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CHAPTER 1

Introduction

These notes are being prepared for a course in Fall 2017 in the Stanford Department of Math-
ematics. The ultimate goal of the course is to study the propagation of singularities on mani-
folds with boundary and parametrices for boundary value problems including the Melrose—Taylor
parametrix. Throughout we will focus on the Dirichlet type problems, occasionally digressing

to discuss the Dirichlet to Neuamnn map which can be applied to a wide variety of boundary
conditions.

The material considered here comes largely from the work of Melrose [|, Melrose—Sjostrand ],
Taylor [|, Zworski [] and Farris ||

The basic example to which these notes apply is that of the wave operator P = 92 — A, posed
on R x M where M is a compact manifold with boundary oM.

1. Notation for manifolds with boundary

2. Supported and Extendible distributions






CHAPTER 2

Microlocal Preliminaries

In this chapter, we briefly review the standard calculus of pseudodifferential operators. [TODO]references

1. The Kohn—Nirenberg calculus on R

1.1. Symbols. We introduce two symbol classes. We say that a family of smooth functions
with parameter h € [0,2), a(z,&; h) € C°(R?) lies in S™(R? x RY) if

0200w, & B)] < Cag(&)™ 9, ()= 1+ )%

We say that a € S™ is positively homogeneous of order m and write a € Sy.  if there exists
F :R% = (0,00) so that for s > 1 and |¢| > F(z),

a(x,s€) = s"a(x, ).

We say that a € S™ lies in phe if there exist a;j(x,&) € Sﬂom, j=m,m—1,... and Copn > 0 so
that

(1)

N-1
020¢ (a = > Wap ;)| < Cagnh™ (€)™
=0
For a € ™, we then define the operator
1 .
— Hz—y,E)/h .
Opn(@)u = g [ 709 a(a, € hyu(y)dya

at first for v € S and then by transposition for u € S’.

We define the set of pseudodifferential operators of order m, \IJ;L”(Rd) and the polyhomogeneous
pseudodifferential operators \I/;’f,phg(Rd) by

U(RY) = {A € L(S;S') | A= Opy(a), for some a € S™(R? x RY)}
prhg(Rd) ={A4 € L(S;8) | A= Opy(a), for some a € gﬁg(Rd x RY)}.
Here £ denotes the set of continuous linear operators.

REMARK 1. We note that there are many other ways of quantizing symbols in S™. However
for mostdpurposes, they are the same and in particular, they yield the same classes \IIZT(Rd).
\I/prhg(R ).

For A € \I'Z”(Rd), we define the principal symbol map o, : U — S™/hS™"1 by

0m(Opp(a)) = a + hS™ L.

9



10 2. MICROLOCAL PRELIMINARIES
We sometimes write a(z, hD) for the operator Opy(a).
We recall a few facts about pseudodifferential operators. Define the norm
ull g = [[(hD) ul| 2
for all u € H*(RY).

LEMMA 1.1. Suppose that A € WP (RY). Then for s € R, A : Hi(RY) — H7 ™(R?) and,
moreover, there exists C' > 0 so that

[Aull grs—m < sup [{) ™" om(A)[[ullmy + Chlull o
LEMMA 1.2. Suppose that a,b € phg(Rd) and suppa Nsuppb = 0. Then for all N > 0,
Opn(a) Opn(b) = OH;N(Rd)_)H}:,(Rd)(hN).

LEMMA 1.3. Suppose 0 < a € S™(RY). Then there erists ¢ > 0 so that for all u € C°(R?),
(Opn(a)u, u)p2 > —chllul| m_1
H. 2

h

Next, we observe that for a € ™, b € 52,

Oph(a) Oph( ) Oph(ab) +hR Re \l,;lnﬁ-mz—l
@) h~1[Opw(a), Opu(b)] = Opy (— ifa,b}) + hR R € wym=2
Opn(a)" = Opu(a) + hR Rewmt

where

{a,b} = Z O¢;a0,b — 05, a0, b.

Note that the map oy, : U7} — S™ is well defined if we take 0,,(Opn(a)) = a,, where a,, is
from the expansion .

1.2. Pseudodifferential operators on compact manifolds without boundary. Let M
be a compact manfiold without boundary. Let

UT(M) = L(D'(M), C*(M))
and
—00 . __ - _ N
KU~ :={A eV OO|A—OHh—N_>Hi]L\](h ), for all N > 0}.
We say that A :D'(M) — D'(M) lies in Wi(M) (respectively W}P (M) if

(1) For all p, ¢ € C° with supp ¢ Nsupp ) = 0, @A) € RV,
(2) If (U, k) is a coordinate chart with x : U — V C R? a diffeomorphsim and ¢, € C°(U),
x € C2(V). Then

x(k~)* Ak x € \I!ZL(Rd), (respectively \IJprhg(Rd)).



1. THE KOHN-NIRENBERG CALCULUS ON R¢ 11

We say that a € S™(T*M) if in any coordinates (x, &) a(x,£) € S™(R? x RY). Similarly, we
say a € S[p.(T*M) if a(z,§) € gﬁg(Rd x RY). Then there is a a symbol map o, : Y7(M) —
S™(T*M)/hS™ Y(T*M) given by the following procedure. Let (Uy, ko) be an atlas on M. Then

for 2 € C°(U,) a partition of unity on M,
o(A) =Y Rao((ka') Padpary)
(63

where &q : T*U — T*R? is the lift of k4 as a symplectomorphism. Note that o, has the following
properties
(1) 0 — pE~t — wm Imy gm /pgm=1 () is exact.
(2) 0(AB) =0(A)o(B).
(3) o([A, B]) = —i{c(A),o(B)} where {-, -} is the poisson bracket.
Finally, there is a non-canonical quantization map Opy, : S™(T*M) — VU (T* M) with Opy, :
Dhg (T M) — UL (T M) so that
(1) For a € S™(T*M), 6,,(Opp(A)) = a + hS™ L.
(2) Forall A € Uj*(T* M) (respectively Wi, (M)), there exists a € S™ (1™ M) (respectively
Shtong(M)) so that
A —Opp(a) € AU,
(3) If a,b € S35, and suppa Nsuppb = 0.

Opn(a) Opn(b) € AU ™°(M).

We will also write S™P(T*M) for symbols compactly supported in 7*M and ¥} for their
quantizaitons.

We will sometimes have reason to use the standard calculus (i.e. A = 1). In this case, we
write Op for the quantization and ¥ for the operators resulting from S™.






CHAPTER 3

Basic estimates for hyperbolic equations on manifolds with
boundary

1. Energy Estimates and Well Posedness

1.1. Estimates without a boundary. We will work in the case of second order operators,
but the methods developed here apply equally well to higher order equations.

1.1.1. First order operators. We consider the problem
3) Py = (Dy = Op(a))u=f, 0<t<T, uli=0 = up

where

(i) ai(x, &) = a(t,x,€) belongs to a bounded set in S*(R? x RY) for 0 <t < T
(ii) t + a; is continuous with values in C*(R¢ x R%)
(iii) Ima(t,z,§) > —-M,0<t<T.

We start with an energy estimate
LEMMA 1.1. Let s € R. Then for A € R large enough and all v € C([0,T]; H*(R%)) N
CO([0, T); H*+ (R%) and p € [1, o]

I —At P % T )t
(4) (5/0 le™Mu(t, )| S)\dt) §||u(o,.)||Hs+2/0 e M| P gyt

PROOF. Then consider E(t) = e~ ||u(t)||2..
O E(t) = 2Re(d[eMu], e Mu)
= 2Ree 2 (Qyu, u) — 2M\E(t)
= —2¢” M Im(Dyu, u) — 2AE(t)
= —2e M Im(Pyu, u) — 2~ Im(Op(ay)u, u) — 2\E(t)
< 2|le™MPul||EY2(t) + 2(C — N E(t)

where in the last line we apply the sharp Garding inequality (|1.3)) together with , , and the
fact that u(t) € H'. Choosing A\ > C, then

QE(t) < 2|le NPl EV3(¢).

Integrating in time gives

t
sup E(r) < E(0)+2 sup E1/2(t)/ |e=** Pyu|ds.
0<7<t 0<7<t 0

13



14 3. BASIC ESTIMATES FOR HYPERBOLIC EQUATIONS ON MANIFOLDS WITH BOUNDARY
So,

13 2
( sup EY2(r / e P, qus) < E(0)+ (/ He_)‘SPSqus)
0<r<t 0

and in particular,
t
e )] < [lu(0)] +2/ le™C* Pyul|ds.

Then, taking A > 2C' large enough and using that ||e™ ’\t/2)\HLp y <2 for A > 0. So,

e Mu(®)] < eV u(0)] + 2/0 €| Pou| !V ds.

and taking A > 2C', and integrating both sides in t,

T 1/p T 1/p
P t P
(/ (e flu@)]) dt) 5||e”/2||muu<o>u+2</ ([ e Ipaule@e=as) dt) :
0 0 0

Applying Minkowski’s inequality then gives

T » \ /P T
(/O (o) dt) < e 2 o lfu(O)] + e 2 o | e Paulds

Then, since ||e=*/2||1» < (2/X)!/?, the lemma follows for s = 0.
To finish the proof, apply the s = 0 case to A; = Op((£)*)A; Op((€)~*) with u = Op((£)*)u.
(|

THEOREM 1.1 (Well-posedness for first order equations). Let|(2)H(7ii)| hold and s € R. Then
for all f € L'((0,T); H*(RY)) and ¢ € H*(R?), there is a unique solutzons u € C([0, T]; H*(RY))
of and holds.

PrOOF. We start with uniqueness. Suppose holds with ¢ = 0 and f = 0. Then, since
u € O([0,1]; H*(R)), Op(as)u € C([0,T); H*~1(R?%)) and hence dyu € C([0, T]; H*~*(R%)). That
is, u € C1([0,T]; H*~') and in particular, implies that u = 0.

To show existence, we apply the energy estimate to the adjoint problem. Suppose v €
C((—00,T) x RY). Then, observe that by () applied with ¢ — T — t gives for any r € R,

T
sup [[0(8)l1r-r(szay < C [ (D1 = Oplar) ol sg-r eyt
t€[0,7 0
Thus, for f € L*([0,T); H"(RY)), ¢ € H"(RY),

| / ) radt — i(6,0(0))| < (1F O 2oy ey + I8larr) sup [o(8)l1-+¢e

)

(5) < CUf Ol Lo,y ey + 9l ar)

T
15— Op(a) Yol -y



1. ENERGY ESTIMATES AND WELL POSEDNESS 15

By the Hahn-Banach theorem there exists u € L>([0, T]; H"(R%)) so that

T T
|t (De = Opta) oyt = [ (@), (et ~ i, (0))
0 0

for all v € C°((—o00,T) x RY) in particular, u solves as a distribution, so all we need to do is
show that u has the desired regularity.

