∗M
|a|2dµ =

∫
S∗M
|χ|2|a|2dµ =

∫
|χ|2|a|2dµ = lim

h→0
‖Oph(χ) Oph(a)u‖2L2 = 0.

Next, by Lemma 4.5, µ(H|ξ|2gb) = 0 for all b ∈ C∞c (T ∗M). We claim that this implies µ ≡ 0.
To see this, we find b ∈ C∞c such that H|ξ|2gb+ |a|2b > 0 on S∗M .

Let ρ0 ∈ S∗M . Then, by the geometric control assumption exp(Tρ0H|ξ|2g)(ρ0) ∈ U for some
Tρ0 < ∞. Since U is open, this implies that there is a neighborhood Vρ0 of ρ0 such that
exp(Tρ0H|ξ|2g)(Vρ0) ⊂ U . Now,

S∗M ⊂
⋃

ρ∈S∗M
Vρ.

Therefore, since S∗M is compact, there are Vρi , i = 1, . . . N such that

S∗M ⊂
N⋃
i=1

Vρi .

In particular, there is T > 0 such that for all ρ ∈ S∗M , there is 0 ≤ t ≤ T such that
exp(tH|ξ|2g)(ρ) ∈ U .

Now, put

c(ρ) = 1
T

∫ T

0
(T − t)|a|2(exp(tH|ξ|2g)(ρ)dt.

Then,

H|ξ|2gc(ρ) = 1
T

∫ T

0
(T − t)∂t[|a|2(exp(tH|ξ|2g)(ρ)]dt

= 1
T

∫ T

0
|a|2(exp(tH|ξ|2g)(ρ))dt− a(ρ) =: 〈|a|2〉T (ρ)− |a|2(ρ)

Now, let χ ∈ C∞c (R) with χ ≡ 1 near 0 and put
b = ecχ(|ξ|2g − 1).

Then,
H|ξ|2gb = ecχ(|ξ|2g − 1)(〈|a|2〉T − |a|2),

and in particular,
H|ξ|2gb+ |a|2b = ecχ(|ξ|2g − 1)〈|a|2〉T > 0 on S∗M,

where the fact that 〈|a|2〉T > 0 on S∗M follows from our choice of T and that |a| > 0 on U .
Now, observe that, since S∗M is compact, using Lemma 4.5, that suppµ ⊂ S∗M , and (4.6),

we have
0 =

∫
H|ξ|2gbdµ =

∫
S∗M

H|ξ|2gbdµ =
∫
S∗M

(H|ξ|2gb+ |a|2b)dµ ≥ cµ(S∗M).
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In particular, µ ≡ 0.
Finally, we need to show that the L2 normalization of un implies µ(T ∗M) = 1, a contradiction.

For this, we let χ ∈ C∞c (T ∗M) with χ ≡ 1 on S∗M . Then, by Lemma 3.4, there is E ∈ Ψ−2 such
that

Oph(1− χ) = EP +O(h∞)Ψ−∞ .

In particular,

1 = ‖u‖2 = lim
h→0
〈Oph(χ)u, u〉+ lim

h→0
〈EPu, u〉 =

∫
χdµ = µ(S∗M).

�

4.4. The resolvent for the damped wave equation and exponential decay of energy.
We now return to the damped wave equation (4.1). Recall that the energy, E(t) defined in (4.2)
is non-increasing. We will use an approach based on spectral theory to prove exponential decay
for the damped wave equation.

Our first step is to observe that, while we cannot effectively use the Fourier transform in all
variables, we can take the adjoint Fourier transform in time to obtain the operator

(4.7) P (τ) := −∆g − iτa(x)− τ2

Note that, the solution to (4.1) may not be tempered backward in time. Therefore, we will not
be able to take the Fourier transform over all time for a solution to (4.1). Instead, we take the
Fourier transform only of 1[0,∞)(t)u(t). To follow the conventions of scattering theory, we actually
take the adjoint Fourier transform and denote, v(τ) := F∗t→τ (1[0,∞)(t)u(t)).

In particular,
P (τ)v(τ) = −iu0τ + u1 + au0.

If we knew that P (τ) was invertible, we could then write

v(τ) = P (τ)−1[−iu0τ + u1 + au0.],

and for t ≥ 0,

u(t) = 1
2π

∫
e−itτP (τ)−1[−iu0τ + u1 + au0]dτ,

Finally, if P (τ)−1 has an analytic continuation to Im τ > −β− ε with reasonable estimates, then,

u(t) = 1
2π

∫
e−it(τ−iβ)P (τ − iβ)−1[iu0(τ − iβ) + u1 + au0]dτ = O(e−βt).

