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CHAPTER 1

Introduction

These notes are being prepared for a course in Fall 2017 in the Stanford Department of Math-
ematics. The ultimate goal of the course is to study the propagation of singularities on mani-
folds with boundary and parametrices for boundary value problems including the Melrose–Taylor
parametrix. Throughout we will focus on the Dirichlet type problems, occasionally digressing
to discuss the Dirichlet to Neuamnn map which can be applied to a wide variety of boundary
conditions.

The material considered here comes largely from the work of Melrose [], Melrose–Sjöstrand [],
Taylor [], Zworski [] and Farris []

The basic example to which these notes apply is that of the wave operator P = ∂2
t −∆g posed

on R×M where M is a compact manifold with boundary ∂M .

1. Notation for manifolds with boundary

2. Supported and Extendible distributions
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CHAPTER 2

Microlocal Preliminaries

In this chapter, we briefly review the standard calculus of pseudodifferential operators. [TODO]references

1. The Kohn–Nirenberg calculus on Rd

1.1. Symbols. We introduce two symbol classes. We say that a family of smooth functions
with parameter h ∈ [0, 2), a(x, ξ;h) ∈ C∞(R2d) lies in Sm(Rd × Rd) if

|∂αx ∂
β
ξ a(x, ξ;h)| ≤ Cαβ〈ξ〉m−|β|, 〈·〉 := (1 + | · |2)

1
2 .

We say that a ∈ Sm is positively homogeneous of order m and write a ∈ Smhom if there exists
F : Rd → (0,∞) so that for s ≥ 1 and |ξ| ≥ F (x),

a(x, sξ) = sma(x, ξ).

We say that a ∈ Sm lies in Smphg if there exist aj(x, ξ) ∈ Sjhom, j = m,m− 1, . . . and CαβN > 0 so
that

(1)
∣∣∣∂αx ∂βξ (a− N−1∑

j=0
hjam−j

)∣∣∣ ≤ CαβNhN 〈ξ〉m−N .
For a ∈ Sm, we then define the operator

Oph(a)u := 1
(2πh)d

∫∫
ei〈x−y,ξ〉/ha(x, ξ;h)u(y)dydξ

at first for u ∈ S and then by transposition for u ∈ S ′.
We define the set of pseudodifferential operators of order m, Ψm

h (Rd) and the polyhomogeneous
pseudodifferential operators Ψm

h,phg(Rd) by

Ψm
h (Rd) :=

{
A ∈ L(S ′;S ′) | A = Oph(a), for some a ∈ Sm(Rd × Rd)

}
Ψm
h,phg(Rd) :=

{
A ∈ L(S ′;S ′) | A = Oph(a), for some a ∈ Smphg(Rd × Rd)

}
.

Here L denotes the set of continuous linear operators.

Remark 1. We note that there are many other ways of quantizing symbols in Sm. However
for most purposes, they are the same and in particular, they yield the same classes Ψm

h (Rd).
Ψm
h,phg(Rd).

For A ∈ Ψm
h (Rd), we define the principal symbol map σm : Ψm

h → Sm/hSm−1 by

σm(Oph(a)) = a+ hSm−1.

9



10 2. MICROLOCAL PRELIMINARIES

We sometimes write a(x, hD) for the operator Oph(a).
We recall a few facts about pseudodifferential operators. Define the norm

‖u‖Hs
h

:= ‖〈hD〉su‖L2

for all u ∈ Hs(Rd).

Lemma 1.1. Suppose that A ∈ Ψm
h (Rd). Then for s ∈ R, A : Hs

h(Rd) → Hs−m
h (Rd) and,

moreover, there exists C > 0 so that

‖Au‖Hs−m
h
≤ sup |〈ξ〉−mσm(A)|‖u‖Hs

h
+ Ch‖u‖Hs−1

h
.

Lemma 1.2. Suppose that a, b ∈ Smphg(Rd) and supp a ∩ supp b = ∅. Then for all N > 0,

Oph(a) Oph(b) = OH−N
h

(Rd)→HN
h

(Rd)(h
N ).

Lemma 1.3. Suppose 0 ≤ a ∈ Sm(Rd). Then there exists c > 0 so that for all u ∈ C∞c (Rd),

〈Oph(a)u, u〉L2 ≥ −ch‖u‖
H
m−1

2
h

.

Next, we observe that for a ∈ Sm1 , b ∈ Sm2 ,

(2)
Oph(a) Oph(b) = Oph(ab) + hR R ∈ Ψm1+m2−1

h

h−1[Oph(a),Oph(b)] = Oph
(
− i{a, b}

)
+ hR R ∈ Ψm1+m2−2

h

Oph(a)∗ = Oph(ā) + hR R ∈ Ψm1−1
h

where
{a, b} :=

∑
i

∂ξia∂xib− ∂xia∂ξib.

Note that the map σm : Ψm
phg → Sm is well defined if we take σm(Oph(a)) = am where am is

from the expansion (1).

1.2. Pseudodifferential operators on compact manifolds without boundary. Let M
be a compact manfiold without boundary. Let

Ψ−∞(M) := L(D′(M), C∞(M))

and
h∞Ψ−∞ := {A ∈ Ψ−∞ | A = OH−N

h
→HN

h
(hN ), for all N > 0}.

We say that A : D′(M)→ D′(M) lies in Ψm
h (M) (respectively Ψm

h,phg(M)) if

(1) For all ϕ,ψ ∈ C∞c with suppϕ ∩ suppψ = ∅, ϕAψ ∈ h∞Ψ−∞.
(2) If (U, κ) is a coordinate chart with κ : U → V ⊂ Rd a diffeomorphsim and ϕ,ψ ∈ C∞c (U),

χ ∈ C∞c (V ). Then

χ(κ−1)∗ϕAψκ∗χ ∈ Ψm
h (Rd), (respectively Ψm

h,phg(Rd)).
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We say that a ∈ Sm(T ∗M) if in any coordinates (x, ξ) a(x, ξ) ∈ Sm(Rd × Rd). Similarly, we
say a ∈ Smphg(T ∗M) if a(x, ξ) ∈ Smphg(Rd × Rd). Then there is a a symbol map σm : Ψm

h (M) →
Sm(T ∗M)/hSm−1(T ∗M) given by the following procedure. Let (Uα, κα) be an atlas on M . Then
for ϕ2

α ∈ C∞c (Uα) a partition of unity on M ,

σ(A) =
∑
α

κ̃∗ασ((κ−1
α )∗ϕαAϕακ∗α)

where κ̃α : T ∗U → T ∗Rd is the lift of κα as a symplectomorphism. Note that σm has the following
properties

(1) 0→ hΨm−1
h → Ψm

h
σm−→ Sm/hSm−1 → 0 is exact.

(2) σ(AB) = σ(A)σ(B).
(3) σ([A,B]) = −i{σ(A), σ(B)} where {·, ·} is the poisson bracket.

Finally, there is a non-canonical quantization map Oph : Sm(T ∗M)→ Ψm
h (T ∗M) with Oph :

Smphg(T ∗M)→ Ψm
h,phg(T ∗M) so that

(1) For a ∈ Sm(T ∗M), σm(Oph(A)) = a+ hSm−1.
(2) For all A ∈ Ψm

h (T ∗M) (respectively Ψm
h,phg(M)), there exists a ∈ Sm(T ∗M) (respectively

Smh,phg(M)) so that
A−Oph(a) ∈ h∞Ψ−∞.

(3) If a, b ∈ S∞phg and supp a ∩ supp b = ∅.

Oph(a) Oph(b) ∈ h∞Ψ−∞(M).

We will also write Scomp(T ∗M) for symbols compactly supported in T ∗M and Ψcomp
h for their

quantizaitons.
We will sometimes have reason to use the standard calculus (i.e. h = 1). In this case, we

write Op for the quantization and Ψm for the operators resulting from Sm.





CHAPTER 3

Basic estimates for hyperbolic equations on manifolds with
boundary

1. Energy Estimates and Well Posedness

1.1. Estimates without a boundary. We will work in the case of second order operators,
but the methods developed here apply equally well to higher order equations.

1.1.1. First order operators. We consider the problem
(3) Pt := (Dt −Op(at))u = f, 0 < t < T, u|t=0 = u0

where

(i) at(x, ξ) = a(t, x, ξ) belongs to a bounded set in S1(Rd × Rd) for 0 ≤ t ≤ T
(ii) t 7→ at is continuous with values in C∞(Rd × Rd)
(iii) Im a(t, x, ξ) ≥ −M , 0 ≤ t ≤ T .

We start with an energy estimate

Lemma 1.1. Let s ∈ R. Then for λ ∈ R large enough and all u ∈ C1([0, T ];Hs(Rd)) ∩
C0([0, T ];Hs+1(Rd)) and p ∈ [1,∞]

(4)
(1

2

∫ T

0
‖e−λtu(t, ·)‖pHsλdt

) 1
p ≤ ‖u(0, ·)‖Hs + 2

∫ T

0
e−λt‖Ptu‖Hsdt.

Proof. Then consider E(t) = e−2λt‖u(t)‖2L2 .

∂tE(t) = 2 Re〈∂t[e−λtu], e−λtu〉
= 2 Re e−2λt〈∂tu, u〉 − 2λE(t)
= −2e−2λt Im〈Dtu, u〉 − 2λE(t)
= −2e−2λt Im〈Ptu, u〉 − 2e−2λt Im〈Op(at)u, u〉 − 2λE(t)

≤ 2‖e−λtPtu‖E1/2(t) + 2(C − λ)E(t)
where in the last line we apply the sharp G̊arding inequality (1.3) together with (i), (iii), and the
fact that u(t) ∈ H1. Choosing λ ≥ C, then

∂tE(t) ≤ 2‖e−λtPtu‖E1/2(t).
Integrating in time gives

sup
0≤τ≤t

E(τ) ≤ E(0) + 2 sup
0≤τ≤t

E1/2(t)
∫ t

0
‖e−λsPsu‖ds.

13



14 3. BASIC ESTIMATES FOR HYPERBOLIC EQUATIONS ON MANIFOLDS WITH BOUNDARY

So, (
sup

0≤τ≤t
E1/2(τ)−

∫ t

0
‖e−λsPsu‖ds

)2
≤ E(0) +

( ∫ t

0
‖e−λsPsu‖ds

)2

and in particular,

e−Ct‖u(t)‖ ≤ ‖u(0)‖+ 2
∫ t

0
‖e−CsPsu‖ds.

Then, taking λ > 2C large enough and using that ‖e−λt/2λ‖Lp(Rt) ≤ 2 for λ > 0. So,

e−λt‖u(t)‖ ≤ e(C−λ)t‖u(0)‖+ 2
∫ t

0
e−λs‖Psu‖e(C−λ)(t−s)ds.

and taking λ > 2C, and integrating both sides in t,(∫ T

0

(
e−λt‖u(t)‖

)p
dt

)1/p

≤ ‖e−λt/2‖Lp‖u(0)‖+ 2
(∫ T

0

( ∫ t

0
e−λs‖Psu‖e(C−λ)(t−s)ds

)p
dt

)1/p

.

Applying Minkowski’s inequality then gives(∫ T

0

(
e−λt‖u(t)‖

)p
dt

)1/p

≤ ‖e−λt/2‖Lp‖u(0)‖+ ‖e−λt/2‖Lp
∫ T

0
e−λs‖Psu‖ds

Then, since ‖e−λt/2‖Lp ≤ (2/λ)1/p, the lemma follows for s = 0.
To finish the proof, apply the s = 0 case to Ãt = Op(〈ξ〉s)At Op(〈ξ〉−s) with u = Op(〈ξ〉s)u.

�

Theorem 1.1 (Well-posedness for first order equations). Let (i)-(iii) hold and s ∈ R. Then
for all f ∈ L1((0, T );Hs(Rd)) and φ ∈ Hs(Rd), there is a unique solutions u ∈ C([0, T ];Hs(Rd))
of (3) and (4) holds.

Proof. We start with uniqueness. Suppose (3) holds with φ = 0 and f = 0. Then, since
u ∈ C([0, 1];Hs(Rd)), Op(at)u ∈ C([0, T ];Hs−1(Rd)) and hence ∂tu ∈ C([0, T ];Hs−1(Rd)). That
is, u ∈ C1([0, T ];Hs−1) and in particular, (4) implies that u = 0.

To show existence, we apply the energy estimate to the adjoint problem. Suppose v ∈
C∞c ((−∞, T )× Rd). Then, observe that by (4) applied with t 7→ T − t gives for any r ∈ R,

sup
t∈[0,T ]

‖v(t)‖H−r(Rd) ≤ C
∫ T

0
‖(Dt −Op(at)∗)v‖H−r(Rd)dt.

Thus, for f ∈ L1([0, T ];Hr(Rd)), φ ∈ Hr(Rd),

(5)

∣∣∣ ∫ T

0
〈f(t), v(t)〉Rddt− i〈φ, v(0)〉

∣∣∣ ≤ (‖f(t)‖L1([0,T ];Hr(Rd)) + ‖φ‖Hr) sup
[0,T ]
‖v(t)‖H−r(Rd)

≤ C(‖f(t)‖L1([0,T ];Hs(Rd)) + ‖φ‖Hr)∫ T

0
‖(Dt −Op(at)∗)v‖H−r(Rd)dt.
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By the Hahn-Banach theorem there exists u ∈ L∞([0, T ];Hr(Rd)) so that∫ T

0
〈u, (Dt −Op(at)∗)v)〉dt =

∫ T

0
〈f(t), v(t)〉dt− i〈φ, v(0)〉

for all v ∈ C∞c ((−∞, T )×Rd) in particular, u solves (3) as a distribution, so all we need to do is
show that u has the desired regularity.

Let fε ∈ S and φε ∈ S have fε → f0 in L1([0, T ];Hs) and φε → φ0 in Hs. Then, applying
the above arguments, we obtain uε ∈ L∞([0, T ];Hs(Rd)) with uε solving (3) for fε and φε. Then,
uε ∈ L∞([0, T ];Hs+2) which implies Op(at)uε ∈ L∞([0, T ];Hs+1). The equation then implies
Dtuε ∈ L∞([0, T ];Hs+1) and in particular, uε ∈ C0([0, T ];Hs). Using the equation again then
implies ∂tuε ∈ C0([0, T ];Hs). In particular, (4) applies to uε. Therefore,

sup
[0,T ]
‖uε(t, ·)− uε′(t, ·)‖Hs ≤ C

(
‖φε − φε′‖Hs +

∫ T

0
‖fε − fε′‖Hsdt

)
.