Let f. € S and ¢. € S have f. — fo in L'([0,T]; H*) and ¢ — ¢ in H®. Then, applying
the above arguments, we obtain u. € L>([0, T]; H*(R?)) with u, solving (3) for f. and ¢.. Then,
ue € L®([0,T]; H¥%2) which implies Op(a¢)u. € L>®([0,T]; H*™'). The equation then implies
Dyue € L*([0,T]; H**') and in particular, u. € C°([0,T]; H*). Using the equation again then
implies dyue € C°([0,T]; H®). In particular, applies to u.. Therefore,

T
sup [t ) = et M < C (66 = el + [ e = fulleat).

(0,77
Hence, since ¢, and f, are Cauchy, u, is Cauchy in C°([0, T]; H*(R%)) and in particular converges
to up € CO([0, T]; H*(R?)) satisfying with ¢ = ¢9 and f = fy. By similar arguments after us-
ing (3)), ue is also Cauchy in C1([0, T]; H*~1(R?)) and hence ug € C1([0,T]; H*~1(R?)). Therefore,

up is the desired solution. O

1.2. Second Order Operators. We now consider second order operators. The same tech-
niques apply to m'™ order operators of the same type, but for simplicity we work only with second
order. We want to study,

2
Z i(t,z,Dy)
7=0
where
(i) Pn =1and P; € C®(R; \I’Qhé(Rd)) with oo_;(P}) = p;(t,z,§), o2(P) =p
(ii) The zeros of the map
fom = ()7 p(t @, (€)7,€)

are uniformly simple on R x OT*R?. That is,
10:(6)"*p(t, 2, (). ) + [p(t, 2, ()T, O > 0, for 7 €R, (t,2,6) € RTT! x IT*RI.

Let A, Ay € C®(R x dT*R9) be the zeros of f on dT*R? and \; € Séhg(Rd“'l x RY) with
(€) 7 Nil 7z = Ai and (€)a™! A1 — Ag| > 0. Then define A; = Ai(t, z, D).

The goal is then to factor P in terms of D, — A; with an error involving no derivatives in time.

For this, write
2

2
P =3 P;D} =3 [(Dy = APy + [Py, Dy + APy D]
=0 =0
where for k < 0, Df = 0. Then, [P}, D;] € C®°(R; ¥277), so this is a sum of the form

2 1
P=(Di=M\)Y PD{™ +3 PD]
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with ]5j € S%27J. Iterating this procedure gives
P=(Di— A)Ei + R
where E; = Y h_o EiDF with Ey, € C®°(R; U'%) and R € C*®(R; ¥?). Taking the symbol of
both sides we see that
p(ta T, T, ﬁ) = (T - )‘i)al(Ei)(t7 T, T, 6) + 02(R>(t7 €T, 5)
In particular, setting 7 = \;, we see that o2(R)(¢,2,¢) = 0 and hence R € C*°(R; ¥!). Moreover,
o(E) =1—\jj#1i.

We summarize this in the next lemma

LEMMA 1.2. Suppose that P satisfies |(1) and and let \; i = 1,2 as above . Then there
exist Aj(z, D), Ai(x, D) with o(A;) = A\ = o(A;) so that

P = (D — M) (Dy — A2) + R(z, D) = (Dy — Ay)(Dy — A2) + R(z, D)
with R, R € S*.
With this factorization in place, we can prove the energy estimate.
LEMMA 1.3. Let s € R, T > 0, and u € CY[0,T); H*) N C°([0,T); H**') with Pu €
LY((0,T); H%). Then

T
® s S IDfu(t ) e s < Cor (1D ey + [ 1Pu(t.)lct).

Ost< ]<2 j<2

PROOF. By the estimate ([{4)), there exists C' > 0 uniform in p € [1,00], A > 0 large so that

T v
(7) (/0 )\[e—AtHEiu<t,-)HHs]pdt> SC(”EU HH5+/ HPUHHSJFCHUHHSH)dt).

We next estimate © and D;u in terms of Eyu and Esu. For this, observe that
e (=A< (= )
A2 — A1

and hence with
QY = (A1 — Xo) "Lz, D)AE € C=(R; ¥0)
Q% = (A2 — A1) (z, D)A} € C(R; 1Y)

ok (QVYE, + QSEy) = r*
and we have

1
= QYE1+ Q5B = ) R;Dj,  Rj € C*(R ¥ 1),
j=0
So, for each t,

Z 1DF ull o1+ < CZ | Eiul[ s +CZ 1D ull s+
k=0 k=0
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Next, observe that
[ Deullgs—1 < [[Erul|gs—1 + [[Asullgs—1 + Clluf gs—
and hence

(8) Z 1Dy ull o1+ < CZ [Eiull s + Cllul| as.-
k=0

Using , together with (4 applied to u with a; = 0,

=

p

(9) ( /0 ! Ale™ Z_j nyfuystHk}pdt) <

o (S IEO) + 10 e) +€ [ (1 Pulig + 3 Dbl )i
k=0

Letting p=1and A > 1, in @D, the last term can be absorbed in the left hand side and we
have

T 1 1 T
/0 >\[€_>\t Z HDfUHH5+17k]dt S CS’T(Z HDfU(O)HHsﬁ»lfk +/0 HPUHHsdt)
k=0 k=0

Inserting this into the right hand side of @D gives

1
T 1
(/O A[e”erDfurrHs+1-4”dt> < Cor( S NP+ [ 1Pl

k=0 k=0

We now turn to the well posedness for 2nd order equations.
THEOREM 1.2. Assume that and hold. Then for f € L*((0,T); H), u; € H¥T17J there
exists a unique solution u € C([0,T]; H*) N C°([0,T]; H**1) to
Pu=fin0<t<T, Dgu]t:(]:uj, for j < 2.

PRrROOF. As before, the uniqueness follows from the energy estimate. Therefore, we need only
study existence. Suppose v € C((—o00,T) x R%) and u € C*(R4*!). Then

T T A

(10) / (u, P*v)dt = / (Pu,v)dt —i Y (Diu(0), EEPry s 10(0))
0 0 jtk<2

Since, P* satisfies |(i)| and integrating backwards in time and applying ,

S IDfe Ok <€ [ 1P vl

k<2
Thus,

T T
[ Gt =i Y g BB @) < O [ 1l 4 3 Nughiges) [ 1P s
J

J+k<2
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The Hahn Banach theorem implies that there exists u € L°((0,T); Hs4+1) such that holds
with Pu = f, D]u(0) = u,.

As before the remaining task is to improve the regularity of u and in fact to show that there
is a solution with the desired regularity. We proceed as in the proof of Theorem That is, it

is enough to show that if f € § and u; € S, then the resulting solution has the desired regularity.
So, suppose that u is the function given above solving

Pu=feSs, Dgu|t:0:uj68.
Then, for any s, u € L>®([0,T]; H**!) and using the factorization of P
(Dt — AZ)El’LL = f + R]’u

So, Eyu € L>®([0,T); H®) and hence D;E;u € L>®([0,T]; H*™1), so E;u € C°([0,T]; H5~1). Now,
we have by (8)) that Dyu € L>°([0,T]; H*~1) and hence using the equation D?u € L>([0,T]; H52).
Therefore, Dyu € C°([0,T]; H*2) and u € C°([0,T]; H*~1). In particular,

1
uwe()()C/(0,T); H).
5 j=0

Applying the equation proves that in fact u is smooth. [l

2. Strict Hyperbolicity

Now, we consider more general second order operators on a manifold X without boundary.

DEFINITION 2.1. Let P € Diff™(X) with principal symbol p is strictly hyperbolic with respect
to p € C°(X;R) if p(z,d¢(x)) # 0 and the map

R > 7= p(x,&+ Tdp(x))
has m distinct real roots for all z € X and € € (T;X \ 0) \ Rdo(z).

EXAMPLE 2.1. Consider X = Ry x M, and P = =0} + A,. Then, p(t,x,7,§) = 72 — |£|§.
Consider ¢(t,x) =t. Then, d¢ = dt and so

p(t,z,dg,0) =1#0,  p(t,z,7dp,€) = 7° — [€[3
So, P is strictly hyperbolic with respect to ¢ =t.

Our main aim for the rest of this section is to study well posedeness of the Cauchy for P and
in particular,

THEOREM 2.1. Let P be a differential operator of order 2 with C*° coefficients in X and

let Y € X be an open, precomapct subset. Assume that P is strictly hyperbolic with respect to
¢ € C°(X;R) and define

Xy ={zx e X|o(x) >0}, Xo:={zx € X | ¢(x) =0}.

(i) If f € HY . (X) has support in the closure of X then there evists u € HEMH(X) with
support in the closure of Xy such that Pu= f in Y.
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(i) If s > 0, v is a vector field with vp = 1 near Xo, f € Hy,o(X4) and uj € Hli)tl_j(Xo),

Jj < 2, then there exists u € Ffotl(XJr) such that Pu = f in Xy NY and v/u = ujin
Xo NY. Moreover u satisfies for every K C X compact with K, [TODO]estimates

2.0.1. Anisotropic Sobolev spaces. We will work locally assuming that X = R? and ¢(z) = z,
but before we do so, it will be useful to have certain anisotropic sobolev spaces. For a distribution
u € S(R?) and m, s € R, we define the norm

lull7 s = (27r)_"/|ﬂ(£)|2(1 +HIEP)™ A+ [€P) de

We then define H™*(R?) as the closure of S with respect to the || - ||« norm.

We will actually want to work in the half space R? := {(z1,2’) € R? | 21 > 0}. For this, we
use the following notation. For a space of distriutions F(R?), we define
F(RY) = {Ulpa | U € F(RY)}.
We also define o o
FRY):={U e F(RY) | suppU C R4 }.

We will mostly be concerned with H"°(R%) and H™*(R%). For u € H "*(R%), we define
the norm
lullm,s = inE{{|U]|m,s | U € H™*(R), Ulga = u}.
We define spaces analogously on a manifold X with boundary.

We will need the following lemma

F7m,S

LEMMA 2.1. Let u € ?l(Ri). Then uw € H " (RL) if and only if u € mel’SH(Ri) and
Diue H" (RY);

5““”?)@,3 < Drvulliey s + el o1 < llullf,s.
Furthermore, w € H'"*(R%) if and only if u € "™ and Dju e Fm’sfl(Ri) forl1 < j<dand
d
[ullZs = Nl + D II1Djull, o1
=2

PROOF. Let u € H "*(R%) and U € H™*(R?) with U |re = u. Then,

d
1U1s = DU N5 1,5 + MU 50 = N0 sm1 + D ID5U N 51
j=2

is checked easily from the definition. Therefore, u € H
m,s—1
' and

m—1,s+1 —m—1,s —5m,s—1

,Diwe H ,ue H , and

Dj’U,EH

IDvull, -1 s + lulls -1 501 < llullf o

d
lull o1+ D I1Djull -y < Hlullf, s
j=2
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We now need to show the other inclusions. Together with the estimates, they are obtained
from the following lemma.