We now make this argument rigorous.
We start by showing that the P (τ)−1 is meromorphic in τ .

Lemma 4.6. Let a ∈ C∞(M) with a ≥ 0, and a not identically 0. The operator

P (τ)−1 : L2(M)→ H2(M)

is a meromorphic family of operators with finite rank poles. It has no poles for τ ∈ R\{0}, a
simple pole at τ = 0, and is holomorphic for Im τ > 0. Moreover, there is c ∈ C and an family of
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operators B(τ) : L2 → H2 analytic in a neighborhood of 0 such that

P (τ)−1u = 〈u, c〉
τ

+B(λ).

Proof. We start by showing that P (τ)−1 is meromorphic.
Observe that, since σ(−h2∆g + 1) = |ξ|2g + 1 ≥ c〈ξ〉2, (−h2∆g + 1)−1 : L2(M)→ H2(M) exists

for 0 < h < h0. In particular, for τ0 = is, and |s| large enough,

(−∆g − τ2
0 )−1 : L2(M)→ H2(M).

We now use (−∆g − τ2
0 )−1 to approximate the inverse of P (τ). In particular,

P (τ) = (−∆g − τ2
0 )(I + (−∆g − τ2

0 )−1(τ2
0 − τ2 − iτa(x))),

and therefore, P (τ) is invertible if and only if

I +K(τ) : L2 → L2

is invertible with
K(τ) := (−∆g − τ2

0 )−1(τ2
0 − τ2 − iτa(x)).

Now, K(τ) : L2 → H2 and therefore, K(τ) is compact and therefore, I +K(τ) is a holomorphic
family of Fredholm operators. Finally, since

‖(−∆g − τ2
0 )−1‖L2→H2 ≤ C|τ0|−2,

and
K(τ0) = −i(−∆g − τ2

0 )−1τ0a(x),
we have

‖K(τ0)‖L2→H2 ≤ C|τ0|−1 < 1,
provided |τ0| � 1. In particular, I + K(τ0) is invertible, and hence, by the analytic Fredholm
theorem, τ 7→ (I +K(τ))−1 is meromorphic. This implies the meromorphy of P (τ)−1.

Next, we study the location of the poles of P (τ)−1. We start by showing that there are no
poles in Im τ > 0. Indeed, since a ≥ 0,
(4.8)
‖P (τ)u‖L2‖u‖L2 ≥ max(| Im〈P (τ)u, u〉|, |Re〈P (τ)u, u〉|)

≥ max(|〈(−Re τa− 2 Im τ Re τ)u, u〉|, |‖∇gu‖2 + [(Im τ)2 − (Re τ)2]‖u‖2|)
≥ max(〈2 Im τ |Re τ |‖u‖2, [(Im τ)2 − (Re τ)2]‖u‖2)

≥ 1
2(Im τ)2‖u‖2L2 .

In particular, P (τ) is injective and hence invertible for Im τ > 0.
Now, for τ ∈ R \ {0}, suppose that P (τ)u = 0. Then we have

0 = Im〈P (τ)u, u〉 = −iτ〈au, u〉L2 .

In particular, u ≡ 0 on supp a and hence (−∆− τ2)u = 0. But, this is a contradiction by unique
continuation for the Laplacian. Thus, there are no poles in R \ {0}.
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Finally, we study the pole at 0. By (4.8), P (τ)−1 has a pole of at most order two at 0. Therefore,
there are A−1, A−2 operators of finite rank such that

P (τ)−1 = A−2
τ2 + A−1

τ
+B(τ),

where B(τ) is analytic near τ = 0. Therefore, for τ 6= 0,

τ2 = P (τ)A−2 + τP (τ)A−1 + τ2P (τ)B(τ).

But, since B(τ and A−1 are bounded, this implies P (0)A−2 = 0. In particular, −∆gA−2 = 0, so
the range of A−2 is contained n the constants i.e. there is ψ ∈ L2 such A−2u = 〈u, ψ〉.

Similarly,
τ2 = A−2P (τ) + τA−1P (τ) + τ2B(τ)P (τ),

so A−2P (0) = 0, and hence 〈−∆u, ψ〉 = 0 for all u ∈ H2. In particular, −∆gψ = 0, and hence
ψ ≡ c−2 for some c−2 ∈ C.

With this in had, we can check that

0 = P ′(0)A−2 + P (0)A−1, 0 = A−2P
′(0) +A−1P (0).

Using the first equality, we have that

−∆gA−1u = −ia(x)〈u, c−2〉.