Hence, since φε and fε are Cauchy, uε is Cauchy in C0([0, T ];Hs(Rd)) and in particular converges
to u0 ∈ C0([0, T ];Hs(Rd)) satisfying (4) with φ = φ0 and f = f0. By similar arguments after us-
ing (3), uε is also Cauchy in C1([0, T ];Hs−1(Rd)) and hence u0 ∈ C1([0, T ];Hs−1(Rd)). Therefore,
u0 is the desired solution. �

1.2. Second Order Operators. We now consider second order operators. The same tech-
niques apply to mth order operators of the same type, but for simplicity we work only with second
order. We want to study,

P =
2∑
j=0

Pj(t, x,Dx)Dj
t

where

(i) Pm = 1 and Pj ∈ C∞(R; Ψ2−j
phg (Rd)) with σ2−j(Pj) = pj(t, x, ξ), σ2(P ) = p

(ii) The zeros of the map
f : τ 7→ 〈ξ〉−2p(t, x, 〈ξ〉τ, ξ)

are uniformly simple on R× ∂T ∗Rd. That is,

|∂τ 〈ξ〉−2p(t, x, 〈ξ〉τ, ξ)|2 + |p(t, x, 〈ξ〉τ, ξ)|2 > 0, for τ ∈ R, (t, x, ξ) ∈ Rd+1 × ∂T ∗Rd.

Let λ̃1, λ̃2 ∈ C∞(R × ∂T ∗Rd) be the zeros of f on ∂T ∗Rd and λi ∈ S1
phg(Rd+1 × Rd) with

〈ξ〉−1λi|∂T ∗Rd = λ̃i and 〈ξ〉a−1|λ1 − λ2| > 0. Then define Λi = λi(t, x,D).
The goal is then to factor P in terms of Dt−Λi with an error involving no derivatives in time.

For this, write

P =
2∑
j=0

PjD
j
t =

2∑
j=0

[(Dt − Λi)Pj + [Pj , Dt] + ΛiPj ]Dj−1
t

where for k < 0, Dk
t = 0. Then, [Pj , Dt] ∈ C∞(R; Ψ2−j), so this is a sum of the form

P = (Dt − Λi)
2∑
j=0

PjD
j−1
t +

1∑
j=0

P̃jD
j
t
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with P̃j ∈ S2−j . Iterating this procedure gives
P = (Dt − Λi)Ei +R

where Ei =
∑1
k=0EikD

k
t with Eik ∈ C∞(R; Ψ1−k) and R ∈ C∞(R; Ψ2). Taking the symbol of

both sides we see that
p(t, x, τ, ξ) = (τ − λi)σ1(Ei)(t, x, τ, ξ) + σ2(R)(t, x, ξ)

In particular, setting τ = λi, we see that σ2(R)(t, x, ξ) = 0 and hence R ∈ C∞(R; Ψ1). Moreover,
σ(Ei) = τ − λj j 6= i.

We summarize this in the next lemma

Lemma 1.2. Suppose that P satisfies (i) and (ii) and let λi i = 1, 2 as above . Then there
exist Λi(x,D′), Λ̃i(x,D′) with σ(Λi) = λi = σ(Λ̃i) so that

P = (Dt − Λ1)(Dt − Λ2) +R(x,D′) = (Dt − Λ̃1)(Dt − Λ̃2) + R̃(x,D′)

with R, R̃ ∈ S1.

With this factorization in place, we can prove the energy estimate.

Lemma 1.3. Let s ∈ R, T > 0, and u ∈ C1([0, T ];Hs) ∩ C0([0, T ];Hs+1) with Pu ∈
L1((0, T );Hs). Then

(6) sup
0≤t≤T

∑
j<2
‖Dj

tu(t, ·)‖Hs+1−j ≤ Cs,T
(∑
j<2
‖Dj

tu(0, ·)‖s+1−j +
∫ T

0
‖Pu(t, ·)‖sdt

)
.

Proof. By the estimate (4), there exists C > 0 uniform in p ∈ [1,∞], λ > 0 large so that

(7)
(∫ T

0
λ
[
e−λt‖Eiu(t, ·)‖Hs

]p
dt

) 1
p

≤ C
(
‖Eiu(0, ·)‖Hs +

∫ T

0
e−λt(‖Pu‖Hs + C‖u‖Hs+1)dt

)
.

We next estimate u and Dtu in terms of E1u and E2u. For this, observe that

τk = λk2(τ − λ1)− λk1(τ − λ2)
λ2 − λ1

and hence with
Qk1 = (λ1 − λ2)−1(x,D)Λk2 ∈ C∞(R; Ψ0)
Qk2 = (λ2 − λ1)−1(x,D)Λk1 ∈ C∞(R; Ψ0)

σk(Qk1E1 +Qk2E2) = τk

and we have

Dk
t = Qk1E1 +Qk2E2 −

1∑
j=0

RjD
j
t , Rj ∈ C∞(R; Ψk−1−j).

So, for each t,
1∑

k=0
‖Dk

t u‖Hs+1−k ≤ C
∑
i

‖Eiu‖Hs + C
1∑

k=0
‖Dk

t u‖Hs−k .



1. ENERGY ESTIMATES AND WELL POSEDNESS 17

Next, observe that
‖Dtu‖Hs−1 ≤ ‖E1u‖Hs−1 + ‖Λ2u‖Hs−1 + C‖u‖Hs−1

and hence

(8)
1∑

k=0
‖Dk

t u‖Hs+1−k ≤ C
∑
i

‖Eiu‖Hs + C‖u‖Hs .

Using (7), together with (4) applied to u with at = 0,

(9)
(∫ T

0
λ
[
e−λt

1∑
k=0
‖Dk

t u‖Hs+1−k
]p
dt

) 1
p

≤

Cs,T
(∑

i

‖Eiu(0)‖Hs + ‖u(0)‖Hs

)
+ C

∫ T

0
e−λt(‖Pu‖Hs +

1∑
k=0
‖Dk

t u‖Hs+1−k)dt.

Letting p = 1 and λ � 1, in (9), the last term can be absorbed in the left hand side and we
have ∫ T

0
λ
[
e−λt

1∑
k=0
‖Dk

t u‖Hs+1−k
]
dt ≤ Cs,T

( 1∑
k=0
‖Dk

t u(0)‖Hs+1−k +
∫ T

0
‖Pu‖Hsdt

)
.

Inserting this into the right hand side of (9) gives(∫ T

0
λ
[
e−λt

1∑
k=0
‖Dk

t u‖Hs+1−k
]p
dt

) 1
p

≤ Cs,T
( 1∑
k=0
‖Dk

t u(0)‖Hs+1−k +
∫ T

0
‖Pu‖Hsdt

)
.

�

We now turn to the well posedness for 2nd order equations.

Theorem 1.2. Assume that (i) and (ii) hold. Then for f ∈ L1((0, T );Hs), uj ∈ Hs+1−j there
exists a unique solution u ∈ C1([0, T ];Hs) ∩ C0([0, T ];Hs+1) to

Pu = f in 0 < t < T, Dj
tu|t=0 = uj , for j < 2.

Proof. As before, the uniqueness follows from the energy estimate. Therefore, we need only
study existence. Suppose v ∈ C∞c ((−∞, T )× Rd) and u ∈ C∞(Rd+1). Then

(10)
∫ T

0
〈u, P ∗v〉dt =

∫ T

0
(Pu, v)dt− i

∑
j+k<2

〈Dj
tu(0), Ekt P ∗j+k+1v(0)〉

Since, P ∗ satisfies (i) and (ii), integrating backwards in time and applying (7),∑
k<2
‖Dk

t v(t)‖H−s−k ≤ C
∫ T

0
‖P ∗v‖H−1−s .

Thus,∣∣∣ ∫ T

0
(f, v)dt− i

∑
j+k<2

〈uj , Ekt P ∗j+k+1v(0)〉
∣∣∣ ≤ C( ∫ T

0
‖f‖Hsdt+

∑
j

‖uj‖Hs+1−j

) ∫ T

0
‖P ∗v‖H−1−s .
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The Hahn Banach theorem implies that there exists u ∈ L∞((0, T );Hs+1) such that (10) holds
with Pu = f , Dj

tu(0) = uj .
As before the remaining task is to improve the regularity of u and in fact to show that there

is a solution with the desired regularity. We proceed as in the proof of Theorem 1.1. That is, it
is enough to show that if f ∈ S and uj ∈ S, then the resulting solution has the desired regularity.
So, suppose that u is the function given above solving

Pu = f ∈ S, Dj
tu|t=0 = uj ∈ S.

Then, for any s, u ∈ L∞([0, T ];Hs+1) and using the factorization of P

(Dt − Λi)Eiu = f +Rju

So, Eiu ∈ L∞([0, T ];Hs) and hence DtEiu ∈ L∞([0, T ];Hs−1), so Eiu ∈ C0([0, T ];Hs−1). Now,
we have by (8) that Dtu ∈ L∞([0, T ];Hs−1) and hence using the equation D2

t u ∈ L∞([0, T ];Hs−2).
Therefore, Dtu ∈ C0([0, T ];Hs−2) and u ∈ C0([0, T ];Hs−1). In particular,

u ∈
⋂
s

1⋂
j=0

Cj([0, T ];Hs−j).

Applying the equation proves that in fact u is smooth. �

2. Strict Hyperbolicity

Now, we consider more general second order operators on a manifold X without boundary.

Definition 2.1. Let P ∈ Diffm(X) with principal symbol p is strictly hyperbolic with respect
to φ ∈ C∞(X;R) if p(x, dφ(x)) 6= 0 and the map

R 3 τ 7→ p(x, ξ + τdφ(x))

has m distinct real roots for all x ∈ X and ξ ∈ (T ∗xX \ 0) \ Rdφ(x).

Example 2.1. Consider X = Rt ×Mx and P = −∂2
t + ∆g. Then, p(t, x, τ, ξ) = τ2 − |ξ|2g.

Consider φ(t, x) = t. Then, dφ = dt and so

p(t, x, dφ, 0) = 1 6= 0, p(t, x, τdφ, ξ) = τ2 − |ξ|2g
So, P is strictly hyperbolic with respect to φ = t.

Our main aim for the rest of this section is to study well posedeness of the Cauchy for P and
in particular,

Theorem 2.1. Let P be a differential operator of order 2 with C∞ coefficients in X and
let Y ⊂ X be an open, precomapct subset. Assume that P is strictly hyperbolic with respect to
φ ∈ C∞(X;R) and define

X+ = {x ∈ X | φ(x) > 0}, X0 := {x ∈ X | φ(x) = 0}.

(i) If f ∈ Hs
loc(X) has support in the closure of X+ then there exists u ∈ Hs+1

loc (X) with
support in the closure of X+ such that Pu = f in Y .
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(ii) If s ≥ 0, v is a vector field with vφ = 1 near X0, f ∈ Hs
loc(X+) and uj ∈ Hs+1−j

loc (X0),
j < 2, then there exists u ∈ Hs+1

loc (X+) such that Pu = f in X+ ∩ Y and vju = ujin
X0 ∩ Y. Moreover u satisfies for every K ⊂ X compact with K, [TODO]estimates

2.0.1. Anisotropic Sobolev spaces. We will work locally assuming that X = Rd and φ(x) = x1,
but before we do so, it will be useful to have certain anisotropic sobolev spaces. For a distribution
u ∈ S(Rd) and m, s ∈ R, we define the norm

‖u‖2m,s := (2π)−n
∫
|û(ξ)|2(1 + |ξ|2)m(1 + |ξ′|2)sdξ

We then define Hm,s(Rd) as the closure of S with respect to the ‖ · ‖m,s norm.
We will actually want to work in the half space Rd+ := {(x1, x

′) ∈ Rd | x1 > 0}. For this, we
use the following notation. For a space of distriutions F (Rd), we define

F (Rd+) := {U |Rd+ | U ∈ F (Rd)}.

We also define
Ḟ (Rd+) := {U ∈ F (Rd) | suppU ⊂ Rd+}.

We will mostly be concerned with H
m,s(Rd+) and Ḣm,s(Rd+). For u ∈ Hm,s(Rd+), we define

the norm
‖u‖m,s := inf{‖U‖m,s | U ∈ Hm,s(Rd), U |Rd+ = u}.

We define spaces analogously on a manifold X with boundary.
We will need the following lemma
Lemma 2.1. Let u ∈ S

′(Rd+). Then u ∈ H
m,s(Rd+) if and only if u ∈ H

m−1,s+1(Rd+) and
D1u ∈ H

m−1,s(Rd+);
1
2‖u‖

2
m,s ≤ ‖D1u‖2m−1,s + ‖u‖2m−1,s+1 ≤ ‖u‖2m,s.

Furthermore, u ∈ Hm,s(Rd+) if and only if u ∈ Hm,s−1 and Dju ∈ H
m,s−1(Rd+) for 1 < j ≤ d and

‖u‖2m,s = ‖u‖2m,s−1 +
d∑
j=2
‖Dju‖2m,s−1.

Proof. Let u ∈ Hm,s(Rd+) and U ∈ Hm,s(Rd) with U |Rd+ = u. Then,

‖U‖2m,s = ‖D1U‖2m−1,s + ‖U‖2m−1,s+1 = ‖U‖2m,s−1 +
d∑
j=2
‖DjU‖2m,s−1

is checked easily from the definition. Therefore, u ∈ Hm−1,s+1, D1u ∈ H
m−1,s, u ∈ Hm,s−1, and

Dju ∈ H
m,s−1 and

‖D1u‖2m−1,s + ‖u‖2m−1,s+1 ≤ ‖u‖2m,s

‖u‖2m,s−1 +
d∑
j=2
‖Dju‖2m,s−1 ≤ ‖u‖2m,s
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We now need to show the other inclusions. Together with the estimates, they are obtained
from the following lemma.