LEMMA 2.2. Let A, 5(§) = ((&) + &)™ ()", Then Ay, (D) is an isomorphism of S(@)
extending by continuity to Lz(Ri) — H™~

(RL). Moreover, Ay, s(D) extends by continuity
from C2(RL) to an isomorphism from H'°(R%) ¢

o L*(R4). In particular,
letllm,s = | Am,s(D)ul| 2(ga

and H™"(R) consists of those u € ?(R‘i) with Ap su € L2

PROOF. One can easily check that supp F1(A,s) C @ and supp F 1 (Ays) C RY. (For

example by the Paley-Weiner theorem.) Therefore, A, o(D) maps S(R?,) continuously to itself
and has inverse A_,, _s(D). The extension to L? then follows since |A,, s(£)|? = (£)>™(¢)?5. The
second statement follows by duality. O

O

We record the following consequence of Lemma [2.2] for later use.

COROLLARY 2.1. Suppose u € H_m’_s(]Ri). Then there exist ug € Hl_m’_s_l(@) and
uy € H'="™~% 5o that
u = ug + Diuq.

PROOF. Observe that A, (D) = ((D') +iD1)Aym_15. So, since Ay, s : L? — H™™7% is an
isomorphism, there exists v € L? such that

u = Am,s’U = (<D,> + Z’Dl)Amfl,s'U
and observing that

(DY A 1gv € V™51 ALy e Fimes,

2.0.2. The local problem. We start with the case X = R? and ¢(z) = x1. Then,

2
P =Y Pj(x1,2',Dy)D}, , P; € Diff*™
§=0
and by the strict hyperbolicity assumption 0 < |P,|. Hence, dividing by a nonzero smooth function
we may assume that P, = 1. Moreover, since P is a homogeneous polynomial of degree 2 in (&1, £’)
for which that map & — p(z,&1,€) has two distinct real zeros, we may assume P satisfies the
assumptions of Theorem forxeVY.

Let A1(z,&), Aa(z,£") be the roots of p(x,-,¢"). Fix xy € C°(R?) with y =1 in Y and define

2
p=1I&—=X),  Ai=xN+0=xill.
=1
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Now, let P € Diff? (]Rd) with principal symbol 5. Then P satisfies the hypotheses of Theorem
for 2 € R? and has constant coefficients outside a compact set.

LEMMA 2.3. Suppose that P is strictly hyperbolic with respect to x1 in X C R% and let Y ¢ X
be open and precompact. If f € ﬁs’t(Ri) and s > 0, uj € HHHIZI(RITL) | § < 2, then there

exists u € HsH’t(Ri) such that DIu € CO(R; HSH+1-J(RI1)) when 21 > 0 and
Pu=finYNRL, D{u:uj inY N (RS % {0}), 7 < 2.
Moreover, for x € CX(X) with x =1 on'Y, Cy, > 0 so that we can find such a u with

ot T O IIxwsll reseea-s)
j

[ll sy < Cx(lixf

PROOF. Fix T > sup{z; | z € supp x}. Then, since s > 0, f € L*((0,T); H**'*1=7). Hence,
by theoremthere exists v € CO([0, T]; H¥* 1) nC ([0, T); H*+) with Pv = xfon 0 < 23 < T
and D{v|x1:0 = xuj. Note that, letting X7 := (0,7) x R*"!, by Lemma v E FI’SH(XT).
Moreover, Pv € H™' (X7).
Now, observe that by Lemma [2.1
Dive @ N Xy),  k=0,j<2.
Suppose this holds for k < s. Then,

D?v = Pv — Z ]%D{v € ﬁk’s+t_k_l(XT).
j<2
In particular, Div € HTRL and 0 € TSR by Lemma So, by induction
€ Fs+1’t(XT) as desired. Letting u = yv gives the desired result. O

Next we give a local version of the first part of Theorem

LEMMA 2.4. Assume P is strictly hyperbolic with respect to x1 in X C R and let Y € X be
open and precompact. If f € Hs’t(Ri), then there exists u € Hs“’t(Rﬁlr) such that Pu= f inY.

Proor. First, suppose s > 0. Then, by Lemma there exists v € ﬁsﬂvt(

{a;l > —1}) with
Pv=f -1<z<T,  Div)py—_1=0.

Observe then that since supp f C Rii, thienergy estimate @ implies suppv C @ and hence,

extending v to z1 < —1 by 0, v € H¥THH(RE).

Thus, we have verified the theory for s > 0. To prove it for s < 0, we proceed by induction.
Assume the theorem holds when s is replace by s + 1. Then by Corollary

f=fo+Difi
where fo € H5T5t1 and f; € H5T5t. Now, there exist ug € H52'~1 and uy € H5"2! such that

Pug = fo, Puy = f1.
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Now, U = ug + Dyuq € H5tHt and
PU — f =[P, DyJuy € H¥TH1

since [P, Dy] of order at most 1 in the D; derivatives and 2 in all derivatives. Then, we have
v € H¥F21=1 with Pv = [P, Dy]u; and v = U — v is the desired solution. O

In order to finish the proof of Theorem [2.1] we need some uniqueness for solutions

LEMMA 2.5. Suppose P 1is strictly hyperbolic in X with respect to ¢. Then every xg € X has
a fundamental system of neighborhoods V' such that u € D'(V'), ¢ > ¢(xg) in suppu, and Pu =0
in'V impliesu =0 1in V.

PROOF. Take coordinates so that zg = 0 and ¢(z) = ¢(0) 4+ 21 — |2|?. This is possible by the
Morse lemma. Then let

Ve={a||aa] < &, || < e}.
Now, & — (&) 72p(0, (¢')&1,€') has distinct real zeros on 9TFRI~1 so the same is true for z € V,
provided 0 < € < €y. Moreover, this ¢y can be chosen uniformly on compact subset of X.

Now, by Lemma [2.4] for g € C2°(V;), we can find v € C*°(V;) with P*v = g in V; and v = 0
for z1 > €2 — § where § > 0 is chosen so that g = 0 on 21 > € — 6. Then,

0 = (Pu,v) = (u, P*v) = (u, g)

and in particular u is 0 in V. U
We finally prove the Theorem [2.1

Proor. Let X, C X be coordinate patches and Y, C X, be precompact so that Y CcUY,.
For each v, by Lemma we can find u, € Hl‘f;gl(X,,) vanishing in ¢ < 0 so that Pu, = f in Y.
We choose a covering of XoN'Y by open sets V,, with the properties claimed in Lemma and
choose V), small enough that that if V,, NV, # 0, V, UV, CY, for some v. We the define u = u,

in V,, whenever V,, CY,. Then u is well defined in V' =U,V,, and Pu = f there.

Now, let x € C°(X) with x = 1 in a neighborhood, W of XoNY so that W C V. Then
P(xu) = f in W. In particular, there exists g € H{ (X) and € > 0 so that g = 0 when ¢ < €
and P(xu) = f — g in Y. Therefore, we need to prove the statement with f replaced by g and ¢
replaced by ¢ — €.

Since Y is compact, and the ¢ in the proof of Lemma can be chosen uniformly on compact
sets, the € above can be chosen uniformly with ¢ replaced by ¢ — ¢ for ¢t € [0,supy ¢(z)]. Then,
since the theorem is trivial if Y C {¢ < 0}, the proof is complete after a finite number of iterations
of the argument above.

For the second part of the theorem we appeal to Lemma instead of Lemma
O

COROLLARY 2.2. Suppose that for a < b, X := {a < ¢(x) < b} is precompact. Then the
solution given by Theorem[2.1] is unique when Y = Xgp.
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PROOF. Suppose that Pu = 0 in X, suppu C {¢(x) > 0}. Then, by construction suppu C
{¢ > €} where € is uniform on X,;,. In particular, iterating finitely many times, u = 0.

For uniqueness with s > 0 an initial conditions imposed, suppose that Pu = 0 in Xy,
u € Fl’t(XOb) with DJul;—g = 0 for j < 2. Then, extending v by 0 into ¢ < 0, we have
u € HYY(X) we have suppu C {¢(z) > 0} and hence as before u = 0. O

3. Boundaries

We will focus on the case m = 2 throughout these notes. In this case, it is possible to associate
a Lorentzian metric to p. Multiplying P by p(z,d¢(x))~!, we assume that p(z,d¢) = 1. Since
m = 2, in coordinates (x,£) on T*M, we can write

Pz, ) = (G (2)€,€)

where G~!(z) is a symmetric invertible matrix. In fact, The invertibility of G follows from the
fact that p is strictly hyperbolic with respect to ¢. In fact, if G~!(2)¢ = 0, then

p(x, &+ 7dg) = (G (@) (€ + 7dg), (§ + 7d)) = 7°(G(x)d¢, dp) = °p(x,dp) = T°
which has a double root at 0.

We then define a symmetric bilinear form on T M by
<§a 77>g = <G_1(CL‘)€, 77)
which we identify in the usual way with a metric on 7, X i.e.
(V\IW)g =: (G(x)V,W).
We now classify tangent vectors into three types.
DEFINITION 3.1. We say that V € T, X
(1) is time-like if (V,V)4 >0

(2) is space-like if (V,V), <0
(3) is null if (V,V), = 0.

We then say that a hypersurface H is spacelike, timelike or null if p(v) < 0, p(v) > 0, or
p(v) = 0 respectively where v a conormal to H.

Throughout this section, we will also make the assumptions that
(11) X 5>z — ¢(x) is proper, 0X is time-like.
The proof of Theorems and ?7 will follow as usual from certain a-priori estimates on the

solution.

3.1. Estimates with a boundary. References: Hormande:III 24.1
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4. Existence and Uniqueness

References: Hormande:I1I 24.1

THEOREM 4.1. Let f € H (X°), ug € H**1(0X) where s > 0 and assume ug, f vanish on
{¢ < a}, that p is strictly hyperbolic with respect to ¢ and holds. Then there is a unique
u € HETH(X®) such that
Pu=f in X°
u=ug onoX
u=20 on ¢ < a.

Moreover u satisfies for every a’ < a <b <V, [TODO]estimates

ull gs1(acpery < CUS N s (@r<perry + 1ol ms1(ax))-



CHAPTER 4

Propagation of Singularities

In this chapter we study an operator P € Diff?(X) for X a manifold with boundary X and
interior X°. We assume throughout that 0.X is non-characteristic for P. That is, p does not
vanish on N*0X. For propagation in X°, we will allow P to have an imaginary principal symbol.
However, when it comes time to study the problem near the boundary, we will insist that the
symbol be real valued.

1. Propagation in the bulk
2. Propagation of singularities for strictly hyperbolic problems

We now prove the propagation of singularities result for pseudodifferential operators.

THEOREM 2.1. Let X be a compact manifold and P € ‘I’gﬁg(X) with o(P) = p — iq with p,q
real valued. Suppose that A, B, B; € \Ifghg(M) such that

(1) for all (xzo,&) € WE(A), there exist T > 0 so that exp(—T (&)™ H,) (w0, &) € ell(B),
exp(—t{&) "™ H,) (w0, &) € ell(By), 0 <t < T.