But, since a ≥ 0, and a is not identically 0, this implies c−2 = 0 and hence A−2 = 0. Now that
we have A−2 = 0, we can argue as above to see that −∆gA−1 ≡ 0, −A−1∆g ≡ 0, and hence that
there is c−1 ∈ C such that A−1u = 〈u, c−1〉. This completes the proof. �

We now introduce the assumption on a necessary to guarantee exponential decay of energy.
We say that a ∈ C∞(M ;R) satisfies the geometric control condition if for all (x, ξ) ∈ S∗M , there
is T > 0 such that

a(πM (exp(TH|ξ|2g)(x, ξ))) > 0.

In particular, T ∗(supp a)oM satisfies the geometric control condition.

Next, we use the observation estimate (4.5) to give estimates on P (τ)−1 in a strip near the real
axis.

Lemma 4.7. Suppose that a satisfies the geometric control condition. Then there are C > 0 and
β > 0 such that for

|Re τ | ≥ 1, | Im τ | ≥ −β,
we have

(4.9) ‖P (τ)−1‖L2→Hj ≤ C|τ |j−1, j = 0, 1, 2

Proof. Since P (τ)−1 has no poles in

{τ : Im τ ≥ 0, τ 6= 0},
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may assume that |Re τ | > τ0 and | Im τ | ≤ β. We will consider Re τ > τ0, the other case being
similar. Let h = 1

Re τ , then, by Theorem 4.2, there is C > 0 such that for τ0 large enough,

‖u‖L2 ≤ C‖au‖L2 + h−1‖(−h2∆g − 1)u‖L2

≤ C‖au‖+ Ch−1‖h2(−∆g − iaτ − τ2)u‖L2 + Ch‖aτu‖L2 + Ch|[(Re τ)2 − τ2]u‖L2

≤ C‖au‖+ Ch‖P (τ)u‖L2 + C‖au‖L2 + C(β + β2)‖u‖L2 .

Choosing β > 0 small enough, we have
(4.10) ‖u‖L2 ≤ C‖au‖L2 + Ch‖P (τ)u‖L2 .

Now, observe that, since a ≥ 0,
‖au‖2L2 ≤ sup |a|〈au, u〉L2 ,

and therefore, Now,
‖P (τ)u‖L2‖u‖L2 ≥ | Im〈P (τ)u, u〉‖ = Re τ〈au, u〉 − C Re τβ‖u‖2L2 ≥ Re τ(c‖au‖2 − Cβ‖u‖2L2).

In particular, using this in (4.10), and shrinking β if necessary, we have
‖u‖L2 ≤ Ch‖P (τ)u‖L2 ,

which implies the required L2 estimate by the Fredholm alternative.
To obtain the estimate for j = 2, we write

‖ −∆gu‖L2 ≤ ‖iτau‖L2 + ‖τ2u‖L2 ≤ C|τ |2−j‖P (τ)u‖L2 .

The estimate for j = 1 follows by interpolation. �

We now study the long time behavior of solutions to the damped wave equation.

Lemma 4.8. Suppose that a satisfies the geometric control condition. Then there are C > 0 and
β > 0 such that for all u solving (4.1),

E(T ) ≤ Ce−βT , T ≥ 0.

Proof. Let u solve (4.1), χ ∈ C∞(R; [0, 1]) with χ ≡ 1 on [1,∞) and suppχ ⊂ (0,∞). Rather
than taking the sharp cutoff 1[0,∞)(t), we put v(t) = χ(t)u(t), and

v̌(τ) :=
∫
eitτv(t)dt,

where the integral is understood as the Fourier transform acting on S ′. Then,
P (τ)v̌(τ) = f̌(τ),

where
f(t) = χ′′(t)u(t) + 2χ′(t)∂tu(t)− a(t)χ′(t)u(t).

Note that by the energy estimate, Lemma 4.1,
‖f(t)‖L2(Rt;L2) ≤ C(‖u0‖H1 + ‖u1‖L2).

It is easy to see that v̌(τ) is analytic in Im τ > 0. This has two consequences. First,

v(t) = 1
2π

∫
Im τ=1

e−itτ v̌(τ)dτ.
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Second, since τ 7→ P (τ) is analytic, and f is compactly supported in t, f̌(τ) is analytic in τ ,

P (τ)v̌(τ) = f̌(τ), Im τ ≥ 0,

and
‖f̌(τ + iβ)‖L2(Rτ ;L2(M)) ≤ Cβ‖f‖L2(Rt;L2(M)) ≤ C(‖u0‖H1 + ‖u1‖L2).)