Lemma 2.2. Let Λm,s(ξ) = (〈ξ′〉 + iξ1)m〈ξ′〉s. Then Λm,s(D) is an isomorphism of Ṡ(Rd+)
extending by continuity to L2(Rd+) → Ḣ−m,−s(Rd+). Moreover, Λ̄m,s(D) extends by continuity
from C∞c (Rd+) to an isomorphism from H

m,s(Rd+) to L2(Rd+). In particular,

‖u‖m,s = ‖Λ̄m,s(D)u‖L2(Rd+)

and Hm,s(Rd+) consists of those u ∈ S′(Rd+) with Λ̄m,su ∈ L2.

Proof. One can easily check that suppF−1(Λm,s) ⊂ Rd+ and suppF−1(Λ̄m,s) ⊂ Rd−. (For
example by the Paley-Weiner theorem.) Therefore, Λm,s(D) maps Ṡ(Rd+) continuously to itself
and has inverse Λ−m,−s(D). The extension to L2 then follows since |Λm,s(ξ)|2 = 〈ξ〉2m〈ξ′〉2s. The
second statement follows by duality. �

�

We record the following consequence of Lemma 2.2 for later use.

Corollary 2.1. Suppose u ∈ Ḣ−m,−s(Rd+). Then there exist u0 ∈ Ḣ1−m,−s−1(Rd+) and
u1 ∈ Ḣ1−m,−s so that

u = u0 +D1u1.

Proof. Observe that Λm,s(D) = (〈D′〉 + iD1)Λm−1,s. So, since Λm,s : L2 → Ḣ−m,−s is an
isomorphism, there exists v ∈ L2 such that

u = Λm,sv = (〈D′〉+ iD1)Λm−1,sv

and observing that

〈D′〉Λm−1,sv ∈ Ḣ1−m,−s−1, iΛm−1,sv ∈ Ḣ1−m,−s.

�

2.0.2. The local problem. We start with the case X = Rd and φ(x) = x1. Then,

P =
2∑
j=0

Pj(x1, x
′, Dx′)Dj

x1 , Pj ∈ Diff2−j

and by the strict hyperbolicity assumption 0 < |P2|. Hence, dividing by a nonzero smooth function
we may assume that P2 = 1. Moreover, since P is a homogeneous polynomial of degree 2 in (ξ1, ξ

′)
for which that map ξ1 7→ p(x, ξ1, ξ

′) has two distinct real zeros, we may assume P satisfies the
assumptions of Theorem 1.2 for x ∈ Y .

Let λ1(x, ξ′), λ2(x, ξ′) be the roots of p(x, ·, ξ′). Fix χ ∈ C∞c (Rd) with χ ≡ 1 in Y and define

p̃ =
2∏
j=1

(ξ1 − λ̃j), λ̃i = χλj + (1− χ)j|ξ′|.
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Now, let P̃ ∈ Diff2(Rd) with principal symbol p̃. Then P̃ satisfies the hypotheses of Theorem 1.2
for x ∈ Rd and has constant coefficients outside a compact set.

Lemma 2.3. Suppose that P is strictly hyperbolic with respect to x1 in X ⊂ Rd and let Y ⊂ X
be open and precompact. If f ∈ Hs,t(Rd+) and s ≥ 0, uj ∈ Hs+t+1−j(Rd−1), j < 2, then there
exists u ∈ Hs+1,t(Rd+) such that Dj

1u ∈ C0(R;Hs+t+1−j(Rd−1)) when x1 ≥ 0 and

Pu = f in Y ∩ Rd+, Dj
1u = uj in Y ∩ (Rd−1 × {0}), j < 2.

Moreover, for χ ∈ C∞c (X) with χ ≡ 1 on Y , Cχ > 0 so that we can find such a u with

‖u‖Hs+1,t(Rd+) ≤ Cχ(‖χf‖s,t +
∑
j

‖χuj‖Hs+t+1−j )

Proof. Fix T > sup{x1 | x ∈ suppχ}. Then, since s ≥ 0, f ∈ L1((0, T );Hs+t+1−j). Hence,
by theorem 1.2 there exists v ∈ C0([0, T ];Hs+t+1)∩C1([0, T ];Hs+t) with P̃ v = χf on 0 < x1 < T

and Dj
1v|x1=0 = χuj . Note that, letting XT := (0, T ) × Rd−1, by Lemma 2.1 v ∈ H1,s+t(XT ).

Moreover, P̃ v ∈ Hs,t(XT ).
Now, observe that by Lemma 2.1

Dj
1v ∈ H

k+1−j,s+t−k(XT ), k = 0, j < 2.

Suppose this holds for k < s. Then,

D2
1v = P̃ v −

∑
j<2

P̃jD
j
1v ∈ H

k,s+t−k−1(XT ).

In particular, D1v ∈ H
k+1,s+t−k−1 and v ∈ H

k+2,s+t−k−1 by Lemma 2.1. So, by induction
v ∈ Hs+1,t(XT ) as desired. Letting u = χv gives the desired result. �

Next we give a local version of the first part of Theorem 2.1.

Lemma 2.4. Assume P is strictly hyperbolic with respect to x1 in X ⊂ Rd and let Y ⊂ X be
open and precompact. If f ∈ Ḣs,t(Rd+), then there exists u ∈ Ḣs+1,t(Rd+) such that Pu = f in Y .

Proof. First, suppose s ≥ 0. Then, by Lemma 2.3, there exists v ∈ Hs+1,t({x1 > −1}) with

P̃ v = f, −1 < x1 < T, Dj
t v|x1=−1 = 0.

Observe then that since supp f ⊂ Rd+, the energy estimate (6) implies supp v ⊂ Rd+ and hence,
extending v to x1 < −1 by 0, v ∈ Ḣs+1,t(Rd+).

Thus, we have verified the theory for s ≥ 0. To prove it for s < 0, we proceed by induction.
Assume the theorem holds when s is replace by s+ 1. Then by Corollary 2.1,

f = f0 +D1f1

where f0 ∈ Ḣs+1,t−1 and f1 ∈ Ḣs+1,t. Now, there exist u0 ∈ Ḣs+2,t−1 and u1 ∈ Ḣs+2,t such that

P̃ u0 = f0, P̃ u1 = f1.
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Now, U = u0 +D1u1 ∈ Ḣs+1,t and

P̃U − f = [P̃ ,D1]u1 ∈ Ḣs+1,t−1

since [P̃ ,D1] of order at most 1 in the D1 derivatives and 2 in all derivatives. Then, we have
v ∈ Ḣs+2,t−1 with P̃ v = [P̃ ,D1]u1 and u = U − v is the desired solution. �

In order to finish the proof of Theorem 2.1, we need some uniqueness for solutions

Lemma 2.5. Suppose P is strictly hyperbolic in X with respect to φ. Then every x0 ∈ X has
a fundamental system of neighborhoods V such that u ∈ D′(V ), φ ≥ φ(x0) in suppu, and Pu = 0
in V implies u = 0 in V .

Proof. Take coordinates so that x0 = 0 and φ(x) = φ(0) +x1− |x′|2. This is possible by the
Morse lemma. Then let

Vε = {x | |x1| < ε2, |x′| < ε}.

Now, ξ1 7→ 〈ξ′〉−2p(0, 〈ξ′〉ξ1, ξ
′) has distinct real zeros on ∂T ∗0 Rd−1 so the same is true for x ∈ Vε

provided 0 < ε < ε0. Moreover, this ε0 can be chosen uniformly on compact subset of X.
Now, by Lemma 2.4 for g ∈ C∞c (Vε), we can find v ∈ C∞(Vε) with P ∗v = g in Vε and v = 0

for x1 > ε2 − δ where δ > 0 is chosen so that g = 0 on x1 > ε2 − δ. Then,

0 = (Pu, v) = (u, P ∗v) = (u, g)

and in particular u is 0 in Vε. �

We finally prove the Theorem 2.1

Proof. Let Xν ⊂ X be coordinate patches and Yν ⊂ Xν be precompact so that Ȳ ⊂ ∪νYν .
For each ν, by Lemma 2.4 we can find uν ∈ Hs+1

loc (Xν) vanishing in φ < 0 so that Puν = f in Yν .
We choose a covering of X0 ∩ Ȳ by open sets Vµ with the properties claimed in Lemma 2.5 and
choose Vµ small enough that that if Vµ ∩Vµ′ 6= ∅, Vµ ∪Vµ′ ⊂ Yν for some ν. We the define u = uν
in Vµ whenever Vµ ⊂ Yν . Then u is well defined in V = ∪µVµ and Pu = f there.

Now, let χ ∈ C∞c (X) with χ ≡ 1 in a neighborhood, W of X0 ∩ Ȳ so that W̄ ⊂ V . Then
P (χu) = f in W . In particular, there exists g ∈ Hs

loc(X) and ε > 0 so that g = 0 when φ < ε
and P (χu) = f − g in Y . Therefore, we need to prove the statement with f replaced by g and φ
replaced by φ− ε.

Since Ȳ is compact, and the ε0 in the proof of Lemma 2.5 can be chosen uniformly on compact
sets, the ε above can be chosen uniformly with φ replaced by φ − t for t ∈ [0, supY φ(x)]. Then,
since the theorem is trivial if Y ⊂ {φ < 0}, the proof is complete after a finite number of iterations
of the argument above.

For the second part of the theorem we appeal to Lemma 2.3 instead of Lemma 2.4
�

Corollary 2.2. Suppose that for a < b, Xab := {a < φ(x) < b} is precompact. Then the
solution given by Theorem 2.1 is unique when Y = Xab.
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Proof. Suppose that Pu = 0 in X0b, suppu ⊂ {φ(x) ≥ 0}. Then, by construction suppu ⊂
{φ > ε} where ε is uniform on Xab. In particular, iterating finitely many times, u = 0.

For uniqueness with s ≥ 0 an initial conditions imposed, suppose that Pu = 0 in X0b,
u ∈ H

1,t(X0b) with Dju|t=0 = 0 for j < 2. Then, extending u by 0 into φ < 0, we have
u ∈ H1,t(X) we have suppu ⊂ {φ(x) ≥ 0} and hence as before u = 0. �

3. Boundaries

We will focus on the case m = 2 throughout these notes. In this case, it is possible to associate
a Lorentzian metric to p. Multiplying P by p(x, dφ(x))−1, we assume that p(x, dφ) = 1. Since
m = 2, in coordinates (x, ξ) on T ∗M , we can write

p(x, ξ) = 〈G−1(x)ξ, ξ〉

where G−1(x) is a symmetric invertible matrix. In fact, The invertibility of G follows from the
fact that p is strictly hyperbolic with respect to φ. In fact, if G−1(x)ξ = 0, then

p(x, ξ + τdφ) = 〈G−1(x)(ξ + τdφ), (ξ + τdφ)〉 = τ2〈G−1(x)dφ, dφ〉 = τ2p(x, dφ) = τ2

which has a double root at 0.
We then define a symmetric bilinear form on T ∗xM by

〈ξ, η〉g =: 〈G−1(x)ξ, η〉

which we identify in the usual way with a metric on TxX i.e.

〈V,W 〉g =: 〈G(x)V,W 〉.

We now classify tangent vectors into three types.

Definition 3.1. We say that V ∈ TxX

(1) is time-like if 〈V, V 〉g > 0

(2) is space-like if 〈V, V 〉g < 0

(3) is null if 〈V, V 〉g = 0.

We then say that a hypersurface H is spacelike, timelike or null if p(ν) < 0, p(ν) > 0, or
p(ν) = 0 respectively where ν a conormal to H.

Throughout this section, we will also make the assumptions that

(11) X 3 x 7→ φ(x) is proper, ∂X is time-like.

The proof of Theorems 4.1 and ?? will follow as usual from certain a-priori estimates on the
solution.

3.1. Estimates with a boundary. References: Hormande:III 24.1



24 3. BASIC ESTIMATES FOR HYPERBOLIC EQUATIONS ON MANIFOLDS WITH BOUNDARY

4. Existence and Uniqueness

References: Hormande:III 24.1

Theorem 4.1. Let f ∈ H̄s
loc(Xo), u0 ∈ Hs+1(∂X) where s ≥ 0 and assume u0, f vanish on

{φ < a}, that p is strictly hyperbolic with respect to φ and (11) holds. Then there is a unique
u ∈ H̄s+1

loc (Xo) such that 
Pu = f in Xo

u = u0 on ∂X

u = 0 on φ < a.

Moreover u satisfies for every a′ < a < b < b′, [TODO]estimates
‖u‖H̄s+1(a<φ<b) ≤ C(‖f‖H̄s(a′<φ<b′) + ‖u0‖Hs+1(∂X)).



CHAPTER 4

Propagation of Singularities

In this chapter we study an operator P ∈ Diff2(X) for X a manifold with boundary ∂X and
interior Xo. We assume throughout that ∂X is non-characteristic for P . That is, p does not
vanish on N∗∂X. For propagation in Xo, we will allow P to have an imaginary principal symbol.
However, when it comes time to study the problem near the boundary, we will insist that the
symbol be real valued.

1. Propagation in the bulk

2. Propagation of singularities for strictly hyperbolic problems

We now prove the propagation of singularities result for pseudodifferential operators.

Theorem 2.1. Let X be a compact manifold and P ∈ Ψm
phg(X) with σ(P ) = p− iq with p, q

real valued. Suppose that A,B,B1 ∈ Ψ0
phg(M) such that

(1) for all (x0, ξ0) ∈WF(A), there exist T > 0 so that exp(−T 〈ξ〉−m+1Hp)(x0, ξ0) ∈ ell(B),

exp(−t〈ξ〉−m+1Hp)(x0, ξ0) ∈ ell(B1), 0 ≤ t ≤ T.

(2) q ≥ 0 on WF(B1). Then, for all u ∈ D′(M) if B1Pu ∈ Hs−m−1(X) and Bu ∈ Hs then
Au ∈ Hs and for all N > 0, there exists CN > 0 such that

‖Au‖Hs ≤ C‖B1Pu‖Hs−m−1 + C‖Bu‖Hs + CN‖u‖H−N .

2.1. Construction of the escape function. The idea will be to use positivity of the
commutator [P,A] to obtain estimates on u in terms of P . In order to do this, we will produce a
so-called escape function which is increasing along the flow.