(2) ¢ >0 on WF(By). Then, for allu € D'(M) if BiPu € H* "™ Y(X) and Bu € H® then
Au € H? and for all N > 0, there exists Cy > 0 such that

[Aul| s < C|[BiPul| gs—m—1 + C||Bul| s + Cn|lul| -
2.1. Construction of the escape function. The idea will be to use positivity of the

commutator [P, A] to obtain estimates on u in terms of P. In order to do this, we will produce a
so-called escape function which is increasing along the flow.

LEMMA 2.1. Let X be a compact manifold without boundary and A, B, By be as in Theorem[2.1]
Then there exists 0 < g € C*°(IT*X) such that there exists § > 0 with

g >0 on WF(A), (&)™ H,g < —Bg in a neighborhood of OT*X \ ell(B).

PROOF. Let ¢i(z0,&o) := exp(t(&) " H,)(z0, &). We start with the case WF(A) = {(x0, &)}
We may assume that (£) "™ H,(z0, &) # 0 since otherwise any g > 0 will due. Now, let 7> 0

so that ¢_7(z9,&) € ell(B). Tke ¥ C 0T*X a hypersurface through (zg,&p) transverse to Hp.
Then, there exists a neighborhood V of (z¢,&p) in ¥ and § > 0 so that

O(t,q): (=T —0,0) x V3 (t,q) — ¢(q) € T*X.

25
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is a diffeomorphism onto its image and
O(~T —§,~T +6,V) C ell(B), O(—T —6,6,V) C £(By)
Let 0 < ¢(t) € C (=T —4,6) such that ¢/(t) < —p off of (=T —§/2,T 4+ §/2) and x(0) > 0.
Then, fix 0 < xy € C°(V) and define
9(z,€) = (@ @ x)(27}(x,6))-
and extend g by 0 outside of the image of ®.

Notice that g > 0 in a neighborhood of (zg,&y), so by compactness of WF(A), there exist
(xn,&n) € T*X such that

9= Gane, >0 on WF(A),
n
Moreover,
Hpg = ZHpgxn,én < —Bngmgn = —fBg in a neighborhood of T*X \ /(B).
n n

We now prove the propagation of singularities estimate

PROOF. Fix a volume form on M and write Im A = 454 Re A = 444 Let G = Op(<§>s+kng)
and E = Op(<£>5+177m) for some metric on X. For u € C°°(M) consider
_ Im(Re Pu, G*Gu) + Re(Im Pu, G*Gu)

Im(Pu, G*Gu) 5

[TODO]finish see Dyatlov—Zworski

3. The b-wavefront set

[TODO]

4. Propagation near the boundary

With Theorem in place, we have a complete understanding of how singularities propagate
in X° (at least provided that H,, is not radial!). Therefore, it remains to understand the behavior
near the boundary of X. Throughout this section, we will use [TODO] to change coordinates
so that

b= 5% - T(I’,f,)
where p(x, &) is the symbol of p.

We denote by 7 : T;x X — T*0X the projection through N*0X and write ¥ := {p € T*X |

p(p) = 0}. We then divide T*0X into three regions, the elliptic, hyperbolic, and glancing regions
£:={qeT0X [n  q)NE =0},

(12) H={qe T*X | #(r (a) N Z) = 2},
G:=T0X\ (EUH).
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We will study each of these regions separately. There is no propagation in £ and the propagation
in ‘H results in broken bicharaceteristics. The propagation through G is subtle and will require a
great deal of analysis.

4.1. The elliptic region. Our first task will be to prove the analog of the fact that if X
is a compact manifold without boundary, then WF(u) € WF(Pu) U {p = 0}. Note that the
same proof shows that this continues to hold in the interior of a manifold with boundary and in
particular, WFy,(u)|xe € WFy(Pu)|xo. Now, with ¥ := {p =0} € T*X, define ¥ = (%) c T*X
where ¢ : T*X° — T*X is the natural inclusion extended to 7*X. One might hope that analog
of the elliptic regularity statement would be

WFy,(u) C X UWFy(Pu).

However, it is easy to see that such a statement cannot hold without imposing some boundary
conditions and so, the correct statement should be

(13) WFy(u) € X UWFy(Pu) UWF (ulpx).
Now, notice that in coordinates where 0X = {z; = 0}
Slox = {(a/,€) e T*0X | (0,2',61,6") e X} = HUG
and so to obtain it is enough to show
WF(u) NE C (WFL(Pu) UWF(ulpx)) NE.
In order to study the elliptic region, we start with a local problem. In particular, we assume
that X C R%, with X C {x; = 0}. We then consider
P=D2 +b(z,D')Dy, +c(z,D").
We will start by proving elliptic regularity for such an operator.

LEMMA 4.1. Suppose that u € H,. PueH ', and Ulz,=0 = 0 and T*{z1 =0} C £. Then,

comp’

[ullgr < C([Pullg-1 + [Jull £2)-

We first need,

LEMMA 4.2. Foru € H!

comp’

(DZ,u,w) -1 = || Doyl

PROOF. Since u € Hgomp, we may extend u by 0 to U € H'(R?). Then, let uc — U in H!

with ue € C° and suppu. C {x1 > 0}. For example, take 1) € C>®(R%) with suppt C {z1 > 0},
[ =1 and let uc = e % * u.

(D?gluevus)Hﬂ,Hl = ||Dx1ue||2~
Now,
(D2, u,u) — (D3, e, ue)| = (D7, (u — ue),u) + (D3, ue, u — ue)]
< lu = uell g (ull gy + el g2) — 0.
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Also,
HDJAUEH%,? - ||Dmu”%2v

completing the proof. O
We now prove Lemma

ProOOF. We proceed using standard energy estimates.
(Pu, u)ﬁ717H1 = (D2, u,u) + (b(z, D')Dyyu,u) + (c(x, D')u, u)
IDzyull72 + (Dayu, b* (2, D')u) + (c(z, D'yu, u)

Now, since T*{z1 = 0} C &, there exists § > 0 so that

2 /
ol €) > 0E) | e

Therefore, there exists dg > 0 so that

(1+6o) 0
(c(z, D )u,u) — Tllb(fﬂaD’)UIliz > §HVMH%2 — Cllull7a.
On the other hand

14 dg

4

* > 1
|(Dayu, b (2, DYu)| < || Doyl 2|07 (2, D)l 2 < Ib(z, D'ul72 + m”leuH%Q'

So,
|(Pu,u)| > e([|Dyyul|Fe + [ Varul72) — Cllull7e.
In particular,
cllullfn < (1Pull g llull g + (C +e)l|ullfz < e M Pullf-s + ellullFp + Cllull?s

So, choosing 0 < € < ¢/2,
[ullfn < C(IPullF-1 + llull72)-
]

sl _
Next, let £ : H*({z; = 0}) — H""? be the extension operator. Let u € ' with Ul (g =0y =
ug € H. Then, u — Fug € H' with Uz, =0 = 0 Moreover,

[Euollz1 < [luoll g1/2-
So,
1P (u— Eug)|lz—1 < [|Pullg-1 + Clluoll g1/2-
In particular,
LEMMA 4.3. Foru € Fl, with |z, —o = uo,

ullgr < CUIPull =1 + lluoll 12 + [lull2)-

Next, we improve the regularity of u.
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LEMMA 4.4. Suppose u € L*(RL), |y —0 = uo € H'/? and Pu € H™'. Then,
ull g < CUPull -2 + [luol g1/2)-
PROOF. Let y € C°(R" 1) with x = 1 near 0. Then put u. = x(eD')u. Then u. — u € L?,
Pu. — Pu € H™', u. € H% for all t. Now,
Pu. = x(eD")Pu + [x(eD'),b(x, D")|Dy,u + [x(eD"), c(x, D)Ju € H~ 1

for any t. In particular,
D? H-b D H™H
7, Ue € , 21 Ue € .

Therefore, D, u. € H*'~! and then, since u, € H%*=2 4 € H"*~2, In particular, choosing t > 2,
ue € H'. Hence,

luellmr < CUIPucl -1 + [luellz2 + [[uelei=oll gr1s2) < 2C([[Pufl -1 + [lullL> + [[uoll g/2)-

In particular, there exists a subsequence so that u. — @ in H'. But ue —u € L?, sou € H' and
the estimate continues to hold. 0

LEMMA 4.5. Suppose s >0, u € Fs’t(Ri), Ulgy=0 = Up € HS43 . Then

[ullggere < C([Pullga-1e + ullgsr + lulei=oll orery)-

PrROOF. We start with ¢ = 0, Observe that
P((D")*)u = (D')*Pu+ [b(x,D"),(D")*| Dz u + [c(x, D), (D')°]u
. So,
D"y ull g < CUKD")* Pull -1 + ||ull go.s + (D) *uoll gr1/2-
In particular,
[ull e < CllPullg—1.s 4 [[ullgs0 + lluoll or g -

Iterating as before, we then obtain Therefore,

[ull o410 < CllPulls—1,0 + [Juoll 1.

Now, for t # 0,
KDY ull o0 < COUD") Pull grs=v0 + llull o + (D) uoll sy

which concludes the proof. ]
Finally,
LEMMA 4.6. Suppose T*{x1 =0} C &, u € N(R2,),

Pu = f € N(@—ﬁ-), u|a:1:O = UQ-

Then,
WEy, (u)

T+ {21=0} = WEFb(f)]{z1=0y U WFp(uo).
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PROOF. Here, the inclusion of the right hand side in the left is automatic from the definition
of WFy,. Therefore, we need only show that the right hand side is contained in the left. Suppose
that (0,&6) ¢ WFb(f)|{x1:0} U WFy(ug). Fix § > 0 so that

{0 <z <6}n{z]| (x,&,0) € WF(u) UWF(f)} = 0.
In particular, this is possible since WF, (u)|{z,—0y C T"{z1 = 0} and WF},(u) is closed. Therefore,
for 1 > 0 small and (z,§) € WF(u), z1]&1| < |€].

Now, let

W' = WFb(f)‘{xlzo} U WFp(ug) U {(%,fl) |0 <z <9, (x,§) € WF(f) for some & }.

This is closed since WFy(f) is. Let x € S®(R x T*R¥1) with x(z, &) = 0 for 21 > 6 and order
—o0 in a conic neighborhood of W’. We call such a x a goodc cutoff. Then, since WF(f) avoids
the N*{z1 = ¢} for ¢ <4, x(z,D")f € C>*° [TODO]references.

Now, choose s,t such that for y € S/ good,

x(z, Du e L

loc
Now, for x € S°, good
Px(z,D"yu = x(z,D')f + [P, x(z,D")lu € H

s—1,t
Indeed,
[P x(z, D")Ju = Py(z, D')xo(z, D') + Dy, Pi(z, D')x1(z, D)
where Pjy; is a good cutoff in S,
By iteration we obtain then that

x(z, D"u € Tt

and in particular,
x(z, D u € Tt

with sg > 0.