Now, since P (τ)−1 is meromorphic and has no poles in Im τ > 0, we have

v̌(τ) = P (τ)−1f̌(τ), Im τ > 0,

and
v(t) = 1

2π

∫
Im τ=1

e−itτP (τ)−1f̌(τ)dτ.

Our goal is to deform the contour from Im τ = 1 to Im τ = −β for some β > 0. Note that,
since P (τ)−1 has no poles on in Im τ ≥ 0 \ {0}, and the estimate (4.9) holds. When can choose
β > 0 such that the only pole in Im τ ≥ β is at 0.

We will justify deforming the contour below, but, once we can, we will obtain
(4.11)

v(t) = 1
2π

∫
e−itτ−βtP (τ − iβ)−1f̌(τ − iβ)dτ + iResτ=0 e

−itτP (τ)−1f̌(τ),

−Dtv(t) = 1
2π

∫
e−itτ−βt(τ − iβ)P (τ − ic)−1f̌(τ − iβ)dτ + iDt Resτ=0 τe

−itτP (τ)−1f̌(τ),

Using the first equality, we have by the Plancherel formula that

(4.12)
‖eβt(v(t)− iResτ=0 e

−itτP (τ)−1f̌(τ))‖L2(Rt;H1)

= C‖P (τ − iβ)−1f̌(τ − iβ)‖L2(Rτ ;H1(M))

≤ C‖f̌(τ − iβ)‖L2(R ≤ C‖f‖L2(Rt;L2(M) ≤ C(‖u0‖H1 + ‖u1‖L2)

Next, recall that P (τ)−1 has a simple pole at 0, and the residue at zero is given in Lemma 4.6.
Therefore,

Resτ=0 e
−itτP (τ)−1f̌(τ) = 〈f̌(0), c〉L2(M)

for some c ∈ C. In particular, using (4.12), we have

‖eβt∇gv(0)‖L2(Rt;L2(M)) ≤ C(‖u0‖H1 + ‖u1‖L2).

Using again that the residue at 0 is simple,

(4.13) Dt Resτ=0 e
−itτP (τ)−1f̌(τ) = 0,

Therefore, combining (4.13), (4.11), and Plancherel’s formula again, we have

‖eβtDt((v(t)))‖L2(Rt;L2)

= C‖(τ − iβ)P (τ − iβ)−1f̌(τ − iβ)‖L2(Rτ ;L2(M))

≤ C‖f̌(τ − iβ)‖L2(Rτ ;L2(M)) ≤ C‖f‖L2(Rt;L2(M) ≤ C(‖u0‖H1 + ‖u1‖L2).
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Now, since E(t) is decreasing, we have for T ≥ 2,

E(T ) ≤ 1
2

∫ T

T−1
E(t)dt

= 1
2(‖∇gv‖2L2([T−1,T ];L2(M)) + ‖∂tv‖2L2([T−1,T ];L2(M)))

≤ Ce−β(T−1)(‖eβt∇gv‖L2(R;L2(M)) + ‖eβt∂tv‖L2(R;L2(M)) ≤ Ce−β(T−1)(‖u0‖H1 + ‖u1‖L2)
≤ Ce−βTE(0).

Increasing C if necessary, and using that E(t) is decreasing, we can assume that

E(T ) ≤ Ce−βTE(0), 0 ≤ T <∞.

It remains only to justify the contour deformation. For this, recall that on Im τ = 1,

‖P (τ)−1f̌(τ)‖L2(M) ≤ C|τ |−1‖f̌(τ)‖L2(M).

Therefore, by Cauchy-Schwarz

lim
R→∞

∥∥∥ ∫
Im τ=1,|Re τ |≥R

e−itτP (τ)−1f̌(τ)dτ
∥∥∥
L2(M)

≤ C lim
R→∞

∫
|s|≥R

‖P (τ + i)−1f̌(τ + i)‖L2(M)dτ

≤ C lim
R→∞

( ∫
|s|≥R

C(1 + |s|)−2ds

∫
|s|≥R

‖f̌(s+ i)‖2L2(M)ds
) 1

2 = 0.

Next, let γ±,R := {±R+ is : −β ≤ s ≤ 1}. Then,

lim sup
R→∞

∥∥∥ ∫
γ±,R

e−itτP (τ)−1f̌(τ)dτ
∥∥∥
L2(M)

≤ lim sup
R→∞

C

R

∫ 1

−β
‖f̌(±R+ is)‖L2(M)ds = 0,

since the analyticity of f implies f ∈ L∞loc(τ ;L2(M)).
This completes the proof since now the formulas (4.11) are justified. �

4.5. Exercises.

Exercise 4.1. Compute the defect measures for the following families of functions:

(1) uh = (2πh)−
d
4 e−|x−x0|2/(2h)ei〈x−x0,ξ0〉/h, x0, ξ0 ∈ Rd.