Lemma 2.1. Let X be a compact manifold without boundary and A,B,B1 be as in Theorem 2.1.
Then there exists 0 ≤ g ∈ C∞(∂T ∗X) such that there exists β ≥ 0 with

g > 0 on W̄F(A), 〈ξ〉−m+1Hpg ≤ −βg in a neighborhood of ∂T ∗X \ ell(B).

Proof. Let ϕt(x0, ξ0) := exp(t〈ξ〉−m+1Hp)(x0, ξ0). We start with the case W̄F(A) = {(x0, ξ0)}.
We may assume that 〈ξ〉−m+1Hp(x0, ξ0) 6= 0 since otherwise any g ≥ 0 will due. Now, let T > 0
so that ϕ−T (x0, ξ0) ∈ ¯ell(B). Tke Σ ⊂ ∂T ∗X a hypersurface through (x0, ξ0) transverse to Hp.
Then, there exists a neighborhood V of (x0, ξ0) in Σ and δ > 0 so that

Φ(t, q) : (−T − δ, δ)× V 3 (t, q) 7→ ϕt(q) ∈ T ∗X.
25
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is a diffeomorphism onto its image and
Φ(−T − δ,−T + δ, V ) ⊂ ēll(B), Φ(−T − δ, δ, V ) ⊂ ¯̀(B1)

Let 0 ≤ ψ(t) ∈ C∞c (−T − δ, δ) such that ψ′(t) ≤ −βψ off of (−T − δ/2, T + δ/2) and χ(0) > 0.
Then, fix 0 ≤ χ ∈ C∞c (V ) and define

g(x, ξ) = (ψ ⊗ χ)(Φ−1(x, ξ)).
and extend g by 0 outside of the image of Φ.

Notice that g > 0 in a neighborhood of (x0, ξ0), so by compactness of W̄F(A), there exist
(xn, ξn) ∈ T ∗X such that

g =
∑
n

gxn,ξn > 0 on W̄F(A),

Moreover,
Hpg =

∑
n

Hpgxn,ξn ≤ −β
∑
n

gxn,ξn = −βg in a neighborhood of T ∗X \ ¯̀(B).

. �

We now prove the propagation of singularities estimate

Proof. Fix a volume form onM and write ImA = A−A∗
2i , ReA = A+A∗

2 . LetG = Op(〈ξ〉s+
1−m

2 g)
and E = Op(〈ξ〉s+

1−m
2 ) for some metric on X. For u ∈ C∞(M) consider

Im〈Pu,G∗Gu〉 = Im〈RePu,G∗Gu〉+ Re〈ImPu,G∗Gu〉
2

[TODO]finish see Dyatlov–Zworski
�

3. The b-wavefront set

[TODO]

4. Propagation near the boundary

With Theorem 2.1 in place, we have a complete understanding of how singularities propagate
in Xo (at least provided that Hp is not radial!). Therefore, it remains to understand the behavior
near the boundary of X. Throughout this section, we will use [TODO] to change coordinates
so that

p = ξ2
1 − r(x, ξ′)

where p(x, ξ) is the symbol of p.
We denote by π : T ∗∂XX → T ∗∂X the projection through N∗∂X and write Σ := {ρ ∈ T ∗X |

p(ρ) = 0}. We then divide T ∗∂X into three regions, the elliptic, hyperbolic, and glancing regions

(12)
E := {q ∈ T ∗∂X | π−1(q) ∩ Σ = ∅},
H := {q ∈ T ∗∂X | #(π−1(a) ∩ Σ) = 2},
G := T ∗∂X \ (E ∪ H).
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We will study each of these regions separately. There is no propagation in E and the propagation
in H results in broken bicharaceteristics. The propagation through G is subtle and will require a
great deal of analysis.

4.1. The elliptic region. Our first task will be to prove the analog of the fact that if X
is a compact manifold without boundary, then WF(u) ⊂ WF(Pu) ∪ {p = 0}. Note that the
same proof shows that this continues to hold in the interior of a manifold with boundary and in
particular, WFb(u)|Xo ⊂WFb(Pu)|Xo . Now, with Σ := {p = 0} ⊂ T ∗X, define Σ̃ = ι(Σ) ⊂ T̃ ∗X
where ι : T ∗Xo → T̃ ∗X is the natural inclusion extended to T ∗X. One might hope that analog
of the elliptic regularity statement would be

WFb(u) ⊂ Σ̃ ∪WFb(Pu).
However, it is easy to see that such a statement cannot hold without imposing some boundary
conditions and so, the correct statement should be
(13) WFb(u) ⊂ Σ̃ ∪WFb(Pu) ∪WF(u|∂X).
Now, notice that in coordinates where ∂X = {x1 = 0}

Σ̃|∂X = {(x′, ξ′) ∈ T ∗∂X | (0, x′, ξ1, ξ
′) ∈ Σ} = H ∪ G

and so to obtain (13) it is enough to show
WFb(u) ∩ E ⊂

(
WFb(Pu) ∪WF(u|∂X)

)
∩ E .

In order to study the elliptic region, we start with a local problem. In particular, we assume
that X ⊂ Rd+ with ∂X ⊂ {x1 = 0}. We then consider

P = D2
x1 + b(x,D′)Dx1 + c(x,D′).

We will start by proving elliptic regularity for such an operator.

Lemma 4.1. Suppose that u ∈ H1
comp, Pu ∈ H−1, and u|x1=0 = 0 and T ∗{x1 = 0} ⊂ E. Then,

‖u‖
H

1 ≤ C(‖Pu‖
H
−1 + ‖u‖L2).

We first need,

Lemma 4.2. For u ∈ Ḣ1
comp,

(D2
x1u, u)H−1,H1 = ‖Dx1u‖2.

Proof. Since u ∈ Ḣ1
comp, we may extend u by 0 to U ∈ H1(Rd). Then, let uε → U in H1

with uε ∈ C∞c and suppuε ⊂ {x1 ≥ 0}. For example, take ψ ∈ C∞c (Rd) with suppψ ⊂ {x1 > 0},∫
ψ = 1 and let uε = ε−dψε ∗ u.

(D2
x1uε, uε)H−1,H1 = ‖Dx1uε‖2.

Now,
|(D2

x1u, u)− (D2
x1uε, uε)| = |(D

2
x1(u− uε), u) + (D2

x1uε, u− uε)|
≤ ‖u− uε‖H1(‖u‖H1 + ‖uε‖H1)→ 0.
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Also,
‖Dx1uε‖2L2 → ‖Dx1u‖2L2 ,

completing the proof. �

We now prove Lemma 4.2

Proof. We proceed using standard energy estimates.
(Pu, u)

H
−1
,Ḣ1 = (D2

x1u, u) + (b(x,D′)Dx1u, u) + (c(x,D′)u, u)

‖Dx1u‖2L2 + (Dx1u, b
∗(x,D′)u) + (c(x,D′)u, u)

Now, since T ∗{x1 = 0} ⊂ E , there exists δ > 0 so that

c(x, ξ′) ≥ b2(x, ξ′)
4 + δ|ξ′|2.

Therefore, there exists δ0 > 0 so that

(c(x,D′)u, u)− (1 + δ0)
4 ‖b(x,D′)u‖2L2 ≥

δ

2‖∇x
′u‖2L2 − C‖u‖2L2 .

On the other hand

|(Dx1u, b
∗(x,D′)u)| ≤ ‖Dx1u‖L2‖b∗(x,D′)u‖L2 ≤

1 + δ0
4 ‖b(x,D′u‖2L2 + 1

1− δ0
‖Dx1u‖2L2 .

So,
|(Pu, u)| ≥ c(‖Dx1u‖2L2 + ‖∇x′u‖2L2)− C‖u‖2L2 .

In particular,
c‖u‖2H1 ≤ ‖Pu‖H−1‖u‖H1 + (C + c)‖u‖2L2 ≤ ε−1‖Pu‖2H−1 + ε‖u‖2H1 + C‖u‖2L2

So, choosing 0 < ε < c/2,
‖u‖2H1 ≤ C(‖Pu‖2H−1 + ‖u‖2L2).

�

Next, let E : Hs({x1 = 0}) → H
s+ 1

2 be the extension operator. Let u ∈ H1 with u|{x1=0} =
u0 ∈ H

1
2 . Then, u− Eu0 ∈ H

1 with u|x1=0 = 0 Moreover,
‖Eu0‖H1 ≤ ‖u0‖H1/2 .

So,
‖P (u− Eu0)‖

H
−1 ≤ ‖Pu‖

H
−1 + C‖u0‖H1/2 .

In particular,

Lemma 4.3. For u ∈ H1, with u|x1=0 = u0,
‖u‖

H
1 ≤ C(‖Pu‖

H
−1 + ‖u0‖H1/2 + ‖u‖L2).

Next, we improve the regularity of u.
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Lemma 4.4. Suppose u ∈ L2(Rd+), u|x1=0 = u0 ∈ H1/2 and Pu ∈ H−1. Then,

‖u‖H1 ≤ C(‖Pu‖H−1 + ‖u0‖H1/2).

Proof. Let χ ∈ C∞c (Rn−1) with χ ≡ 1 near 0. Then put uε = χ(εD′)u. Then uε → u ∈ L2,
Puε → Pu ∈ H−1, uε ∈ H0,t for all t. Now,

Puε = χ(εD′)Pu+ [χ(εD′), b(x,D′)]Dx1u+ [χ(εD′), c(x,D′)]u ∈ H−1,t

for any t. In particular,
D2
x1uε ∈ H

−1,t−1, Dx1uε ∈ H−1,t.

Therefore, Dx1uε ∈ H0,t−1 and then, since uε ∈ H0,t−2, u ∈ H1,t−2. In particular, choosing t ≥ 2,
uε ∈ H1. Hence,

‖uε‖H1 ≤ C(‖Puε‖H−1 + ‖uε‖L2 + ‖uε|x1=0‖H1/2) ≤ 2C(‖Pu‖H−1 + ‖u‖L2 + ‖u0‖H1/2).

In particular, there exists a subsequence so that uε ⇀ ũ in H
1. But uε → u ∈ L2, so u ∈ H1 and

the estimate continues to hold. �

Lemma 4.5. Suppose s ≥ 0, u ∈ Hs,t(Rd+), u|x1=0 = u0 ∈ Hs+t+ 1
2 . Then

‖u‖
H
s+1,t ≤ C(‖Pu‖Hs−1,t + ‖u‖Hs,t + ‖u|x1=0‖

Hs+t+ 1
2
).

Proof. We start with t = 0, Observe that

P (〈D′〉s)u = 〈D′〉sPu+ [b(x,D′), 〈D′〉s]Dx1u+ [c(x,D′), 〈D′〉s]u

. So,
‖〈D′〉su‖H1 ≤ C(‖〈D′〉sPu‖H−1 + ‖u‖H0,s + ‖〈D′〉su0‖H1/2 .

In particular,
‖u‖H1,s ≤ C‖Pu‖H−1,s + ‖u‖Hs,0 + ‖u0‖

Hs+ 1
2
.

Iterating as before, we then obtain Therefore,

‖u‖Hs+1,0 ≤ C‖Pu‖s−1,0 + ‖u0‖
H

1
2 +s .

Now, for t 6= 0,

‖〈D′〉tu‖Hs+1,0 ≤ C(‖〈D′〉tPu‖Hs−1,0 + ‖u‖Hs,t + ‖〈D′〉tu0‖
Hs+ 1

2

which concludes the proof. �

Finally,

Lemma 4.6. Suppose T ∗{x1 = 0} ⊂ E, u ∈ N (Rd+),

Pu = f ∈ N (Rd+), u|x1=0 = u0.

Then,
WFb(u)|T ∗{x1=0} = WFb(f)|{x1=0} ∪WFb(u0).
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Proof. Here, the inclusion of the right hand side in the left is automatic from the definition
of WFb. Therefore, we need only show that the right hand side is contained in the left. Suppose
that (0, ξ′0) /∈WFb(f)|{x1=0} ∪WFb(u0). Fix δ > 0 so that

{0 < x1 ≤ δ} ∩ {x | (x, ξ1, 0) ∈WF(u) ∪WF(f)} = ∅.
In particular, this is possible since WFb(u)|{x1=0} ⊂ T ∗{x1 = 0} and WFb(u) is closed. Therefore,
for x1 > 0 small and (x, ξ) ∈WF(u), x1|ξ1| < |ξ′|.

Now, let
W ′ := WFb(f)|{x1=0} ∪WFb(u0) ∪ {(x, ξ′) | 0 < x1 ≤ δ, (x, ξ) ∈WF(f) for some ξ1}.

This is closed since WFb(f) is. Let χ ∈ S∞(R× T ∗Rd−1) with χ(x, ξ′) = 0 for x1 ≥ δ and order
−∞ in a conic neighborhood of W ′. We call such a χ a goodc cutoff. Then, since WF(f) avoids
the N∗{x1 = c} for c ≤ δ, χ(x,D′)f ∈ C∞ [TODO]references.

Now, choose s, t such that for χ ∈ Sj good,

χ(x,D′)u ∈ Hs,t−j
loc .

Now, for χ ∈ S0, good

Pχ(x,D′)u = χ(x,D′)f + [P, χ(x,D′)]u ∈ Hs−1,t
.

Indeed,
[P, χ(x,D′)]u = P0(x,D′)χ0(x,D′) +Dx1P1(x,D′)χ1(x,D′)

where Piχi is a good cutoff in S1−i.
By iteration we obtain then that

χ(x,D′)u ∈ Hs+1,t−1

and in particular,
χ(x,D′)u ∈ Hs0,t0

with s0 ≥ 0.
Now, observe that

χ(x,D′)u|x1=0 = χ(x,D′)u0 ∈ C∞,
So

Pχ(x,D′)u ∈ Hs0−1,t0 , χ(x,D′)u|x1=0 ∈ C∞.
Therefore, by Lemma 4.5, χ(x,D′)u ∈ Hs0+1,t0 and in particular, χ(x,D′)u ∈ C∞. Now, since
(0, ξ′0) /∈ W ′, we may take χ(x, ξ′) good with χ(0, ξ′0) = 1 and hence by [TODO]reference,
(0, ξ′0) /∈WFb(u). �

Finally, we return to the general situation and prove our main theorem for singularities there.