Now, observe that

x(x, D" |z, —0 = x(x, D )ug € C,
So .
Px(z,D"Yuc ™ o x(z, D" )|z =0 € C*.

Therefore, by Lemma ﬁ x(xz,D"u € O and in particular, x(z, D")u € C*°. Now, since
(0,&,) ¢ W', we may take x(z,£) good with x(0,£)) = 1 and hence by [TODO]reference,
(0,£) & WFp(u). O

Finally, we return to the general situation and prove our main theorem for singularities there.

THEOREM 4.1. Suppose that P € Diff?>(X) with X non-characteristic for P. Suppose f €
N(X) and

Pu=feX° ulox = uo
Then,
WE (u)ox N E = (WFu(f)lox UWF(ug)) NE.
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[TODO]for this theorem to make sense we need to prove earlier that if 0X is
non-char, Pu = f € N(X) then u € N(X). We did this in class

PROOF. Again, the inclusion of the left-hand side in the right is trivial. So, suppose we work
in coordinates where (0,&)) € &, (0,&)) ¢ WFu(f)|ox U WF(ug). Then, observe that in these
coordinates

P = Py(z)D2 + Pi(z,D")Dy, + Py(z,D')

with P, € §?7% and P, # 0 near 0. Therefore, let y € C°(X) with x = 1 near 0 and let
Y € OX(RI1) with ¢ = 1 in a conic neighborhood of {¢ | ¢'/|¢'| = &/1€)|, €] > 1}. Let

(14) P=D; +Z [Po(@) ™ x(2)y (D) Pj(w, D) + Po(0) ™ (1 = x(2)w(D")) P;(0, &/ 1€l D' DI D,

In particular, for g € N'(X),
(0,£0) ¢ WEL([P — Plg).
Therefore,
(0,£p) ¢ WF(Pu)

Moreover, T*{x1 = 0} C &£p for x supported in a small enough neighborhood of 0 and % in a small
enough neigbhorood of §. Therefore, Lemma applies and (0, &) ¢ WFp(u) as desired. O

[TODO]prove the next thing We next state a quantitative analog of Theorem

THEOREM 4.2. Suppose that P € Diff?(X) with 0X non-characteristic for P. Suppose f €
N(X) and
Pu=fecX° ulax = ug
Then, for A € ¥9(X), B € U)(X), with WF,(A) C ell(B) and WF,(B) C £NY = 0, we have

[Aullg: < C(|BPullga—2 + [ Bulox | .1 )-

4.2. The Hyperbolic region. Now that we have microlocal elliptic regularity in place, we
want to study the analog of Theorem In particular, we want to understand how singularities
may propagate inside 3. This will happen in two steps. First, we study % C T*9X and only
then G. In H, many methods are available to prove propagation of singularities. We will use a
factorization method similar to what was used to prove well posedness for hyperbolic equations.
For other approaches see [TODO]references.

1
2

Recall that we may choose coordinates so that 0X = {z; = 0} and
p(%f) = f% - T(mvgl)'
If (2,&) € M, then the roots of & — p(0,z(,&1,&)) are £4/ro(x, &) where ro(z', &) =

r(0,2',£"). Note then that the £ root is a covector pointing in/out of X. Moreover, since
p - 251611 - 7'7
Y+ (t) : exp(£tHp)(0,2', £/ro(2’, &), &) is a bicharacteristic for p in X° for ¢ in (0, €).
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DEFINITION 4.1. We define a compressed broken bicharacteristic for p as a continuous map
vt T =2\ G
where I C R is an interval and

- When v(t) € XN T*X°, y(t) € C* and v/ (t) = Hy(v(t)).
- {t € I|~(t) € H} is a discrete subset of I.

Locally near a point (z',£") € H, such a broken bicharacteristic is given by

0= oy oars
w(exp(tHy)(0,2', —\/ro(a’,€"),&")) —e<t<0.

Our next theorem says that singularities of solutions to Pu = 0 with u|sx = 0 are invariant
along such broken bicharacteristics.

THEOREM 4.3. Suppose that P € Diff?>(X) with X non-characteristic for P. Suppose f €
N(X) and
Pu=feX° ulox = uo
Suppose that y : I — X is a broken bicharacteristic such that v(I) N (WFy(f)UWF(ug)) = 0, then
for any to € I if v(to) ¢ WFy(u) then
V(I) ¢ WFp(u).

Notice that for v(I) N T*0X = (), Theorem is an easy consequence of Theorem
Therefore, in the proof we may work locally near a point ¢ € I such that v(t) € H. Without
loss of generality, we therefore assume pg = 7(0) € H. Then, since p € H, freezing coefficients
as in (14), we may replace P by P such that T*0X C H so that Pu has the same wavefront set
properties as Pu near po.

We continue to call the operator P for brevity and observe that
p(x,f) = 5% - r(xagl)
with r(z,¢’) < c|¢/|?. In particular, P is strictly hyperbolic with respect to 21 and we may apply

Lemma [1.2] However, it will be necessary to upgrade this factorization.

LEMMA 4.7. There exist AL (z, D'), As(z,D') € S* with symbols o(A+) = o(Ay) = £/7 s0
that

P = (Divl - A+)(Dx1 - A*) —I—E(IL‘,D,) = (Dfrl - A*)(Dm - A+) +E~1($’D,)
with E,E € S~°°.
PRrROOF. We have from Lemma that there exist Ag_(z,D') € S, Ag+(z,D') € S! and
Eo(x,D") € St such that
P = (le - A0,+)(DI1 - AO,—) + EO(x7D,)

with o(Ag+) = &/7(z,&). Suppose that there exist A;_(z,D') € S', Aj(z,D') € S! and
Ej(z,D’) € §'77 such that

P = (le - AjHr)(Dfm - Aj,*) +Ej(an/)
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with o(Aj 1) = £/r(x,&). We will show that the error can be improved to E;+1 € S™/. For this,

let
o(E;)(z,¢)

2/r(x,¢)

Ajri(z, &) = — €S

Then
Nj+1(z, D')(Day = Aj—) + Ej = Njr (2, D) (Aj v — Aj) + Ej + Ny (z, D) (Day — Ajit)
=Xjt1(z, D) (Aj+ —Aj )+ E;
+ (Dzy = A )Aj+1 (2, D) + Ny (2, D), Dyy — Ay 4]
= Eji11(z, D)
+ (Day = Ajr = Ajra(@, D) Aji1 (2, D) + Ejiao(2, D)
where Ej1q11,Fjt12 € S—J.
In particular,
P =Dy = Ajy)(Day — Aj-) + Ej(z, D)
= (Do, = Aji+)(Day — Aj—) = Aja(@, D) (D — Aj )
+ (Day = Ajy = Ajra(@, D)) A (2, D) + Ejpap(2, D) — Ejia (2, D)
= (Dzy = Njy = Nj1(2, D)) (Day — Aj— + Ajia (2, D)) + Ej(z, D)
with Ej € S77. Let Aji14 = Aj+ £ X\j11(x, D). Then defining Ay ~ Aoy + >j>1 ) gives the
desired factorization.
Repeating the arguments starting with the A factorization completes the proof O
Next, we construct an operator Q(z, D') with desirable microlocalization properties such that

[Dgy, — Ay, Q] € S7°°. This will allow us to complete the proof of Theorem by effectively
microlocalizating Pu = f to a broken bicharacteristic.

LEMMA 4.8. Fiz pg € H, v : I — X a broken bicharacteristic with v(0) = po and let U be a
conic neighborhood of v([0,00) N I). Then there exist € > 0 and a conic neighborhood V- C T*0X
so that for any G, € SO(T*0X) supported in V, there exists Q4 (x, D') € S° with symbol q. such

that ¢+ (0, p) = G4,

(15) WE(Q+) N{a1 < e} C {(z,€) | (2,4/r(z,€),&) € U}
and
(16) [Dzy — Ay, Q4] € 57

Similarly, let U be a conic neighborhood of y((—o0,0] N I). Then there exist ¢ > 0, V C T*0X
a conic neighborhood of py so that for - € S°(T*0X) supported in V there exists Q_ with

U(Q—)(Ovp) =4q-,
(17) WF(Q_)N{z1 <€} C {(x,&) | (x,—\/r(z,¢),¢) € U}

and
(18) [Dyy —A_,Q_] € 5.
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PrOOF. Fix §o € SY(T*0X) with suppgo C U NT*0X and qo(po) = 1. Then, since 9, is
transverse to {x; = 0}, there exists go € C*°([0,€) x T*0X) solving

Oy — H 7)q0 =0,  qolzy;=0 = Go-
Moreover, by homogeneity, go € C°°([0, €); S°(T*0X)). Let Qo = qo(x, D’). Then,
[Day, — Ay, Qo] = Eo(z,D') € S,

Now, since on v((0,00) N 1), Hy = g(9s, — H /), choosing supp go small enough, we may assume
supp go N {z1 < €} is contained in the RHS of and hence WF(Ey) N {z; < €} is contained in
the RHS of Assume now that we have Q; with o(g;)(po) =1, WF(Q;) C U and

(19) [Dml - A+7Qj] = Ej(lL‘,D/) € S_l_j'
Let gj € S —J solve
(O, — H\/F)Qj = _U(Ej)v Qj’:m:O = 0.

Then, supp ¢; N {z1 < €} is contained in the RHS of . Putting Qj+1 = Q; + ¢;(x, D). Then
we have with j replaced by j + 1. Letting Q4+ ~ >, ¢; completes the proof of .