(2) uh = χ(x)eiϕ(x)/h, χ ∈ C∞c , ϕ ∈ C∞(Rd;R).
(3) uh = χ(x)eiϕ(x)/hα , χ ∈ C∞c , ϕ ∈ C∞(Rd;R), α ∈ R \ {1}.

Exercise 4.2. Show that the assumption on U in theorem 4.2 cannot be removed. That is, if there
is (x, ξ) ∈ S∗M such that the geodesic through (x, ξ) does not enter U , then the estimate (4.5) is
false.

Exercise 4.3. Show that if a does not satisfy the geometric control condition, then the conclusions
of Lemma 4.8 are false.
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5. Weyl law

Our next application of the theory of pseudodifferential operators is to prove what is known
as the Weyl law. Let (M, g) be a compact, Riemannian manifold, with Laplacian −∆g, and
V ∈ C∞(M ;R). Standard estimates (one version of which we will review below) show that

P := −∆g + V : L2(M)→ L2(M)

is self-adjoint and has spectrum consisting of only eigenvalues {µj}∞j=1 ⊂ R with µj → ∞. We
will be interested in the following question: Can we estimate

NP (µ) := #{j : µj ≤ µ}.

There are many approaches to this question including Dirichlet–Neumann bracketing, the wave
method, the heat method, and the method of complex powers. The wave method generally
produces the sharpest results, but requires many more tools than we currently have. We will not
pursue any of the above methods, instead using a functional calculus approach.

5.1. Basic properties of P . Recall that in local coordinates,

∆g := 1√
ḡ

d∑
i,j=1

∂xi(gij
√
ḡ∂xj ),

where gij is the inverse of the metric, and ḡ = | det gij |. Recall also that

σ(P ) = |ξ|2g + V (x).

Lemma 5.1 (Elliptic Regularity). Let K b C. Then, for k ∈ R, there is C > 0 such that for all
N ∈ R, there is CN > 0 such that for all z ∈ K, and u ∈ L2(M) satisfying

(P − z)u = f

in the sense of distributions,

‖u‖Hk+2
h
≤ C‖f‖Hk

h
+ CN‖u‖H−N

h
.

Proof. Let χ ∈ C∞c (R) with χ ≡ 1 for |t| ≤ T . Then, there is T (K) such that for z ∈ K,

||ξ|2g + V (x)− z| ≥ c|ξ|2g, |ξ|g ≥ T (K).

In particular, by Lemma 3.4, there is Q(z) ∈ Ψ−2, uniformly bounded for z ∈ K, such that

Q(z)(P − z) = Oph(1− χ(|ξ|g)) +O(h∞)Ψ−∞ .

In particular, using Corollary 3.1,

‖u‖Hk+2
h
≤ ‖Oph(1− χ(|ξ|g))u‖Hk+2

h
+ ‖Oph(χ(|ξ|g))u‖Hk+2

h

≤ ‖Q(z)(P − z)u‖Hk+2
h

+ CN‖u‖H−N
h

+O(h∞)‖u‖H−N
h

≤ C‖(P − z)u‖Hk
h

+ CN‖u‖H−N
h
,

and the lemma is proved. �
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Lemma 5.2. The operator P is symmetric and for each z ∈ C \ R,
P − z : H2

h(M)→ L2(M)
is invertible and for k ≥ 0,

‖(P − z)−1‖Hk
h
→Hk+2

h
= O(1 + | Im z|−1).

Proof. We check symmetry in local coordinates. Indeed, let U be a local coordinate patch and
u, v ∈ C∞c (U) with coordinates y. Then,∫

M
∆guv̄dx =

∫
ḡ−1/2

d∑
i,j=1

∂yi
(
gij ḡ1/2∂yju(y)

)
v̄(y)ḡ1/2dy

= −
∫ d∑

ij=1
gij ḡ1/2∂yju(y)∂yivdy

=
∫
u(y)ḡ−1/2

d∑
ij=1

∂yj
(
gij ḡ1/2∂yiv

)
ḡ1/2dy

=
∫
M
u∆gvdx

Next, we show that for z ∈ C \ R, P − z is injective. Indeed, suppose that u ∈ H2
h(M), and

(P − z)u = 0. Then, by Lemma 5.1, u ∈ C∞(M), and hence,
(5.1) 0 = Im〈(P − z)u, u〉 = − Im z‖u‖2L2 .