Theorem 4.1. Suppose that P ∈ Diff2(X) with ∂X non-characteristic for P . Suppose f ∈
N (X) and

Pu = f ∈ Xo, u|∂X = u0

Then,
WFb(u)|∂X ∩ E = (WFb(f)|∂X ∪WF(u0)) ∩ E .
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[TODO]for this theorem to make sense we need to prove earlier that if ∂X is
non-char, Pu = f ∈ N (X) then u ∈ N (X). We did this in class

Proof. Again, the inclusion of the left-hand side in the right is trivial. So, suppose we work
in coordinates where (0, ξ′0) ∈ E , (0, ξ′0) /∈ WFb(f)|∂X ∪WF(u0). Then, observe that in these
coordinates

P = P2(x)D2
x1 + P1(x,D′)Dx1 + P0(x,D′)

with Pi ∈ S2−i and P2 6= 0 near 0. Therefore, let χ ∈ C∞c (X) with χ ≡ 1 near 0 and let
ψ ∈ C∞c (Rd−1) with ψ ≡ 1 in a conic neighborhood of {ξ′ | ξ′/|ξ′| = ξ′0/|ξ′0|, |ξ| ≥ 1}. Let

(14) P̃ = D2
x1 +

1∑
j=0

([P0(x)−1χ(x)ψ(D′)Pj(x,D′) +P0(0)−1(1−χ(x)ψ(D′))Pj(0, ξ′0/|ξ′0||D′|)]Dj
x1

In particular, for g ∈ N (X),
(0, ξ′0) /∈WFb([P̃ − P ]g).

Therefore,
(0, ξ′0) /∈WFb(P̃ u)

Moreover, T ∗{x1 = 0} ⊂ EP̃ for χ supported in a small enough neighborhood of 0 and ψ in a small
enough neigbhorood of ξ′0. Therefore, Lemma 4.6 applies and (0, ξ′0) /∈WFb(u) as desired. �

[TODO]prove the next thing We next state a quantitative analog of Theorem 4.1.

Theorem 4.2. Suppose that P ∈ Diff2(X) with ∂X non-characteristic for P . Suppose f ∈
N (X) and

Pu = f ∈ Xo, u|∂X = u0

Then, for A ∈ Ψ0
b(X), B ∈ Ψ0

b(X), with WFb(A) ⊂ ell(B) and WFb(B) ⊂ E ∩ Σ̃ = ∅, we have

‖Au‖Hs ≤ C(‖BPu‖
H
s−2 + ‖Bu|∂X‖

Hs− 1
2
).

4.2. The Hyperbolic region. Now that we have microlocal elliptic regularity in place, we
want to study the analog of Theorem 2.1. In particular, we want to understand how singularities
may propagate inside Σ̃. This will happen in two steps. First, we study H ⊂ T ∗∂X and only
then G. In H, many methods are available to prove propagation of singularities. We will use a
factorization method similar to what was used to prove well posedness for hyperbolic equations.
For other approaches see [TODO]references.

Recall that we may choose coordinates so that ∂X = {x1 = 0} and

p(x, ξ) = ξ2
1 − r(x, ξ′).

If (x′0, ξ′0) ∈ H, then the roots of ξ1 7→ p(0, x′0, ξ1, ξ
′
0) are ±

√
r0(x′0, ξ′0) where r0(x′, ξ′) :=

r(0, x′, ξ′). Note then that the ± root is a covector pointing in/out of X. Moreover, since

Hp = 2ξ1∂x1 −Hr,

γ±(t) : exp(±tHp)(0, x′,±
√
r0(x′, ξ′), ξ′) is a bicharacteristic for p in Xo for t in (0, ε).
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Definition 4.1. We define a compressed broken bicharacteristic for p as a continuous map
γ(t) : I → Σ̃ \ G

where I ⊂ R is an interval and

- When γ(t) ∈ Σ̃ ∩ T ∗Xo, γ(t) ∈ C1 and γ′(t) = Hp(γ(t)).
- {t ∈ I | γ(t) ∈ H} is a discrete subset of I.

Locally near a point (x′, ξ′) ∈ H, such a broken bicharacteristic is given by

γ(t) =
{
ι(exp(tHp)(0, x′,

√
r0(x′, ξ′), ξ′)) 0 ≤ t ≤ ε

ι(exp(tHp)(0, x′,−
√
r0(x′, ξ′), ξ′)) −ε ≤ t ≤ 0.

Our next theorem says that singularities of solutions to Pu = 0 with u|∂X = 0 are invariant
along such broken bicharacteristics.

Theorem 4.3. Suppose that P ∈ Diff2(X) with ∂X non-characteristic for P . Suppose f ∈
N (X) and

Pu = f ∈ Xo, u|∂X = u0

Suppose that γ : I → Σ̃ is a broken bicharacteristic such that γ(I)∩ (WFb(f)∪WF(u0)) = ∅, then
for any t0 ∈ I if γ(t0) /∈WFb(u) then

γ(I) /∈WFb(u).

Notice that for γ(I) ∩ T ∗∂X = ∅, Theorem 4.3 is an easy consequence of Theorem 2.1.
Therefore, in the proof we may work locally near a point t ∈ I such that γ(t) ∈ H. Without
loss of generality, we therefore assume ρ0 = γ(0) ∈ H. Then, since ρ ∈ H, freezing coefficients
as in (14), we may replace P by P̃ such that T ∗∂X ⊂ H so that P̃ u has the same wavefront set
properties as Pu near ρ0.

We continue to call the operator P for brevity and observe that
p(x, ξ) = ξ2

1 − r(x, ξ′)
with r(x, ξ′) < c|ξ′|2. In particular, P is strictly hyperbolic with respect to x1 and we may apply
Lemma 1.2. However, it will be necessary to upgrade this factorization.

Lemma 4.7. There exist Λ±(x,D′), Λ̃±(x,D′) ∈ S1 with symbols σ(Λ±) = σ(Λ̃±) = ±
√
r so

that
P = (Dx1 − Λ+)(Dx1 − Λ−) + E(x,D′) = (Dx1 − Λ̃−)(Dx1 − Λ̃+) + Ẽ(x,D′)

with E, Ẽ ∈ S−∞.

Proof. We have from Lemma 1.2 that there exist Λ0,−(x,D′) ∈ S1, Λ0,+(x,D′) ∈ S1 and
E0(x,D′) ∈ S1 such that

P = (Dx1 − Λ0,+)(Dx1 − Λ0,−) + E0(x,D′)

with σ(Λ0,±) = ±
√
r(x, ξ′). Suppose that there exist Λj,−(x,D′) ∈ S1, Λj,+(x,D′) ∈ S1 and

Ej(x,D′) ∈ S1−j such that
P = (Dx1 − Λj,+)(Dx1 − Λj,−) + Ej(x,D′)
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with σ(Λj,±) = ±
√
r(x, ξ′). We will show that the error can be improved to Ej+1 ∈ S−j . For this,

let
λj+1(x, ξ′) = −σ(Ej)(x, ξ′)

2
√
r(x, ξ′)

∈ S−j .

Then
λj+1(x,D′)(Dx1 − Λj,−) + Ej = λj+1(x,D′)(Λj,+ − Λj,−) + Ej + λj+1(x,D′)(Dx1 − Λj,+)

= λj+1(x,D′)(Λj,+ − Λj,−) + Ej

+ (Dx1 − Λj,+)λj+1(x,D′) + [λj+1(x,D′), Dx1 − Λj,+]
= Ej+1,1(x,D′)

+ (Dx1 − Λj,+ − λj+1(x,D′))λj+1(x,D′) + Ej+1,2(x,D′)

where Ej+1,1, Ej+1,2 ∈ S−j .
In particular,

P = (Dx1 − Λj,+)(Dx1 − Λj,−) + Ej(x,D′)
= (Dx1 − Λj,+)(Dx1 − Λj,−)− λj+1(x,D′)(Dx1 − Λj,−)

+ (Dx1 − Λj,+ − λj+1(x,D′))λj+1(x,D′) + Ej+1,2(x,D′)− Ej+1,1(x,D′)
= (Dx1 − Λj,+ − λj+1(x,D′))(Dx1 − Λj,− + λj+1(x,D′)) + Ej(x,D′)

with Ej ∈ S−j . Let Λj+1,± = Λj,± ± λj+1(x,D′). Then defining Λ± ∼ Λ0,± ±
∑
j≥1 λj gives the

desired factorization.
Repeating the arguments starting with the Λ̃ factorization completes the proof �

Next, we construct an operator Q(x,D′) with desirable microlocalization properties such that
[Dx1 − Λ+, Q] ∈ S−∞. This will allow us to complete the proof of Theorem 4.3 by effectively
microlocalizating Pu = f to a broken bicharacteristic.

Lemma 4.8. Fix ρ0 ∈ H, γ : I → Σ̃ a broken bicharacteristic with γ(0) = ρ0 and let U be a
conic neighborhood of γ([0,∞) ∩ I). Then there exist ε > 0 and a conic neighborhood V ⊂ T ∗∂X
so that for any q̃+ ∈ S0(T ∗∂X) supported in V , there exists Q+(x,D′) ∈ S0 with symbol q+ such
that q+(0, ρ) = q̃+,

(15) WF(Q+) ∩ {x1 ≤ ε} ⊂ {(x, ξ′) | (x,
√
r(x, ξ′), ξ′) ∈ U}

and
(16) [Dx1 − Λ+, Q+] ∈ S−∞.
Similarly, let U be a conic neighborhood of γ((−∞, 0] ∩ I). Then there exist ε > 0, V ⊂ T ∗∂X
a conic neighborhood of ρ0 so that for q̃− ∈ S0(T ∗∂X) supported in V there exists Q− with
σ(Q−)(0, ρ) = q̃−,

(17) WF(Q−) ∩ {x1 ≤ ε} ⊂ {(x, ξ′) | (x,−
√
r(x, ξ′), ξ′) ∈ U}

and
(18) [Dx1 − Λ̃−, Q−] ∈ S−∞.



34 4. PROPAGATION OF SINGULARITIES

Proof. Fix q̃0 ∈ S0(T ∗∂X) with supp q0 ⊂ U ∩ T ∗∂X and q0(ρ0) = 1. Then, since ∂x1 is
transverse to {x1 = 0}, there exists q0 ∈ C∞([0, ε)× T ∗∂X) solving

(∂x1 −H√r)q0 = 0, q0|x1=0 = q̃0.

Moreover, by homogeneity, q0 ∈ C∞([0, ε);S0(T ∗∂X)). Let Q0 = q0(x,D′). Then,

[Dx1 − Λ+, Q0] = E0(x,D′) ∈ S−1.

Now, since on γ((0,∞) ∩ I), Hp = g(∂x1 −H√r), choosing supp q̃0 small enough, we may assume
supp q0 ∩ {x1 ≤ ε} is contained in the RHS of (15) and hence WF(E0) ∩ {x1 ≤ ε} is contained in
the RHS of (15) Assume now that we have Qj with σ(qj)(ρ0) = 1, WF(Qj) ⊂ U and

(19) [Dx1 − Λ+, Qj ] = Ej(x,D′) ∈ S−1−j .

Let qj ∈ S−j solve
(∂x1 −H√r)qj = −σ(Ej), qj |x1=0 = 0.

Then, supp qj ∩ {x1 ≤ ε} is contained in the RHS of (15). Putting Qj+1 = Qj + qj(x,D′). Then
we have (19) with j replaced by j + 1. Letting Q+ ∼

∑
j qj completes the proof of (16).

Using ∂x1 +H√r rather than ∂x1 −H√r completes the proof of (18). �

Proof of Theorem 4.3. Let γ be a broken bicharacteristic with ρ0 = γ(0) ∈ H. Since f ∈
N (X), shrinking ε > 0 if necessary, we may assume that for 0 < x1 ≤ ε, (x, ξ) ∈WF(f)∪WF(u)
implies ξ′ 6= 0. Shrinking ε > 0 if necessary, let Q+ ∈ C∞([0, ε); Ψ0(∂X) be as in Lemma 4.8.
Then,

(20) (Dx1 − Λ+)Q+(Dx1 − Λ−) = Q+P +R(x,D′)

where R ∈ C∞([0, ε]; Ψ−∞). In particular, since for 0 < x1 ≤ ε (x, ξ) ∈ WF(f) ∪WF(u) implies
ξ′ 6= 0, we have in particular,

(21) (Dx1 − Λ+)Q+(Dx1 − Λ−)u ∈ C∞(x1 ≤ ε).

In particular, for x1 > 0, WF(Q+(Dx1 − Λ−)u) is arbitrarily close to ξ1 = r(x, ξ′)1/2 and
contained in U . Therefore, for B+ so that γ([0, ε) ∩ { ε2 ≤ x1 ≤ ε} ⊂ `(B+),

‖Q+(Dx1 − Λ−)u‖H0,s(ε/2≤x1≤ε) ≤ C‖B+u‖Hs+1 .

Now, by Lemma 1.1, [TODO]be more precise here

‖Q+(Dx1 − Λ−)u(x1, ·)‖Hs

≤ C(‖Q+(0, x′, D′)(Dx1 − Λ−)u‖H0,s( ε2≤x1≤ε) + ‖Q+Pu‖H0,s + ‖R(x,D′)u‖H0,s

≤ C(‖B+u‖Hs+1 + ‖Q+Pu‖Hs).

Also, using (21) repeatedly,

‖Q+(Dx1 − Λ−)u‖Hs,0 ≤ C(‖B+u‖Hs+1 + ‖Q+Pu‖Hs).

Now, let Q− as in (17) with Q−(0, x′, D′) = Q+(0, x′, D′). Then,

[Q−(Dx1 − Λ̃+)−Q+(Dx1 − Λ−)u]|x=0 = Q−(0, x′, D′)(Λ− − Λ̃+)u0.
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Observe that
(22) (Dx1 − Λ̃−)Q−(Dx1 − Λ̃+) = Q−P + R̃

with R̃ ∈ C∞([0, ε]; Ψ−∞). Therefore, letting A ∈ Ψ0(∂X) with WF(Q−(0, x′, D′)) ⊂ ell(A),
‖Q−(Dx1 − Λ̃+)u(x1, )̇‖Hs

≤ C(‖Q−(0, x′, D′)(Dx1 − Λ̃+)u|x1=0‖Hs + ‖Q−Pu‖H0,s + ‖R̃(x,D′)u‖H0,s

≤ C(‖Au0‖Hs+1 + ‖B+u‖Hs+1 + ‖Q+Pu‖Hs + ‖u‖H−N ).
Using (22) repeatedly then gives

‖Q−(Dx1 − Λ̃+)u‖Hs,0 ≤ C(‖Au0‖Hs+1 + ‖B+u‖Hs+1 + ‖Q+Pu‖Hs + ‖u‖H−N ).