Using 0z, + H, /; rather than d,, — H ;5 completes the proof of . O

PRrROOF OF THEOREM [4.3] Let v be a broken bicharacteristic with pg = v(0) € H. Since f €
N (X), shrinking € > 0 if necessary, we may assume that for 0 < z1 <e, (z,£) € WF(f) UWF(u
implies & # 0. Shrinking ¢ > 0 if necessary, let Q+ € C*®([0,¢); ¥9(0X) be as in Lemma
Then,

(20) (D2, = A)Q+(Ds, = A_) = Q4P+ R(x, D')

where R € C°°([0,¢€]; U~°°). In particular, since for 0 < z1 < € (z,£) € WF(f) UWF(u) implies
& # 0, we have in particular,

(21> (DI1 - A+)Q+(DCC1 - A—)“’ € Coo(xl < 6)'

In particular, for z; > 0, WF(Q4(D,, — A_)u) is arbitrarily close to & = r(z,&)"/? and
contained in U. Therefore, for By so that v([0,e) N {§ < x1 < €} CU(By),
1Q+(Dzy — A)ull go.s(cj2<my <o) < Cll Byl grsta-
Now, by Lemma [TODO]be more precise here
1Q+ (D, — A )u(zy, )| ms
< C(|Q+(0,2", D')( Dy, — A)ullgoss(s <oy <o) + Q+Pullgos + || R(z, D')ul gro.s
< C([|Byull gs+1 + |Q+Pullas)-
Also, using repeatedly,
1Q+(Day — A)ull gso < C([| Byl grser + |Q+ Pul| ).
Now, let Q_ as in with Q_ (0,2, D") = Q4 (0,2, D). Then,
Q- (Day = K4) = Q4 (Day — A Yullaco = Q- (0,4, D')(A_ — Ay Juo,
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Observe that
(22) (Day = A)Q-(Dyy —AL) =Q_P+R
with R € C*([0, ¢]; W~>°). Therefore, letting A € ¥0(9X) with WF(Q_ (0,27, D")) C ell(A),
Q- (D, — Ay)u(zr, )|l oo
< C(1Q-(0,2', D) (D, = A )ula, ol s + |Q— Pl o« + || R(x, D' ul| yo.:
< O([[Auo gs+r + [ Byullgs+1 + |Q+ Pull s + ||ul[g-~).
Using repeatedly then gives
1Q—(Day = Ap)ullg=o < C(l|Auoll gt + || Byull e+ + |Q+Pull s + [[ufl g-n).-
Now, let Qo(z, D') € C°°([0, €]; ¥°) have WF(Qq) C ell(Q_) Nell(Q4). Then, by the elliptic

parametrix construction

Qo(w, D')(Dyy = Ay) = E_Q_(Day —Ay) + Ry

Qo(w, D")(Dyy — A-) = E+Q1(Dyy — A-) + Ry
with Ex € C°°([0,¢€]; ¥°) and R; € C*°([0, ¢]; ¥°°). Hence,

Qo(z, D')(A- —Ay) = E_Q_(Dy, — Ay) = B4 Q1 (Dy, — A_) + R3
Finally, since A; — A_ € C*([0, ¢]; ¥') is elliptic,
1Qo(z, D")ull s < C(| Auol rosr + || Bl gosr + |Q+ Pull iz + [Jull )
Now, for Qo with WF(Qo) C ell(Qo),
PQo(z, D' )u = QoPu + [Qo, Plu

So,
[PQoul| rs—1.0 < Cl|Q4 Pul[ s + [[Qoul| grs.0
Therefore, _
ID2, Qoull grs-1.0 < ClQ+Pullrs + [|Qou] o
and hence

1Dy Qotl g0 < ClQs Pullizs + 1|Qoul g1
Finally, this implies R

1Qoull grs+10 < CllQ4 Pull s + [|Qoul| g1
Therefore,

|Qoullzess < C(lAuollgess + 1Byullgrass + Qs Pullirs + ull ).

In particular, since @4 and Q_ are elliptic at pg, for any C(x, D') with WF(C') sufficiently close
to po,
(23) |Cull s < ClAuollgess + | Byullgess + 1Qs Pull s + ull ).

Now, suppose that v(I) N (WFy(f) UWF(ug)) = 0 and v(e) ¢ WFp(u). Let U a conic
neighborhood of v([0, €]) so that U N (WF,(f) UWF(ug)) = 0. Choose € > 0 small enough so that
v((0,e]) "WEF(f) = 0. Then, there exists A elliptic at pg so that Aug € C*° and By (x, D’) elliptic
on v(e) so that Byu € C*°. Moreover, for ) supported in U, Q4 Pu € C*°. In particular,
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implies pg ¢ WF}(u). Switching the roles of Q4+, we also obtain that if y(—e) ¢ WFy(u), then
po ¢ WFy,(u) which completes the proof.

O

[TODO]state estimates

5. The generalized bicharacteristic flow
6. The Weyl law on a manifold with boundary

7. Microlocal defect measures
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2. Folding relations
3. The billiard ball maps
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5. Completion of the proof
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CHAPTER 6

The Melrose—Taylor Parametrix

1. The Friedlander Model and the Ansatz

1.1. The Friedlander Model. As a first, step, we consider the Friedlander model. This
toy example guides us when we consider the general case. The Friedlander model is given by

P = (hDy,)* =1 + hD,,  0X = {y1 = 0}.
Suppose that
(24) Pu=0 ulgg = f
Then, taking the semiclassical Fourier transform in the z’ variables gives
(=h*0;, — w1+ n2) Fngulyr,n') =0 Fryu(0,0) = Fp(£)(0).
The solution to this problem for = 0 is

= (2mh) ! / LUl T )

ATy R

where A is a solution to the Airy equation. Let {y := —y1 + 12 and 6y = (v, 7).

Our goal will be to model the parametrices on the Friedlander model and therefore to seek
solutions u to

P(x,hD)u =

of the form
(25) u= (k)= [[goA(h2170) + i ogy A/ () e/ B () o ot

where f is a function on 0X. We will then correct the boundary values by applying an FIO in
the boundary variables which replaces the Fourier transform in the Friedlander model.

REMARK 2. Note that it is necessary to add the A’ term since it is not possible to cancel A’
with an amplitude times A. However, since A solves a second order ODE, it is possible to cancel
A" with an amplitude times A.

1.2. Eikonal and Transport Equations. First, we consider a general differential operator
P(z,hD) =Y ajx(x)hD;hDy + Y bj(x)hD; + c(x)

with aj, = ay; applied to .
39
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For A an Airy function, we have, letting f; denote 0;f, and ¢}, = h—2/3¢
hD; (gA(Gh)er”) = 0;9A(Ch)er” = ihg; A(Gh)er? — ih'/3¢ig A'(Gy)er!
hDxhD; (gA(Gh)ei?) =
[(9k9 — (iCkC)g — ih(Okgj + 09k + Ojrg) — hQij} A(Cp)er?
—ihY3 [(0;Ck + Ci61)g — ih(g;Cr + Cign + Crg)] A (Gr)e
hD (QA Cn)e 0)
094" (Cn)er” —ihg; A'(Gr)er” —ih ™3¢ Cg A(Ch)er”
hDhD; (9A (G)er”) = —ih™/* [(6;¢, + 6:¢;)Cg
—ih(g;GkC + 9rGiC + GrCa + (iCrg)] A(Gu)er”
+ {(Qﬂk — GiCkC)g — ih(Okjg + 09k + Okg;) — h29jk] "(C)et?
So,
P(goA(Cp)er?)

- ((adf, d6) — ¢(adC, dC) + (b, dB) + ¢)go i
- l—z‘h<2<ad9, dgo) — Pafgo + (b dgo)) + 12 Pago] M
(2(adb, dC) + (b,dC))go 1
— 9 1/3 ﬁ
" l—z‘h(%adc, dgo) — <P2c>go>] (e
P(ih' /g A'(¢)et?) =
[ ¢(2(adf, d¢) + (b, d<>>911 AG)el
—ih(2¢{adC, dg1) + (adC, dC)gr — C(PaC)gr)| "
({adf, dB) — ({ad(,dC) + (b,dO) + c)g1 ;
-11/3 / 70
i l—z‘h<2<ad9, dg1) — (Pa0)gs + (b, dg1)) + W2 Pagy |+ M

where a;, = a;i(z), Po = h™2(P — (b,hD) — ¢(z)) and (-,-) denotes the euclidean inner product.
Now, applying P under the integral in gives the eikonal equations

26) (ad8, ) — Clad¢,dC) + (b,dd) +c =0
2(add, dC) + (b, d¢) = 0

Writing

(27) 6t =0+ (-0,

the eikonal equations are equivalent to the standard equation

p(z,d¢*) = 0.
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Now, suppose that ¢ has the form }, -, (,h" and 6 has the form 3°, - 6,h" and
gi~ > gl )R
Then the transport equations have the form
2(adbo, dgll") + 2Co(adCo, dg™) + (b, dgl)”

> n m n
] ] m F0,¢,0™ ", )
+(ad(o, dCo)gy " — P2bogy ' — Co(P2Co)g;

2(adCo, dgll") — 2(adby, g™ — (b, dg!™))
—(ngo)gé"] + (P290)9£n]

More generally, we consider transport equations of the form
2(adb, dgo) + 2(o(adCo, dg1) + (b, dgo)
+(adCo, d¢o)g1 + B1go + CoB2g1

= FPm0,¢, g ).

=1
(29)
2(adCo, dgo) — 2(adbo, dg1) — (b, dg1) + Bago — Big1 = F>
Then, these equations are equivalent to
(30) 2(ad¢™, dpg*) + (b,dg*) + GFg* = F*
where

g =90+t (=0)" P GT=BiT(~)"’By  FF=FR7T(-() /R

2. Geometric preliminaries

We will start from the equivalence of glancing hypersurfaces [TODO]prove. In particular,
suppose S is a symplectic manifold of dimension 2d with P = {p = 0},Q = {¢ =0} C S
hypersurfaces (i.e. embedded submanifolds of codimension 1). Suppose that there is p € PN Q
so that

dp,dq, are linearly independent at p,
(31) {p.q}(p) =0,
{p.{p,a}} #0,  {a,{a,p}}(p) #0

Then there exists a neighborhood U of p and a symplectomorphism « : U — T*R¢ with
RUNP)C{ni —p+m =0} w(UNQ)C{y =0}  &(p)=(0,0).

Now, we can quotient P and @) by their respective Hamiltonian fibrations. That is, we write

for Po,p1 € Qa
po ~ p1 if there exists ¢ € R with exp(tHy)(po) = p1

to define the space Q/RH,. We then define a symplectic form on @Q/RH, by

08:7"?0|Q
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where 79 : Q — Q/RH, is the natural projection map. An application of Darboux’s theorem
shows that oy is closed and non-degenerate.

EXAMPLE 2.1. If S = T*R? and Q = {z1 = 0}, then H, = —0¢, and therefore, (0,z{,&) ~
0,21,&) if xy = 2} and & = &. Hence, in this case Q/RH, is canonically isomorphic to

In the relevant case, S = T*X for some manifold z, and Q = {(z,€) | z € 0X}. We write
mxp = xo when it is necessary to refer to the base variable.

Now, since & is symplectic and sends @ to {1 = 0}, it sends the flow lines of Hy in @ to those
of Hy, in {z1 = 0}. In particular, x induces a map kp : Q/RH; — T*{x; = 0}. Moreover, kj is
a symplectomorphism.

We will actually assume that
(32) Hpy(p) is not tangent to T}, X.

This is the case for the wave equation.
We do this so that

(33) (k1) (dny), i =2,...d are linearly independent on T, 90X at p.

To see this, observe that by dr@H, is not tangent to Ty 0X. Now, let L := rg(T; 0X).
Then, since

H*Hp(P) = Q(P)(_am + 62/2)

for some nonvanishing g, (kg)«dn%H, = g(p)d,, and we have that d,, is not tangent to L at 0.
In particular, since L is Lagrangian (as the image of a Lagrangian under a symplectomorphism),
this implies dna|1(0) # 0. Therefore, making a symplectic change of variables on 7*{z; = 0}
fixing (y2,72), it is possible to arrange that holds. We then extend this change of variables
(independently of y1,7;) to T*R? leaving the normal form completely unchanged .