In particular, since z ∈ C \ R, ‖u‖L2 = 0, and hence u = 0.
To prove surjectivity, suppose v ∈ L2(M) is orthogonal to (P − z)C∞(M). Then, for all

u ∈ C∞,
〈(P − z)u, v〉L2 = 0.

In particular, (P − z̄)v = 0 in the sense of distributions. But then, by Lemma 5.1, v ∈ C∞, and
hence, since (P − z̄) is injective, v = 0.

We have now shown that P − z : H2
h(M) → L2(M) is invertible, and, by the integration by

parts used in (5.1),
‖u‖L2(M) ≤ | Im z|‖(P − z)u‖L2(M).

Therefore, by Lemma 5.1,
‖u‖Hk+2

h
(M) ≤ C‖(P − z)u‖Hk

h
(M) + ‖u‖L2(M) ≤ C(1 + | Im z|−1)‖(P − z)u‖Hk

h
(M),

and the proof is complete. �

We can now describe the spectrum of P .

Lemma 5.3. The operator P with domain C∞(M) is essentially self-adjoint and the domain
of the closure is H2(M). Furthermore, there is an orthonormal basis {uj(h)}∞j=1 ⊂ C∞(M) of
L2(M) consisting of eigenfunctions of P , i.e. satisfying

P (h)uj = Ej(h)uj(h),
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where Ej →∞ as j →∞.

Proof. Essential self-adjiontness
Let P̄ be the closure of P with domain C∞(M). (Existence of this closure follows from the

fact that P is densely defined and symmetric.) Now, suppose that u ∈ D(P̄ ), i.e. P̄ u ∈ L2(M).
Let un ∈ C∞(M) with un → u ∈ L2(M) and Pun → P̄ u. Then,

f + iu = (P̄ + i)u = lim
n→∞

(P + i)un.

In particular,
‖un‖H2(M) ≤ C‖(P + i)un‖L2(M) → ‖f + iu‖L2(M) <∞.

In particular, un is bounded in H2(M) and hence, there is a subsequence and v ∈ H2(M) such
that un ⇀

H2
v. On the other hand, un → u in L2, and hence u = v ∈ H2(M). Thus, we have

shown that D(P̄ ) ⊂ H2(M).
On the other hand, if u ∈ H2(M), then there is un ∈ C∞ with un → u in H2 then it is easy

to check that Pun converges in L2, and hence that P̄ u ∈ L2. so that u ∈ D(P̄ ). In particular,
D(P̄ ) = H2

h.
Now, to determine the adjoint of P̄ , recall that v ∈ D(P̄ ∗) if and only if for all u ∈ H2

h(M),

|〈P̄ u, v〉L2 | ≤ Cv‖u‖L2 .

Let vn ∈ C∞ with vn → v. Then, fix u ∈ C∞, Then,

〈u, Pvn〉 = 〈Pu, vn〉 → 〈Pu, vn〉.

In particular, for all u ∈ C∞(M),

lim
n→∞

|〈u, Pvn〉L2 | = |〈P̄ u, v〉L2 | ≤ Cv‖u‖L2 .

Now, as a distribution, Pvn → Pv ∈ H−2, and hence,

|〈u, Pv〉L2 ≤ Cv‖u‖L2 .

This implies that Pv ∈ L2 and hence v ∈ H2
h(M). The fact that D(P̄ ∗) = H2

h(M) now follows
easily, and symmetry implies that P̄ ∗ = P̄ .
Eigenfunctions

To understand the spectrum of P , consider the operator (P̄ + M) : L2 → L2, then for u ∈
C∞(M),

〈(P̄ +M)u, u〉 = ‖∇gu‖2L2 +M‖u‖L2 + 〈V u, u〉.
Therefore, for M ≥ 2 sup |V |,

‖u‖L2 ≤ C‖(P̄ +M)u‖L2 .

Since (P̄ +M) is self-adjoint, the same is true for P ∗.
Now, Lemma 5.1 implies that

‖u‖H2
h
≤ C‖(P̄ +M)u‖L2 , u ∈ C∞(M)
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and hence, together with self-adjointness, this shows that P̄ + M : H2
h → L2, invertible. Thus,

(P + M)−1 : L2 → L2 is compact and the spectral theorem for compact, self-adjoint operators
completes the proof.