Now, let Q̃0(x,D′) ∈ C∞([0, ε]; Ψ0) have WF(Q0) ⊂ ell(Q−) ∩ ell(Q+). Then, by the elliptic
parametrix construction

Q̃0(x,D′)(Dx1 − Λ̃+) = E−Q−(Dx1 − Λ̃+) +R1

Q̃0(x,D′)(Dx1 − Λ−) = E+Q+(Dx1 − Λ−) +R2

with E± ∈ C∞([0, ε]; Ψ0) and Ri ∈ C∞([0, ε]; Ψ−∞). Hence,
Q̃0(x,D′)(Λ− − Λ̃+) = E−Q−(Dx1 − Λ̃+)− E+Q+(Dx1 − Λ−) +R3

Finally, since Λ̃+ − Λ− ∈ C∞([0, ε]; Ψ1) is elliptic,
‖Q̃0(x,D′)u‖Hs,1 ≤ C(‖Au0‖Hs+1 + ‖B+u‖Hs+1 + ‖Q+Pu‖Hs + ‖u‖H−N )

Now, for Q0 with WF(Q0) ⊂ ell(Q̃0),
PQ0(x,D′)u = Q0Pu+ [Q0, P ]u

So,
‖PQ0u‖Hs−1,0 ≤ C‖Q+Pu‖Hs + ‖Q̃0u‖Hs,0

Therefore,
‖D2

x1Q0u‖Hs−1,0 ≤ C‖Q+Pu‖Hs + ‖Q̃0u‖Hs,1

and hence
‖Dx1Q0u‖Hs,0 ≤ C‖Q+Pu‖Hs + ‖Q̃0u‖Hs,1 .

Finally, this implies
‖Q0u‖Hs+1,0 ≤ C‖Q+Pu‖Hs + ‖Q̃0u‖Hs,1 .

Therefore,
‖Q0u‖Hs+1 ≤ C(‖Au0‖Hs+1 + ‖B+u‖Hs+1 + ‖Q+Pu‖Hs + ‖u‖H−N ).

In particular, since Q+ and Q− are elliptic at ρ0, for any C(x,D′) with WF(C) sufficiently close
to ρ0,
(23) ‖Cu‖Hs+1 ≤ C(‖Au0‖Hs+1 + ‖B+u‖Hs+1 + ‖Q+Pu‖Hs + ‖u‖H−N ).

Now, suppose that γ(I) ∩ (WFb(f) ∪ WF(u0)) = ∅ and γ(ε) /∈ WFb(u). Let U a conic
neighborhood of γ([0, ε]) so that U ∩ (WFb(f)∪WF(u0)) = ∅. Choose ε > 0 small enough so that
γ((0, ε])∩WF(f) = ∅. Then, there exists A elliptic at ρ0 so that Au0 ∈ C∞ and B+(x,D′) elliptic
on γ(ε) so that B+u ∈ C∞. Moreover, for Q+ supported in U , Q+Pu ∈ C∞. In particular, (23)
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implies ρ0 /∈ WFb(u). Switching the roles of Q±, we also obtain that if γ(−ε) /∈ WFb(u), then
ρ0 /∈WFb(u) which completes the proof.

�

[TODO]state estimates

5. The generalized bicharacteristic flow

6. The Weyl law on a manifold with boundary

7. Microlocal defect measures
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CHAPTER 6

The Melrose–Taylor Parametrix

1. The Friedlander Model and the Ansatz

1.1. The Friedlander Model. As a first, step, we consider the Friedlander model. This
toy example guides us when we consider the general case. The Friedlander model is given by

P = (hDy1)2 − y1 + hDy2 ∂X = {y1 = 0}.

Suppose that

(24) Pu = 0 u|∂Ω = f

Then, taking the semiclassical Fourier transform in the x′ variables gives

(−h2∂2
y1 − y1 + η2)Fh,y′u(y1, η

′) = 0 Fh,y′u(0, η′) = Fh(f)(η′).

The solution to this problem for µ = 0 is

u = (2πh)−d+1
∫
A(h−2/3(−y1 + η2))

A(h−2/3η2)
e
i
h
〈y′,η′〉Fh(f)(η′)dη′

where A is a solution to the Airy equation. Let ζ0 := −y1 + η2 and θ0 = 〈y′, η′〉.
Our goal will be to model the parametrices on the Friedlander model and therefore to seek

solutions u to
P (x, hD)u = 0

of the form

(25) u = (2πh)−d+1
∫

[g0A(h−2/3ζ) + ih1/3g1A
′(h−2/3ζ)]eiθ/hFh(f)(η′)dη′

where f is a function on ∂X. We will then correct the boundary values by applying an FIO in
the boundary variables which replaces the Fourier transform in the Friedlander model.

Remark 2. Note that it is necessary to add the A′ term since it is not possible to cancel A′
with an amplitude times A. However, since A solves a second order ODE, it is possible to cancel
A′′ with an amplitude times A.

1.2. Eikonal and Transport Equations. First, we consider a general differential operator

P (x, hD) =
∑

ajk(x)hDjhDk +
∑

bj(x)hDj + c(x)

with ajk = akj applied to (25).
39
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For A an Airy function, we have, letting fj denote ∂jf , and ζh = h−2/3ζ

hDj

(
gA(ζh)e

i
h
θ
)

= θjgA(ζh)e
i
h
θ − ihgjA(ζh)e

i
h
θ − ih1/3ζjgA

′(ζh)e
i
h
θ

hDkhDj

(
gA(ζh)e

i
h
θ
)

=[
(θkθj − ζjζkζ)g − ih(θkgj + θjgk + θjkg)− h2gjk

]
A(ζh)e

i
h
θ

− ih1/3 [(θjζk + ζjθk)g − ih(gjζk + ζjgk + ζjkg)]A′(ζh)e
i
h
θ

hDj

(
gA′(ζh)e

i
h
θ
)

=

θjgA
′(ζh)e

i
h
θ − ihgjA′(ζh)e

i
h
θ − ih−1/3ζjζgA(ζh)e

i
h
θ

hDkhDj

(
gA′(ζh)e

i
h
θ
)

= −ih−1/3 [(θjζk + θkζj)ζg

−ih(gjζkζ + gkζjζ + ζjkζg + ζjζkg)]A(ζh)e
i
h
θ

+
[
(θjθk − ζjζkζ)g − ih(θkjg + θjgk + θkgj)− h2gjk

]
A′(ζh)e

i
h
θ

So,

P (g0A(ζh)e
i
h
θ)

=
[ (〈adθ, dθ〉 − ζ〈adζ, dζ〉+ 〈b, dθ〉+ c)g0

−ih(2〈adθ, dg0〉 − P2θg0 + 〈b, dg0〉) + h2P2g0

]
A(ζh)e

i
h
θ

− ih1/3
[

(2〈adθ, dζ〉+ 〈b, dζ〉)g0

−ih(2〈adζ, dg0〉 − (P2ζ)g0)

]
A′(ζh)e

i
h
θ

P (ih1/3g1A
′(ζh)e

i
h
θ) =[

ζ(2〈adθ, dζ〉+ 〈b, dζ〉)g1

−ih(2ζ〈adζ, dg1〉+ 〈adζ, dζ〉g1 − ζ(P2ζ)g1)

]
A(ζh)e

i
h
θ

+ ih1/3
[ (〈adθ, dθ〉 − ζ〈adζ, dζ〉+ 〈b, dθ〉+ c)g1

−ih(2〈adθ, dg1〉 − (P2θ)g1 + 〈b, dg1〉) + h2P2g1

]
A′(ζh)e

i
h
θ

where ajk = ajk(x), P2 = h−2(P − 〈b, hD〉 − c(x)) and 〈·, ·〉 denotes the euclidean inner product.
Now, applying P under the integral in (25) gives the eikonal equations

(26)
{
〈adθ, dθ〉 − ζ〈adζ, dζ〉+ 〈b, dθ〉+ c = 0
2〈adθ, dζ〉+ 〈b, dζ〉 = 0

.

Writing

(27) φ± = θ ± 2
3(−ζ)3/2,

the eikonal equations are equivalent to the standard equation

p(x, dφ±) = 0.
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Now, suppose that ζ has the form
∑
n≥0 ζnh

n and θ has the form
∑
n≥0 θnh

n and

gi ∼
∑
n

g
[n]
i (x, η′)hn.

Then the transport equations have the form

(28)



2〈adθ0, dg
[n]
0 〉+ 2ζ0〈adζ0, dg

[n]
1 〉+ 〈b, dg[n]

0 〉

+〈adζ0, dζ0〉g[n]
1 − P2θ0g

[n]
0 − ζ0(P2ζ0)g[n]

1

= F
[n]
1 (θ, ζ, g[m]<[n]

i , µ)

2〈adζ0, dg
[n]
0 〉 − 2〈adθ0, dg

[n]
1 − 〈b, dg

[n]
1 〉〉

−(P2ζ0)g[n]
0 + (P2θ0)g[n]

1

= F k,m2 (θ, ζ, g[m]<[n]
i , µ).

More generally, we consider transport equations of the form

(29)


2〈adθ0, dg0〉+ 2ζ0〈adζ0, dg1〉+ 〈b, dg0〉

+〈adζ0, dζ0〉g1 +B1g0 + ζ0B2g1
= F1

2〈adζ0, dg0〉 − 2〈adθ0, dg1〉 − 〈b, dg1〉+B2g0 −B1g1 = F2

Then, these equations are equivalent to
(30) 2〈adφ±, dxg±〉+ 〈b, dg±〉+G±g± = F±

where
g± = g0 ± (−ζ0)1/2g1 G± = B1 ∓ (−ζ0)1/2B2 F± = F1 ∓ (−ζ0)1/2F2.

2. Geometric preliminaries

We will start from the equivalence of glancing hypersurfaces [TODO]prove. In particular,
suppose S is a symplectic manifold of dimension 2d with P = {p = 0}, Q = {q = 0} ⊂ S
hypersurfaces (i.e. embedded submanifolds of codimension 1). Suppose that there is ρ ∈ P ∩ Q
so that

(31)
dp, dq, are linearly independent at ρ,

{p, q}(ρ) = 0,
{p, {p, q}} 6= 0, {q, {q, p}}(ρ) 6= 0

Then there exists a neighborhood U of ρ and a symplectomorphism κ : U → T ∗Rd with
κ(U ∩ P ) ⊂ {η2

1 − y1 + η2 = 0}, κ(U ∩Q) ⊂ {y1 = 0}, κ(ρ) = (0, 0).

Now, we can quotient P and Q by their respective Hamiltonian fibrations. That is, we write
for ρ0, ρ1 ∈ Q,

ρ0 ∼ ρ1 if there exists t ∈ R with exp(tHq)(ρ0) = ρ1

to define the space Q/RHq. We then define a symplectic form on Q/RHq by

σ∂ = πQ∗ σ|Q
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where πQ : Q → Q/RHq is the natural projection map. An application of Darboux’s theorem
shows that σ∂ is closed and non-degenerate.

Example 2.1. If S = T ∗Rd and Q = {x1 = 0}, then Hq = −∂ξ1 and therefore, (0, x′0, ξ0) ∼
(0, x′1, ξ1) if x′0 = x′1 and ξ′0 = ξ′1. Hence, in this case Q/RHq is canonically isomorphic to
T ∗{x1 = 0}.

In the relevant case, S = T ∗X for some manifold x, and Q = {(x, ξ) | x ∈ ∂X}. We write
πXρ = x0 when it is necessary to refer to the base variable.

Now, since κ is symplectic and sends Q to {x1 = 0}, it sends the flow lines of Hq in Q to those
of Hx1 in {x1 = 0}. In particular, κ induces a map κ∂ : Q/RHq → T ∗{x1 = 0}. Moreover, κ∂ is
a symplectomorphism.

We will actually assume that

(32) Hp(ρ) is not tangent to T ∗x0X.

This is the case for the wave equation.
We do this so that

(33) (κ−1
∂ )∗(dηi), i = 2, . . . d are linearly independent on T ∗x0∂X at ρ.

To see this, observe that by (32) dπQHp is not tangent to T ∗x0∂X. Now, let L := κ∂(T ∗x0∂X).
Then, since

κ∗Hp(ρ) = g(ρ)(−∂η1 + ∂y2)

for some nonvanishing g, (κ∂)∗dπQHp = g(ρ)∂y2 and we have that ∂y2 is not tangent to L at 0.
In particular, since L is Lagrangian (as the image of a Lagrangian under a symplectomorphism),
this implies dη2|L(0) 6= 0. Therefore, making a symplectic change of variables on T ∗{x1 = 0}
fixing (y2, η2), it is possible to arrange that (33) holds. We then extend this change of variables
(independently of y1, η1) to T ∗Rd leaving the normal form completely unchanged .

Now, define the map

Y0 : P 3 ρ 7→ (η2(κ(ρ)), . . . ηd(κ(ρ))) ∈ Rd−1

and
Y : P 3 ρ 7→ (πX(ρ), Y0(ρ)) ∈ X × Rd−1.

2.1. Folds. Let M and N be smooth manifolds. We say that f : M → N ∈ C∞ is a fold at
m if dim ker df(m) = dim Coker df(m) = 1 and the Hessian of f at m0 is not equal to 0. The fold
set of f is defined as the set F := {m ∈M | f is a fold at m}.