Now, define the map

Yo: P2 pr (n2k(p)),...na(k(p))) € R
and
Y :P3pe (mx(p), Yolp)) € X x RT,

2.1. Folds. Let M and N be smooth manifolds. We say that f: M — N € C* is a fold at
m if dim ker df (m) = dim Coker df(m) = 1 and the Hessian of f at mg is not equal to 0. The fold
set of f is defined as the set F := {m € M | f is a fold at m}.

As an aside we prove the following

LEMMA 2.1. Let f: M — N be a fold at m. Then there exists coordinates t near m on M
and s near f(m) on N so that

ft1, .. ty) = (t1,...12).
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PROOF. Choose coordinates y on N so that with f = (f1,... fn) dfn(m) = 0. This is possible
since dim Cokerdf > 0. Moreover, since dim Cokerdf = 1, df; ¢ = 1,...n — 1 are linearly
independent and we may use x; = f; i = 1,...n — 1 as coordinates on M so that

f(x) = (z1,...xn-1, fn(x).
and z(m) = 0. Then, df,(0) = 0 and since the Hessian of f is non-zero, 92, f,,(0) # 0. So, by the
implicit function theorem, 9, f,(y) = 0 has a unique solution z,, = g(z') where 2’ = (z1,...2,-1)
and ¢(0) = 0. Setting =, = z,, — g(z’), we have 9y, f,, = 0 when x, = 0 so

(@) = fa(a',0) + 23 F(2)
where F' € C* with F(0) # 0. Now, replacing vy, by yn, — fn(y,0), we have
f(x) = (2z1,... 20 1,22 F(x)).

Finally, switching the sign of 1, if necessary, we may assume F'(0) > 0 and replace x,, by x,, F''/?(x)
to obtain

f(x) = (z1,... 2p_1,22).

As a consequence, we obtain

LEMMA 2.2. Suppose f: M — N has a fold at m. Then there is a neighborhood V' of m and
aC® mapt:V =V sothat > =1d, t #1d and fov= f. That is, v is an involution preserving

f.
Proor. Take t(y1,...,yn) = (Y1,-..,—Yn) with the coordinates from Lemma O

2.2. The structure of Y.
LEMMA 2.3. The map Y is a fold at p with fold set meeting Q transversally at no = 0.

ProoF. Consider p € {p =0} N {H,p = 0}. Now, since HyHyp # 0, {H,p = 0} is a smooth
hypersurface transverse to H, and we may take coordinates (x1, ) so that Hyp = 1 and Hy = 0y,
and 0 — p. Therefore, p = %x% +g(2"). Now, dp(0) # 0. Therefore, dg(0) # 0 and we may change
coordinates so that xo = 2¢g so that

pz%(m%—kl’g), Hy = 0,,.
So, on PN Q,
ker dn®(p) = 0y, , Coker dr®(p) = 8,,.
Moreover, putting ¢(s) = (s, —s2,0), ¢/ = H, € ker dn® and
Teokerdn@ (M9 0 9(s))" = =2 # 0.
Therefore, 79| pPn@ has a fold at p.

Now, Y|png is 7@ followed by replacement of the fiber variables by &;. This is well defined
since k sends the flow lines of Hy in @ to those of H,, in {1 = 0}. That is, ({2, . ..&;) depend only
on 79(p). By the transversality , this replacement is a diffeomorphism and hence preserves
the fold. Now, to see that Y itself has a fold, observe that dq and dp are independent at p and
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hence dg|p(p) # 0. Therefore, ¢ = 1 can be used as a coordinate on P. Hence, since dY 0,
is independent of dY'|png, Y has a fold at p. This also implies that the fold set intersects @
transversally. To see that this happens at 7y = 0, simply observe that Q@ NP N {H,p = 0} C

Y= ({n2 = 0}). .

3. Solution of Eikonal Equations

3.1. The transverse case. We first suppose that H), is transverse to ) = {z; = 0} at
po € Q@ N P and solve the standard eikonal equation

(34) p(z,do(z,m) =0,  ¢(0,2',m) = (z',n).

We choose choose coordinates so that pg = (0,0).

In this case, (since Hgp(po) # 0) the leaves A, = {n’ =1y} are transverse to P in PN and

hence there is a local diffeomorphism 7*{z; = 0} — P N Q near pg. In particular, 7TQ|POQ is a
diffeomorphism near py. Moreover, since H,q(po) # 0, the H), flow-out of An’o N P, denoted AL
gives a foliation of P by Lagrangian leaves.

To see that these leaves are indeed Lagrangian, observe that
o(Hp,-) = dp(-).
So, if V' is tangent to P N Q, it is in particular tangent to {p = 0} and hence
o(Hp,V)=0
which together with o] Ay = 0 implies A} is Lagrangian.

Next, note that AP project diffeomoprhically to X and hence we may use the base as coordi-
nates on A} . Now, let a = £dz denote the canonical one form (so that da = o). Then, «f Az s

closed and hence there exists ¢(x,n) € C™ fixed by
dgb(a”) = on A?]
¢(0,n) =0 onTr ~{x,=0}

The second condition fixes a normalization for ¢ on each leaf A} . Now, ¢ is smooth and by
construction

{A] = (z,ds9)}.
Therefore,
p(ﬂ?, dz¢) =0, dx¢(07x/777) -n=0
and in particular, since ¢(0,0,7) = 0, ¢(0,2',n) = (z/,n).

Another way to see this is by using Darboux’s theorem to find a symplectomorphism so that

KUNP)C{m =0}, wUNQ)C{y =0}
We then define Y as above and set

Ly ={peP|Y(p)=(,m0)}
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Then, LP " is Lagrangian since

H(U ﬂLgo) =Vn {771 = 0} N {(527 s 7§d) = 770}
with V' an open neighborhood of (0,0). Note also that LI foliate P since {n’ = no} foliate
{m =0}.
Now, «f 7 is closed and in particular, since @ is transverse to L} , there exists ®,, € C*°(L} )
with
APy, =l Puolonrz, = f(no)-

Since L7 foliate P, we therefore have for any smooth f, a smooth function ® € C*°(P) with
d(q’\Lfm) = a‘Lf,Ov ‘I’\Ang’;O = f(m).
Now, since H,q # 0, Y is a diffeomorphism and in particular,
d=Y"0, 0:Y(P)—>ReC™.

That is, since Y(P) C {n; = 0}, 6 = 0(x,&’) for any coordinates x on X and 1’ as above. Choosing
an appropriate normalization on () then recovers the above result.

3.2. The folding case. In the folding case, when we try to solve , we will need to allow
¢ to be singular. We will work to construct a solution ¢ with a simple singularity of the form

g 232
6=0%+ (-0,

This will translate directly to a solution of our original Eikonal equations.

The analog of the Lagrangians AP will be played by

Lyo={peP|Y(p)=(,m)}, moeR"".
Then,
RUNLE)=VN{E —z14+&=01n{(&,...,&) =m0}
with V' an open neighborhood of (0, 0).
Tize)k(U N LY ) = span{0yy, . . ., Ony, Hp}.
In particular, L ' is Lagrangian for each fixed 79. Moreover, L} ~foliate P.

Let T C P be a d — 1 dimensional submanifold transverse to LP for each n9. Then for any
f e C®(T;R), we can find ® € C*°(P) so that for any 7,

d®lp)=aly . W=

Therefore,
p(fL‘, dq)|Lfm) =0

and if we could use (x,19) as coordinates on P, we would be done. However, the vanishing of H,q
means that we cannot do this. It will be convenient to choose T contained in the fold surface and

f=0.
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LEMMA 3.1. There exist 8, € C*°(Y(P);R) so that
2=V (04 (-0
In addition, Y*( is a defining function for the fold and

(35) ¢ =1, on Y (P) N (T"{z1 = 0}).
Finally,
(36) 0., #0, on Y (P)N (T*{x1 = 0}).

ProoF. Let ¢ be the fold involution for Y and consider
1 1
(be = 5(@ + L*q)), q)o = 5(@ — L*é)
so that & = &, + &, ®. is ¢ even, and P, is ¢ odd. Observe that p is in the fold surface, F if and
only if p = «(p). Therefore, ®,|r = 0. Moreover, since
d@\Lf]O = dOf|Lgov
we have )
dPolry = 5(alzy —aly)
and in particular, d®,| 73 vanishes at F. Therefore, ®, vanishes to second (and hence third)
order at F.
Now, choose coordinates as in Lemma [2.1] Then
Y(:El, .. .Ct?gn,l) = (561, e ,l‘%n_l)
and ¢(z1,...22n—1) = (21, - — Top—1). Since P, is even, in 9, 1,
o = 0(x1,..., 2o 9,25, 1) = 0(Y(2))
for some 6 € C*°.
On the other hand,

(37) ®o = (21, Bon2, 2y 1)3, 1 = (Y (2))y201 (Y ()2
Setting
- 2/3
Cy1, - yan-1) = (g@)

we would have the first claim if ¢ is non-vanishing at y2,_1 = 0.

To see this, we will prove . Note that &5 is independent of the choice of T' and k reducing
to normal form. Therefore, we aim to show that ®, is independent of these choices and hence
that it agrees with the solution in the model case. First, fix x and let ®;,®5 be two solutions
associated with different T} and T5. Then,

U}:(I)l—q)g

is constant on each LP ' and in particular, is a function only of 7. Since the fold involution ¢
preserves LP . the ¢ odd part of w is a function of only 7. Since the ¢ odd part vanishes on F and
F intersects every L, it vanishes identically. This implies that ®, is independent of the choice
of T.
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Now,
a2, d((571) @) p,afy=ne}) = O
with
P =11 = Y1 + 12
Parametrizing P, N {n =mno} by (y',m), so that dz; = d(no + n?) = 2mdni,
Oy (K1) (Y, m15m0) = 2077

So, the 1 odd part of (k~1)*® is given by %ni” which, at n =ng, y1 =0 is :t%(—?]g)

Moreover, on P N @, the fold of Y is that of 79, In particular, (0,2, &1,¢") = (0,2', —&1,&).
In addition, if p € PN Q, then

m(k(p)) = —m(s((p), &' 1) (k(p)) = (v, 1) (K((p)))-

Therefore, on @), the ¢ odd part of ® is independent of the choice of T" and of the reduction to
normal form, x and is given by Y*(:l:%(—ng)3/ 2). This also implies that ¢ from does not
vanish near the fold and hence shows that ¢ defines the fold set.

Next, observe that

3/2.

Y(P)={m <z1f(z.n)}
with f(m(p),0) # 0 Therefore, since ¢ defines the fold set,
¢ =el(z,n)(n2 — z1f(x,m))
for some 0 # e € C*°. In particular, 0y, (|s;=p—=0 # 0 completing the proof of .
O

We next show that 6 is a non-degenerate phase function and can be chosen so that 6|;,—o
generates Kg.