�

5.2. The functional calculus. We now recall that, for a self adjoint operator, P , we can define
f(P ) for f : R→ C using the spectral theorem. In particular, for P = −h2∆g + V , we have

(5.2) f(P )v =
∞∑
j=1

f(Ej(h))〈v, uj〉L2(M)uj ,

where {uj}∞j=1 are the eigenfunctions of P . In this section, we will shows that if f is sufficiently
nice, then f(P ) is a pseuodifferential operator.

Before we proceed, we introduce the notion of an almost analytic extension of a function
f ∈ S(R). We say that f̃ ∈ C∞(C) is an almost analytic extension of f if

f̃ |R = f, ∂̄z f̃(z) = O(| Im z|∞), supp f̃ ⊂ {| Im z| ≤ 1} ∂̄z := 1
2(∂x + i∂y).

You will show in exercise 5.1, that every Shwartz function has an almost analytic extension.
The first crucial tool is the Helffer-Sjöstrand formula

Lemma 5.4. Let f ∈ S. Then for any almost analytic extension of f , f̃ ,

f(P ) = 1
πi

∫
C
∂̄z f̃(z)(P − z)−1dmC,

where mC denotes the Lebesgue measure on C.

Proof. Let B(t, ε) be the disk in C of radius ε around t. Then,
1
π

∫
C
∂̄z f̃(z)(t− z)−1dmC = 1

π
lim
ε→0+

∫
C\B(t,ε)

∂̄z f̃(z)(t− z)−1dmC

= 1
π

lim
ε→0+

∫
C\B(t,ε)

∂̄z
(
f̃(z)(t− z)−1)dmC

= 1
2πi lim

ε→0

∮
∂B(t,ε)

f̃(z)(t− z)−1dz

= 1
2πi lim

ε→0

∮
∂B(t,ε)

(f(z) +O(ε))(t− z)−1dz = f(t).

In the third line we have used Green’s formula:

− i2

∮
∂B(t,ε)

f̃(t− x− iy)−1(dx+ idy) =
∫
C\B(t,ε)

1
2(∂x + i∂y)f̃(t− x− iy)−1dxdy.

The lemma now follows from putting t = Ej and using (5.2). �

We now show that for f ∈ S, f(P ) ∈ Ψ−∞.

Lemma 5.5. Suppose that f ∈ S(R). Then, f(P ) ∈ Ψ−∞ and σ(f(P )) = f(σ(P )).
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Proof. First, let
q0(z) = (|ξ|2g + V (x)− z)−1.

Then, by Lemma Theorem 3.2
(P − z) Oph(q0(z)) = I + hOp(r1(z)),

where r1 ∈ S−1 satisfying

|∂αx ∂
β
ξ r1(z)| ≤ Cαβ| Im z|−K1,αβ 〈ξ〉−1−|β|.

Suppose we have QN (z) =
∑N
j=0 qj(z) with

|∂αx ∂
β
ξ qj(z)| ≤ Cαβ| Im z|−Kj,αβ 〈ξ〉−1−|β|,

and
(P − z) Oph(QN (z)) = I + hN Oph(rN (z)),

where rN ∈ S−N satisfies

|∂αx ∂
β
ξ rj(z)| ≤ Cαβ| Im z|−Kj,αβ 〈ξ〉−j−|β|.

Then, putting qN+1(z) = (|ξ|2g + V (x)− z)−1rN (z), we can increase N by 1.
In particular, with EM (z) = Oph(QM (z)), RM+1(z) = hM+1 Oph(rM+1(z)), we have

(P − z)−1 = EM (z)− (P − z)−1RM+1(z),
and, one can check that for any s, there are Cs, KM+1,s such that

‖RM+1‖Hs
h
→Hs+M+1

h
≤ CshM+1| Im z|−KM+1,s .

Therefore, by Lemma 5.4,

f(P ) = 1
π

∫
C
∂̄z f̃(z)(P − z)−1dmC

= 1
π

∫
C
∂̄z f̃(z)(EM (z)− (P − z)−1RM+1(z))dmC

= 1
π

∫
C

(Oph(∂̄z f̃(z)QM (z)) + ∂̄z f̃(z)(P − z)−1RM+1(z))dmC

= Oph(f(|ξ|2 + V ) +
M∑
j=1

hjpj) + 1
π

∫
C
∂̄z f̃(z)(P − z)−1RM+1(z))dmC,

with pj ∈ S−j . Now, observe that
1
π

∫
C
|∂̄z f̃(z)|‖(P − z)−1RM+1(z))‖Hs

h
→Hs+M+3

h
dmC

≤ CN
∫
| Im z|≤1

| Im z|N 〈Re z〉−NhM+1| Im z|−KMdmC ≤ ChM+1,

for N chosen large enough. Therefor, putting

F ∼ Oph(f(|ξ|2 + V ) +
∞∑
j=1

hjpj),
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we have
f(P )− F = O(h∞)Ψ−∞ .