As an aside we prove the following

Lemma 2.1. Let f : M → N be a fold at m. Then there exists coordinates t near m on M
and s near f(m) on N so that

f(t1, . . . tn) = (t1, . . . t2n).
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Proof. Choose coordinates y on N so that with f = (f1, . . . fn) dfn(m) = 0. This is possible
since dim Coker df > 0. Moreover, since dim Coker df = 1, dfi i = 1, . . . n − 1 are linearly
independent and we may use xi = fi i = 1, . . . n− 1 as coordinates on M so that

f(x) = (x1, . . . xn−1, fn(x).
and x(m) = 0. Then, dfn(0) = 0 and since the Hessian of f is non-zero, ∂2

xnfn(0) 6= 0. So, by the
implicit function theorem, ∂xnfn(y) = 0 has a unique solution xn = g(x′) where x′ = (x1, . . . xn−1)
and g(0) = 0. Setting xn = xn − g(x′), we have ∂xnfn = 0 when xn = 0 so

fn(x) = fn(x′, 0) + x2
nF (x)

where F ∈ C∞ with F (0) 6= 0. Now, replacing yn by yn − fn(y′, 0), we have
f(x) = (x1, . . . xn−1, x

2
nF (x)).

Finally, switching the sign of yn if necessary, we may assume F (0) > 0 and replace xn by xnF 1/2(x)
to obtain

f(x) = (x1, . . . xn−1, x
2
n).

�

As a consequence, we obtain

Lemma 2.2. Suppose f : M → N has a fold at m. Then there is a neighborhood V of m and
a C∞ map ι : V → V so that ι2 = Id, ι 6= Id and f ◦ ι = f . That is, ι is an involution preserving
f .

Proof. Take ι(y1, . . . , yn) = (y1, . . . ,−yn) with the coordinates from Lemma 2.1. �

2.2. The structure of Y .

Lemma 2.3. The map Y is a fold at ρ with fold set meeting Q transversally at η2 = 0.

Proof. Consider ρ ∈ {p = 0} ∩ {Hqp = 0}. Now, since HqHqp 6= 0, {Hqp = 0} is a smooth
hypersurface transverse to Hq and we may take coordinates (x1, x

′) so that Hqp = x1 and Hq = ∂x1

and 0 7→ ρ. Therefore, p = 1
2x

2
1 +g(x′). Now, dp(0) 6= 0. Therefore, dg(0) 6= 0 and we may change

coordinates so that x2 = 2g so that

p = 1
2(x2

1 + x2), Hq = ∂x1 .

So, on P ∩Q,
ker dπQ(ρ) = ∂x1 , Coker dπQ(ρ) = ∂x2 .

Moreover, putting φ(s) = (s,−s2, 0), φ′ = Hq ∈ ker dπQ and

πCoker dπQ(πQ ◦ φ(s))′′ = −2 6= 0.
Therefore, πQ|P∩Q has a fold at ρ.

Now, Y |P∩Q is πQ followed by replacement of the fiber variables by ξi. This is well defined
since κ sends the flow lines of Hq in Q to those of Hx1 in {x1 = 0}. That is, (ξ2, . . . ξd) depend only
on πQ(ρ). By the transversality (33), this replacement is a diffeomorphism and hence preserves
the fold. Now, to see that Y itself has a fold, observe that dq and dp are independent at ρ and
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hence dq|P (ρ) 6= 0. Therefore, q = x1 can be used as a coordinate on P . Hence, since dY ∂x1
is independent of dY |P∩Q, Y has a fold at ρ. This also implies that the fold set intersects Q
transversally. To see that this happens at η2 = 0, simply observe that Q ∩ P ∩ {Hqp = 0} ⊂
Y −1({η2 = 0}). �

3. Solution of Eikonal Equations

3.1. The transverse case. We first suppose that Hp is transverse to Q = {x1 = 0} at
ρ0 ∈ Q ∩ P and solve the standard eikonal equation

(34) p(x, dφ(x, η)) = 0, φ(0, x′, η) = 〈x′, η〉.

We choose choose coordinates so that ρ0 = (0, 0).
In this case, (since Hqp(ρ0) 6= 0) the leaves Λη′0 = {η′ = η′0} are transverse to P in P ∩Q and

hence there is a local diffeomorphism T ∗{x1 = 0} → P ∩ Q near ρ0. In particular, πQ|P∩Q is a
diffeomorphism near ρ0. Moreover, since Hpq(ρ0) 6= 0, the Hp flow-out of Λη′0 ∩ P , denoted Λpη0
gives a foliation of P by Lagrangian leaves.

To see that these leaves are indeed Lagrangian, observe that

σ(Hp, ·) = dp(·).

So, if V is tangent to P ∩Q, it is in particular tangent to {p = 0} and hence

σ(Hp, V ) = 0

which together with σ|Λη′0
= 0 implies Λpη0 is Lagrangian.

Next, note that Λpη0 project diffeomoprhically to X and hence we may use the base as coordi-
nates on Λpη0 . Now, let α = ξdx denote the canonical one form (so that dα = σ). Then, α|Λpη0

is
closed and hence there exists φ(x, η) ∈ C∞ fixed by{

dφ(·, η) = α on Λpη
φ(0, η) = 0 on T ∗π(ρ0){x1 = 0}.

The second condition fixes a normalization for φ on each leaf Λpη0 . Now, φ is smooth and by
construction

{Λpη = (x, dxφ)}.
Therefore,

p(x, dxφ) = 0, dxφ(0, x′, η)− η = 0
and in particular, since φ(0, 0, η) = 0, φ(0, x′, η) = 〈x′, η〉.

Another way to see this is by using Darboux’s theorem to find a symplectomorphism so that

κ(U ∩ P ) ⊂ {η1 = 0}, κ(U ∩Q) ⊂ {y1 = 0}.
We then define Y as above and set

Lpη0 := {ρ ∈ P | Y (ρ) = (·, η0)}.
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Then, Lpη0 is Lagrangian since

κ(U ∩ Lpη0) = V ∩ {η1 = 0} ∩ {(ξ2, . . . , ξd) = η0}

with V an open neighborhood of (0, 0). Note also that Lpη0 foliate P since {η′ = η0} foliate
{η1 = 0}.

Now, α|Lpη0
is closed and in particular, since Q is transverse to Lpη0 , there exists Φη0 ∈ C∞(Lpη0)

with
dΦη0 = α|Lpη0

, Φη0 |Q∩Lpη0
= f(η0).

Since Lpη0 foliate P , we therefore have for any smooth f , a smooth function Φ ∈ C∞(P ) with

d(Φ|Lpη0
) = α|Lpη0

, Φ|A∩Lpη0
= f(η0).

Now, since Hpq 6= 0, Y is a diffeomorphism and in particular,

Φ = Y ∗θ, θ : Y (P )→ R ∈ C∞.

That is, since Y (P ) ⊂ {η1 = 0}, θ = θ(x, ξ′) for any coordinates x on X and η′ as above. Choosing
an appropriate normalization on Q then recovers the above result.

3.2. The folding case. In the folding case, when we try to solve (34), we will need to allow
φ to be singular. We will work to construct a solution φ with a simple singularity of the form

φ = θ ± 2
3(−ζ)3/2.

This will translate directly to a solution of our original Eikonal equations.
The analog of the Lagrangians Λpη0 will be played by

Lpη0 := {ρ ∈ P | Y (ρ) = (·, η0)}, η0 ∈ Rd−1.

Then,
κ(U ∩ Lpη0) = V ∩ {ξ2

1 − x1 + ξ2 = 0} ∩ {(ξ2, . . . , ξd) = η0}
with V an open neighborhood of (0, 0).

T(x,ξ)κ(U ∩ Lpη0) = span{∂x2 , . . . , ∂xd , Hp}.

In particular, Lpη0 is Lagrangian for each fixed η0. Moreover, Lpη0 foliate P .
Let T ⊂ P be a d − 1 dimensional submanifold transverse to Lpη0 for each η0. Then for any

f ∈ C∞(T ;R), we can find Φ ∈ C∞(P ) so that for any η0,

d(Φ|Lpη0
) = α|Lpη0

, Φ|T = f.

Therefore,
p(x, dΦ|Lpη0

) = 0

and if we could use (x, η0) as coordinates on P , we would be done. However, the vanishing of Hpq
means that we cannot do this. It will be convenient to choose T contained in the fold surface and
f ≡ 0.
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Lemma 3.1. There exist θ, ζ ∈ C∞(Y (P );R) so that

Φ = Y ∗(θ ± 2
3(−ζ)3/2).

In addition, Y ∗ζ is a defining function for the fold and
(35) ζ = η2, on Y (P ) ∩ (T ∗{x1 = 0}).
Finally,
(36) ∂x1ζ 6= 0, on Y (P ) ∩ (T ∗{x1 = 0}).

Proof. Let ι be the fold involution for Y and consider

Φe := 1
2
(
Φ + ι∗Φ

)
, Φo := 1

2
(
Φ− ι∗Φ

)
so that Φ = Φe + Φo, Φe is ι even, and Φo is ι odd. Observe that ρ is in the fold surface, F if and
only if ρ = ι(ρ). Therefore, Φo|F = 0. Moreover, since

dΦ|Lpη0
= dα|Lpη0

,

we have
dΦo|Lpη0

= 1
2
(
α|Lpη0

− ι∗α|Lpη0

)
and in particular, dΦo|Lpη0

vanishes at F . Therefore, Φo vanishes to second (and hence third)
order at F .

Now, choose coordinates as in Lemma 2.1. Then
Y (x1, . . . x2n−1) = (x1, . . . , x

2
2n−1)

and ι(x1, . . . x2n−1) = (x1, · · · − x2n−1). Since Φe is even, in x2n−1,
Φe = θ(x1, . . . , x2n−2, x

2
2n−1) = θ(Y (x))

for some θ ∈ C∞.
On the other hand,

(37) Φo = ζ̃(x1, . . . x2n−2, x
2
2n−1)x3

2n−1 = ±ζ̃(Y (x))y2n−1(Y (x))3/2.

Setting
ζ(y1, . . . y2n−1) =

(3
2 ζ̃
)2/3

we would have the first claim if ζ̃ is non-vanishing at y2n−1 = 0.
To see this, we will prove (35). Note that ξ2 is independent of the choice of T and κ reducing

to normal form. Therefore, we aim to show that Φo is independent of these choices and hence
that it agrees with the solution in the model case. First, fix κ and let Φ1,Φ2 be two solutions
associated with different T1 and T2. Then,

w = Φ1 − Φ2

is constant on each Lpη0 and in particular, is a function only of η0. Since the fold involution ι
preserves Lpη0 , the ι odd part of w is a function of only η0. Since the ι odd part vanishes on F and
F intersects every Lpη0 , it vanishes identically. This implies that Φo is independent of the choice
of T .
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Now,
pn(x, d((κ−1)∗Φ)|Pn∩{η=η0}) = 0

with
pn = η2

1 − y1 + η2.

Parametrizing Pn ∩ {η = η0} by (y′, η1), so that dx1 = d(η0 + η2
1) = 2η1dη1,

∂η1(κ−1)∗Φ(y′, η1; η0) = 2η2
1.

So, the η1 odd part of (κ−1)∗Φ is given by 2
3η

3
1 which, at η = η0, y1 = 0 is ±2

3(−η2)3/2.

Moreover, on P ∩Q, the fold of Y is that of πQ. In particular, ι(0, x′, ξ1, ξ
′) = (0, x′,−ξ1, ξ

′).
In addition, if ρ ∈ P ∩Q, then

η1(κ(ρ)) = −η1(κ(ι(ρ))), (y′, η′)(κ(ρ)) = (y′, η′)(κ(ι(ρ))).
Therefore, on Q, the ι odd part of Φ is independent of the choice of T and of the reduction to
normal form, κ and is given by Y ∗(±2

3(−η2)3/2). This also implies that ζ̃ from (37) does not
vanish near the fold and hence shows that ζ defines the fold set.

Next, observe that
Y (P ) = {η2 ≤ x1f(x, η)}

with f(π(ρ), 0) 6= 0 Therefore, since ζ defines the fold set,
ζ = e(x, η)(η2 − x1f(x, η))

for some 0 6= e ∈ C∞. In particular, ∂x1ζ|x1=η2=0 6= 0 completing the proof of (36).
�

We next show that θ is a non-degenerate phase function and can be chosen so that θ|x1=0
generates κ∂ .

Lemma 3.2. With θ as above,

(38) dx′
( ∂θ
∂ξj

)
, j = 1, . . . d− 1 are linearly independent on ζ ≤ 0 near ρ0

and Φ can be chosen so that θ|x1=0 generates κ−1
∂ on η2 ≤ 0.

Proof. Let (x, ξ) be coordinates near ρ0 on T ∗X and use (y, η) as coordinates near (0, 0) on
T ∗Rd. Then,

ξ′dx′ = dx′Y
∗(θ ± 2

3(−ζ))3/2.

Now, dx′Y ∗ = Y ∗dx′ since Y does not change the base coordinates. Moreover, at x1 = 0, ζ = ξ2,
so dx′ζ|x1=0 = 0. In particular, at x1 = 0,

ξ′dx′ = Y ∗dx′θ.

That is,
(39) ∂x′θ(x′, η′(ρ)) = ξ′.

But the map ξ′ → η′ is a diffeomorphism, so (38) follows.



48 6. THE MELROSE–TAYLOR PARAMETRIX

To show that θ can be chosen so that θ|x1=0 generates κ−1
∂ , we need to show that

κ∂(x′, ∂x′θ(x′, η′)) = (∂η′θ(x′, η′), η′), x1 = 0.

Suppose θ̃ generates κ∂ . Then, on Lpη′ ∩Q,

dx′Y
∗θ̃ = dx′Y

∗θ.

In particular, θ̃ and θ differ by a normalization T and hence, choosing T appropriately in the
solution Φ, we can arrange that θ = θ̃. The restriction to η2 ≤ 0 comes from the fact that
Lpη′ ∩Q = ∅ if η2 > 0. �

Our next task is to extend θ and ζ from ζ ≤ 0. Notice that Y (P ) = {ζ ≤ 0} is of the form

{η2 ≤ x1f(x, η′)}

where f(Y (ρ)) 6= 0. It will not be possible to solve the eikonal equaitons exactly in ζ > 0.
However, we will be able to solve them in formal power series both at ζ = 0 and at x1 = 0. It
turns out that due to the behavior of the Airy function at the turning point x = 0, this will be
enough to construct parametrices.

Lemma 3.3. There exist θ and ζ ∈ C∞ in a neighborhood of π(ρ)× 0 ∈ X × Rd−1 so that

ζ|Y (Q) = ξ2, dx′∂ηjθ are linearly independent , ∂x1ζ|Y (Q) 6= 0

and (26) holds in ζ ≤ 0 and in Taylor series at x1 = 0.

Proof. At this point, we have solved (26) with smooth functions ζ0, θ0 having the above
properties and defined in ζ0 ≤ 0. We next extend θ0 and ζ0 as real so that ζ0(x, η′)|x1=0 = η2
continues to hold and ∂x1ζ0|x1=0 6= 0. Then θ0, ζ0 solve the eikonal equations (26) modulo infinite
order errors. That is, {

〈adθ0, dθ0〉 − ζ0〈adζ0, dζ0〉+ 〈b, dθ0〉+ c = e1

2〈adθ0, dζ0〉+ 〈b, dζ0〉 = e2

with e1 and e2 vanishing identically in ζ0 ≤ 0.
Our aim is to solve the eikonal equations also in formal power series at x1 = 0. That is, we

define
θ = θ0 + θ′, ζ = ζ0 + ζ ′

where θ′, ζ ′ vanish in ζ0 ≤ 0 and have

θ′ ∼
∞∑
k=1

xk1θk(x′, η′), ζ ′ ∼
∞∑
k=1

xk1ζk(x′, η′).

We will solve for θk and ζk iteratively. At each step it is crucial that the errors and the previous
functions vanish on ζ0 ≤ 0.

The equations we want to solve in formal power series are{
〈adθ′, dθ′〉+ 2〈adθ′, dθ0〉 − ζ ′〈adζ0, dζ0〉 − (ζ0 + ζ ′)(〈adζ ′, dζ ′〉+ 2〈adζ ′, dζ0〉) + 〈b, dθ′〉 = −e1

2〈adθ′, dζ ′〉+ 2〈adθ′, dζ0〉+ 2〈adθ0, dζ
′〉+ 〈b, dζ ′〉 = −e2
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Using that ζ0 = η0 +O(x1), we obtain, modulo terms of size x, the equations{
[(a11θ1 + 2

∑
j a1j∂xjθ0 + b1)θ1 − a11ζ0(ζ1 + 2∂x1ζ0)ζ1] = F1,1

[2a11(ζ1 + ∂x1ζ0)θ1 + (2
∑
j a1j∂xjθ0 + b1)ζ1] = F2,1

and for k > 1, modulo xk, the equations{
kxk−1

1 [(2a11θ1 + 2
∑
j a1j∂xjθ0 + b1)θk − 2a11ζ0(ζ1 + ∂x1ζ0)ζk] = F1,k

kxk−1
1 [2a11(ζ1 + ∂x1ζ0)θk + (2a11θ1 + 2

∑
j a1j∂xjθ0 + b1)ζk] = F2,k

where Fi,k vanish to order xk−1
1 and to infinite order at ζ0 = 0 and depend on θj , ζj 0 ≤ j ≤ k−1.

We start by solving for (ζ1, θ1). For this, we write

θ1 = ζ(ζ1, x
′, η′) =

F2,1 − (2
∑
j a1j∂xjθ0 + b1)ζ1

2a11(ζ1 + ∂x1ζ0)
Provided ζ1 = O(ζ∞0 ), near ζ0 = 0, we have θ1 = O(ζ∞0 ).

Now, since Hx1p = 2
∑
j 2a1jξj + b1 = 0 at x1 = ζ0 = 0, we have 2

∑
j a1j∂xjθ0 + b1 = 0 there.

In particular,

∂ζ1 [(a11θ1 + 2
∑
j

a1j∂xjθ0 + b1)θ1 − a11ζ0(ζ1 + 2∂x1ζ0)ζ1] = −2a11ζ0∂x1ζ0 +O(ζ1) +O(ζ2
0 )

Dividing through by ζ0 and applying the inverse function theorem then gives a solution ζ1.
Now, we need to solve for (θk, ζk). The equations for (θk, ζk) are linear and the matrix has

inverse with norm ζ−1
0 and hence since the errors vanish to order ζ∞0 , we may solve for (θk, ζk). �

4. Solution of the transport equations

Recall that in order to construct a parametrix to our original problem, we arrived at transport
equations of the form


2〈adθ, dg0〉+ 2ζ〈adζ, dg1〉+ 〈b, dg0〉+ 〈adζ, dζ〉g1 +B1g0 + ζB2g1 = F1

2〈adζ, dg0〉 − 2〈adθ, dg1〉 − 〈b, dg1〉+B2g0 −B1g1 = F2

Writing

g± = g0 ± (−ζ)1/2g1 G± = B1 ∓ (−ζ)1/2B2 F± = F1 ∓ (−ζ)1/2F2

then in ζ ≤ 0, the transport equations are equivalent to

(40) 2〈adxφ±, dxg±〉+ 〈b, dxg±〉+G±g±x = F±

As before, g±, G±, and F± pull back to smooth functions on P under Y . this is because they are
smooth functions of (x, η′, (−ζ)1/2). Writing g,G, F for these lifts to P , we then have

2〈adxΦ, g〉+ 〈b, dxg〉+Gg = F
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Note now that 2〈adxΦ, ∂〉+〈b, ∂〉 = Hp. To see this, observe that πX : P → X is a diffeomorphism
near ρ. Therefore, we may use x as coordinates on P . In particular, in these coordinates,

Hp =
d∑
j=1

∂ξjp∂xj .

Now, in coordinates, ∂xjΦ = ξj . Therefore,

∂ξjp =
∑
i

aijξj + bj =
∑
i

aij∂xjΦ + bj

which gives
Hp = 2〈adxΦ, ∂〉+ 〈b, ∂〉.

Hence, in ζ ≤ 0, we need to solve
(41) Hpg +Gg = F

with specified initial data for g0 and g1. In particular, g1|x1=0 = 0 and g0(ρ) = 1. For g, this
amounts to g|P∩Q ∈ C∞(Q/RHq) and g(ρ) = 1. In fact, we will want to solve these equations
with slightly more general boundary conditions that we describe below.

We now work to simplify (41) before proceeding to solve the equations. Clearly, we can solve
Hpg̃ +Gg̃ = F, g̃(ρ) = 0

by integrating a smooth, nonvanishing vector field. Subtracting g̃ from g we need only solve the
homogeneous problem. Next we remove the order 0 term by solving

Hpr = G, r(ρ) = 0.
Then to solve the original problem it is enough to solve the equation
(42) Hpu = 0.
In particular,

g = g̃ + exp(−r)u
has (Hp +G)g = F. The boundary conditions or u are, however, more complicated:

[exp(−r)u|P∩Q]O = [g̃|P∩Q]O, u(ρ) = 1.
Here,

[f ]O = 1
2τ
[
f − ι∗Qf ], [f ]E = 1

2
[
f + ι∗Qf ]

where ιQ is the involution induced by πQ and τ is a Q-odd function with dτ 6= 0 on Y −1(ζ = 0).
More generally, we will want to solve the equations with

g1 = cg0 + d on T ∗B, g0(ρ) = c0.

Note, g1 = [g]O and g0 = [g]E , so [g]O = c[g]E + d which implies
[exp(−r)u|P∩Q]O = c[exp(−r)u]E + f, u(ρ) = c0

where c and f are given ιQ even functions.
Next, observe that the existence of a solution u to (42) with given data u0 on Q∩P amounts

to the ιP evenness of u0 where ιP is the involution induced by πP .
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Therefore, it suffices to find an ιP even function u0 on Q ∩ P so that
[exp(−r)u0]O = c[exp(−r)u0]E + f, u0(ρ) = c0.

Moreover, since
[αβ]E = [α]E [β]E + τ2[α]O[β]O
[αβ]O = [α]O[β]E + [α]E [β]O

and [exp(−r)]E(ρ) 6= 0, it is enough to find an ιP even function, v with
[v]O = c[v]E + f, v(ρ) = c0.

for some given ιQ even c and f .

Lemma 4.1. For any ιQ even c, f ∈ C∞(Q∩P ), c0 ∈ C, there exists a smooth ιP even function
v on Q ∩ P so that
(43) [v]O = c[v]E + f, v(ρ) = c0

in a neighborhood of ρ.

Proof. For this, we work in the normal form so that
ιQ(y2, y

′′, η1, η
′) = (y2, y

′′,−η1, η
′), ιP (y2, y

′′, η1, η
′) = (y2 − 2η1, y

′′,−η1, η
′).

In this coordinates, then we seek an ιP even function solving (43). To simplify notation we write
t1 = η1 and t2 = y2, t′ = (y′′, η′) so that

ιQ(t1, t2, t′′) = (−t1, t2, t′), ιP (t1, t2, t′) = (−t1, t2 − 2t1, t′).

Since v is ιP even, v = v(t21, t2 − t1, t′). We start by solving for v in formal power series at
t1 = 0. Assume that f = t2p1 fp(t2, t′) and v = t2p1 vp(t2 − t1, t′). Then,

vp(t2 − t1, t′)− vp(t2 + t1, t
′)

2t1
= c(t21, t2, t′)

vp(t2 − t1, t′) + vp(t2 + t1, t
′)

2 + fp(t2, t′).

Since we are interested in Taylor series at t1 = 0, we send t1 → 0 and obtain
(44) ∂t2vp(t2, t′) = −c(0, t2, t′)vp(t2, t′) + fp(t2, t′).
In particular, if this is satisfied, then

[v]O = c[v]E + fp +O(t2p+1).
Moreover, since c, fp are ιQ even, the error is actually O(t2p+2).

We may clearly solve (44) with vp(0, t′) given. Therefore, there is a formal power series,

(45) vf =
∞∑
p=0

vp(t2 − t1, t′)t2p1

satisfying (43) in formal power series.
Now, we apply Borel’s lemma to sum the series (45) asymptotically to obtain a smooth function

vf that is ιP even and satisfies
[vf ]O = c[vf ]E + g + e, e ∈ C∞, ι∗Qe = e, ∂αt e(t) = Oα(t∞1 ).
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Hence, by linearity, we need only solve
(46) [v]O = c[v]E + e, e ∈ C∞, ι∗Qe = e, ∂αt e(t) = Oα(t∞1 ), v|t1=0 = 0

Since we are interested in solving near 0, we may also assume that supp e ⊂ {t2 < 1}, c is
supported near t2 = 0, and supp v ⊂ {t2 < 1}.

Now, observe that
v − ι∗Qv

2t1
= c(t)

v + ι∗Qv

2 + e(t)

implies

(47) v = 1
1− t1c(t)

[(1 + t1c(t))ι∗Qv + 2t1c(t)e(t)].

Since ι∗Qe = e, ι∗Qc = c ι∗P v = v, ι∗P t1 = −t1,

ι∗P v = 1
1 + ι∗P t1ι

∗
P c(t)

[(1 + ι∗P t1ι
∗
P c(t))ι∗P ι∗Qv + 2ι∗P t1ι∗P c(t)ιP ∗ e(t)]

v = 1− t1ι∗P c(t)
1− t1ι∗P c(t)

ι∗P ι
∗
Qv −

2t1ι∗P c(t)
1− t1ι∗P c(t)

ι∗P ι
∗
Qe(t)

= 1− t1β∗c(t)
1− t1β∗c(t)

β∗v + −2t1β∗c(t)
1− t1β∗c(t)

β∗e(t)(48)

where β = ιP ◦ ιQ is the induced billiard ball map. Letting

a(t) := 1− t1β∗c(t)
1 + t1β∗c(t)

, b(t) := −2t1β∗c(t)
1− t1β∗c(t)

,

we then have

(49) v =
M∑
m=0

Bm(βm+1)∗e+AM (βM+1)∗v

where

Bm = (βm)∗b ·
m−1∏
k=0

(βk)∗a, AM =
M∏
k=0

(βm)∗a.

Now, note that
β(t1, t2, t′) = (t1, t2 + 2t1, t′)

and hence, since supp v, supp e ⊂ {t2 < 1}, for t1 > 0, t2 > −1, and M > 2t−1
1 , (βM )∗v =

(βM )∗e = 0. In particular, the the right hand side of (49) is independent of M > 2t−1
1 when

t1 > 0.
In particular, in t1 > 0, t2 > −1,

(50) v =
2t−1

1∑
m=0

Bm(βm+1)∗e

solves
[v]O = c[v]E + e, on t1 > 0.

We need to show that the sum (50) converges uniformly with all of its derivatives.
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We clearly have
|1− b(t)| ≤ c|t1|

and hence, for m ≤M ≤ 2t−1
1 ,
|Bm(t)| ≤ (1 + c|t1|)M < C <∞.

Therefore, the coefficients on (βm+1)∗e in (50) are uniformly bounded. Now, e vanishes to all
orders at t1 = 0 and is supported in t2 < 1. Therefore, for all N > 0, there exists cN > 0 so that

|(βm)∗g(t)| ≤ CN |t1|2N (1 + |t2 + 1 +mt1|)−N ≤ cN |t1|N (1 +m)−N .
In particular, the sum (50) converges rapidly and hence defines a continuous function vanishing
to all orders at t1 = 0.

Now, Bm is a product of at most M terms. Thus, when it is differentiated, in (t2, t′), it pro-
duces at most M choose N terms each of which is bounded by cN |t1|. In particular, differentiation
N times produces at most MN sums of the form (50) except that sum number of the factors in
Bm and those involving e are replaced by derivatives. Since the derivatives of g satisfy the same
type of bounds as g and the coefficients in each sum are uniformly bounded, we have that andy
finite number of derivatves the sum (50) converges uniformly to a function vanishing rapidly at
t1 = 0.

This defines a smooth function v in t1 ≥ 0, t2 > −1 satisfying (46). The invariance ι∗P v = v
then defines a smooth function v in −2 < t1 < 2 vanishing in |t1| > 1. On t1 ≥ 0, v solves (48).
Moreover, v = ι∗P v. Therefore, v solves (47) and in particular (46). �

The final step in the construction of the amplitude functions is to extend them into ζ ≥ 0.
As with the eikonal equations, we will only do this in Taylor series at ζ = 0 and x1 = 0. We do
this by extending g0, g1 arbitrarily as smooth functions and then adding a formal power series at
x1 = 0 [TODO]Flesh out.

5. Fourier–Airy Operators





CHAPTER 7

Calderón Projectors – Boundary Integral Operators??
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APPENDIX A

Notation

- Diffm(M) differential operators of order m on a manifold M .
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