So far, we have shown that f(P ) ∈ Ψ−1. To see that f(P ) ∈ Ψ−∞, observe that
gk(t) := (t+ i)kf(t) ∈ S,

and therefore, gk(P ) ∈ Ψ−1. Now, since (P + i)k ∈ Ψ2k is elliptic, and hence (P + i)−k ∈ Ψ−2k,
and

f(P ) = (P + i)−kgk(P ) ∈ Ψ−2k−1.

Since k is arbitrary, the proof is complete. �

To prove the Weyl law, we will need the trace class properties of pseudodifferential operators
found in Exercise 5.2.

Theorem 5.1 (Weyl law). Let M be smooth, compact Riemannian manifold with dimension d,
P as above and a < b. Then,

N(a, b, h) := #{E(h) : a ≤ E(h) ≤ b} = 1
(2πh)d VolT ∗M{a ≤ |ξ|2g + V (x) ≤ b}+ o(h−d).

Proof. Fix ε > 0 and let χ± ∈ C∞c (R; [0, 1]) with χ+ ≡ 1 on [a, b] and suppχ+ ⊂ (a − ε, b + ε),
and χ− ≡ 1 on [a+ ε, b− ε], and suppχ− ⊂ (a, b). Then, observe that

trχ±(P ) =
∑
j

χ±(Ej).

Therefore, since 0 ≤ χ−(t) ≤ 1[a,b](t) ≤ χ+(t) ≤ 1, we have
(5.3) trχ−(P ) ≤ N(a, b, h) ≤ trχ+(P ).

Now, we estimate trχ±(P ) using Lemma 5.5 and Exercise 5.2. Indeed, χ±(P ) ∈ Ψ−∞ with
σ(χ±(P )) = χ±(|ξ|2g + V (x)). Therefore,

trχ± = 1
(2πh)d

∫
χ±(|ξ|2g + V )dxdξ +Oε(h−d+1).

Using this in (5.2), we have
1

(2π)d
∫
χ−(|ξ|2g + V )dxdξ +Oε(h) ≤ hdN(a, b, h) ≤ 1

(2π)d
∫
χ+(|ξ|2g + V )dxdξ +Oε(h1).

Thus, using the right hand inequality, we have

lim sup
h→0

hdN(a, b, h) ≤ 1
(2π)d

∫
χ+(|ξ|2g + V )dxdξ,

and since the left hand side is independent of ε, we may send ε → 0 and use the dominated
convergence theorem to obtain

lim sup
h→0

hdN(a, b, h) ≤ 1
(2π)d

1
(2π)d VolT ∗M{a ≤ |ξ|2g + V (x) ≤ b}.

Similarly,
1

(2π)d VolT ∗M{a ≤ |ξ|2g + V (x) ≤ b} ≤ lim inf
h→0

hdN(a, b, h),
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which completes the proof. �

5.3. Exercises.

Exercise 5.1. Show that every f ∈ S(R) has an almost analytic extension. By considering the
function

f̃(x+ iy) = 1
2π

∫
ei(x+iy)ξ f̂(ξ)χ(yξ)χ(x)dξ,

where χ ∈ C∞c ((−1, 1)) with χ ≡ 1 on [−1
2 ,

1
2 ].

Exercise 5.2. Show that if M is a compact manifold with dimension d, then for any m > d and
P ∈ Ψ−m(M), P is trace class and

tr(P ) = 1
(2πh)−d

∫
σ(P )(x, ξ)dxdξ +O(hd−1).

Appendix A. Elementary operator estimates

Lemma A.1 (Schur test for boundedness). Suppose that A is an operator wither kernel K, and

sup
x

∫
|K(x, y)|dy ≤ C1, sup

y

∫
|K(x, y)|dx ≤ C2,

then
‖A‖2L2→L2 ≤ C1C2.

Proof. Observe that

|Au(x)|2 ≤
( ∫
|K(x, y)u(y)|dy

)2
≤
∫
|K(x, y)||u(y)|2dy

∫
|K(x, y)|dy ≤ C1

∫
|K(x, y)||u(y)|2dy.

Therefore,
‖Au‖2L2 ≤ C1

∫
|K(x, y)||u(y)|2dydx ≤ C1C2‖u‖2L2

�
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