LeMMA 3.2. With 6 as above,

(38) dy (gg),j =1,...d —1 are linearly independent on ¢ < 0 near py
J

and ® can be chosen so that 0|, —o generates /-@51 on 2 < 0.

PROOF. Let (x,£) be coordinates near pg on T*X and use (y,7n) as coordinates near (0,0) on

T*R?. Then,
fdr' = d V(0% 2 (-0
Now, dY* = Y*d, since Y does not change the base coordinates. Moreover, at 1 = 0, { = &9,
80 dy/(|zy=0 = 0. In particular, at x; =0,
¢da’ = Y*d0.

That is,
(39) O 0(2",1/ (p)) = €.
But the map & — 7/ is a diffeomorphism, so follows.
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To show that 6 can be chosen so that 0|,,—o generates /151, we need to show that
ko(x',0,0(2' 1)) = (0,7/9(:E',17'),77'), z1 = 0.
Suppose 0 generates kg. Then, on Lf}, NnQ,
dpy Y0 = dy Y.

In particular, 8 and 6 differ by a normalization 7" and hence, choosing T" appropriately in the
solution ®, we can arrange that 8 = . The restriction to 7o < 0 comes from the fact that
Lg,ﬂ@zwifn2>0. ([l

Our next task is to extend 6 and ¢ from ¢ < 0. Notice that Y (P) = {¢ < 0} is of the form

{ne <1 f(x,1)}

where f(Y(p)) # 0. It will not be possible to solve the eikonal equaitons exactly in ¢ > 0.
However, we will be able to solve them in formal power series both at { = 0 and at 1 = 0. It
turns out that due to the behavior of the Airy function at the turning point x = 0, this will be
enough to construct parametrices.

LEMMA 3.3. There exist 6 and ¢ € C™ in a neighborhood of m(p) x 0 € X x R4™! so that
Cly Q) = &2 dyOn,0 are linearly independent , 0z,Cly (@) # 0
and holds in ¢ < 0 and in Taylor series at x1 = 0.

PROOF. At this point, we have solved with smooth functions (y, 0y having the above
properties and defined in {y < 0. We next extend 6y and (o as real so that {o(z,n)|zy=0 = 72
continues to hold and 0y, (p|z,—0 # 0. Then 6y, (p solve the eikonal equations modulo infinite
order errors. That is,

<ad90, d90> — CO (ad(o, d€0> + <b, d00> +c=e¢e
2<ad00, dC0> + <b, d(()) = €2
with e; and ey vanishing identically in ¢y < 0.

Our aim is to solve the eikonal equations also in formal power series at 1 = 0. That is, we
define

0=00+0, (=¢+(
where ', (' vanish in (y < 0 and have

0 ~ > O ), o~ aG( ).
k=1 k=1

We will solve for 0y and (j iteratively. At each step it is crucial that the errors and the previous
functions vanish on (y < 0.

The equations we want to solve in formal power series are

(adf',d0') + 2(adt, dbo) — ¢'(adCo, dCo) — (Co + ¢')((adC’, dC’y + 2(ad(’, dCo)) + (b, d0') = —e;
2(add’, d¢"y + 2(adt’, dCo) + 2{adby, dC') + (b, d() — ey
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Using that (o = no + O(x1), we obtain, modulo terms of size z, the equations

[(@1101 + 2375 a1;02,00 + b1)6h — a11Co(C1 + 204, C0)C1] = Fia
[2(111(@ + 85,;1(0)91 + (2 Zj aljaxjeo + bl)Cl] = F271

and for k > 1, modulo z*, the equations

kzh (201101 + 2 >0 01502,600 + b1)0k — 2a11C0(C1 + 02, C0)Ck] = Fik
ki [2a11(C1 + 02, C0)0k + (201101 + 23 a1j0x,00 + b1)Ck] = Fay

where Fj ;, vanish to order l']fil and to infinite order at (o = 0 and depend on 8;,(; 0 < j < k—1.
We start by solving for ({1,61). For this, we write
Fo1 —(23;a1502,60 + b1)C
01 = C(beﬂ,’ﬁ/) = Lt
2a11(C1 + 0z, o)
Provided ¢; = O({§°), near (o = 0, we have 6; = O((§°).

Now, since Hy, p = QZj 2a1;& + b1 = 0 at 1 = (o = 0, we have QZJ- alj&cjﬁo + b1 = 0 there.
In particular,

O, [(a1161 + 2 a1j05,00 + b1)01 — a1160(G + 202, 60)¢1] = —2a1109,Co + O(G1) + O(E3)
J

Dividing through by {y and applying the inverse function theorem then gives a solution (.

Now, we need to solve for (fx,(x). The equations for (6, () are linear and the matrix has
inverse with norm ¢, L and hence since the errors vanish to order ¢§°, we may solve for (0, (). O

4. Solution of the transport equations

Recall that in order to construct a parametrix to our original problem, we arrived at transport
equations of the form

2(adb, dgo) + 2¢(ad¢, dg1) + (b, dgo) + (ad(,dC)g1 + Bigo + (Bag1 = Fy

2(ad(¢, dgo) — 2(adf,dgr) — (b,dg1) + Bago — B1g1 = I
Writing
=0 GE=BiF(-0"B  FF=FRF(-()R
then in ¢ < 0, the transport equations are equivalent to
(40) 2(ad, ¢, dpg®) + (b, dug™) + GFgF = FF

As before, g%, G*, and F'* pull back to smooth functions on P under Y. this is because they are
smooth functions of (z, 7/, (—C)I/Q). Writing g, G, F' for these lifts to P, we then have

2(adm<1>,g> + <b> d:vg> + Gg =F
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Note now that 2(ad,®, )+ (b,0) = H). To see this, observe that 7x : P — X is a diffeomorphism
near p. Therefore, we may use x as coordinates on P. In particular, in these coordinates,

d
Hy = Z Og; POz, -

j=1
Now, in coordinates, 9;;® = ;. Therefore,
Oe,p =) aijéj +bj =) aijds,®+b;
i i
which gives
H, =2(ad;®,0) + (b, 0).
Hence, in ¢ <0, we need to solve
with specified initial data for gy and ¢g;. In particular, gi|y,—0 = 0 and go(p) = 1. For g, this

amounts to g|png € C*°(Q/RH,) and g(p) = 1. In fact, we will want to solve these equations
with slightly more general boundary conditions that we describe below.

We now work to simplify before proceeding to solve the equations. Clearly, we can solve
Hyg+Gi=F,  §(p)=0
by integrating a smooth, nonvanishing vector field. Subtracting ¢ from g we need only solve the
homogeneous problem. Next we remove the order 0 term by solving
Hyr =G, r(p) = 0.
Then to solve the original problem it is enough to solve the equation
(42) Hyu = 0.
In particular,
g=g+exp(—r)u
has (H, + G)g = F. The boundary conditions or u are, however, more complicated:
[exp(—r)ulpnglo = [glrnglo,  ulp) =1.

Here,

fo=5-lF—afl  lp=3lf +:b
where ¢ is the involution induced by 7@ and 7 is a Q-odd function with dr # 0 on Y ~1(¢ = 0).
More generally, we will want to solve the equations with
g1=cgo+d onT'B, go(p) = co.
Note, g1 = [g]o and go = [g]E, so [g]o = c[g]g + d which implies
[exp(—7)ulpnglo = clexp(—r)ulg + f, u(p) = co
where ¢ and f are given g even functions.

Next, observe that the existence of a solution u to with given data ug on @ N P amounts
to the tp evenness of ug where ¢p is the involution induced by 7P,
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Therefore, it suffices to find an tp even function ug on @ N P so that
[exp(—r)uolo = clexp(—r)uo]e + f,  uo(p) = co.
Moreover, since
(2B = [elBle + m*alolBlo
[aBlo = [eo[BlE + [e[Blo
and [exp(—7)]g(p) # 0, it is enough to find an ¢p even function, v with
o =clle+f,  v(p) =co.
for some given g even c and f.

LEMMA 4.1. For any 1q evenc, f € C*(QNP), cy € C, there exists a smooth tp even function
v on QNP so that

(43) vlo=clle+f,  vip)=co
in a neighborhood of p.

PRrROOF. For this, we work in the normal form so that

w2,y mn') = (y2, 4", —m,n'), ep(y2,y" ') = (y2 — 2m, 9", —m, ).

In this coordinates, then we seek an tp even function solving . To simplify notation we write
t1 =m and to = yo, t' = (3", 7') so that

vo(t1, ta,t") = (—t1,ta, '), ep(ty, to, ') = (—t1,ta — 2t1, ).

Since v is tp even, v = U(t%,tg — t1,t"). We start by solving for v in formal power series at
t;1 = 0. Assume that f = t%pfp(tg,t/) and v = t?pvp(tg —t1,t'). Then,

Up(tg — 11, t,) — Up(tg + 1, t,) Up(tg —t1, t/) + Up(tg +t1, t/)

= C(t%,tg,t/) + fp(tg,t/).

2ty 2
Since we are interested in Taylor series at t;1 = 0, we send t; — 0 and obtain
(44) Oy vp(ta, t') = —c(0,ta, t)vp(t2, t') + fp(ta,t').

In particular, if this is satisfied, then
[v]o = clvlp + fp + O).
Moreover, since c, f, are 1q even, the error is actually O(t?r+2),

We may clearly solve with v,(0,¢') given. Therefore, there is a formal power series,

o

(45) vp = vplta —t1, )t}
p=0

satisfying in formal power series.

Now, we apply Borel’s lemma to sum the series (45)) asymptotically to obtain a smooth function
vy that is 1p even and satisfies

[vflo = clvfle + g+ e, ec C® 1he=e, Ofe(t) = 0a(t1).
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Hence, by linearity, we need only solve
(46) Wlo=cllp+e, eeC® ihe=c, e(t)=O0a(tF), vhoo=0

Since we are interested in solving near 0, we may also assume that suppe C {to < 1}, ¢ is
supported near to = 0, and suppv C {ta < 1}.

Now, observe that

v =15 v+
=c(t t
L = )5 +elt)
implies
1
Since (e = e, Loe = ¢ Lpv = v, Lpt1 = —t1,
1 ¥ % -
L}U = m[(l + L})tlLPC(t))L})LQU + 2Lpt1L>|I<DC(t)LP * e(t)]
L—tupelt) , . 2tupelt) , .
= S — t
YTIC tivpe(t) PPQYT T tivpe(t) tprigelt)
1-— tlﬁ*c(t) ¥ —2t1ﬁ*c(t) %
(48) —aren)” Ui hw” Y
where 3 = 1p o 1 is the induced billiard ball map. Letting
1—t18%(t —2t18%c(t
aft) = 20D gy 0B
1+ t18%c(t) 1 —t18%c(t)
we then have
M
(49) v="> Bu(B" e+ Au(BY )
m=0
where
m—1 M
Bn = (8™)b- [] (B")a, Ay = [[(B™)*a.
k=0 k=0

Now, note that

B(t1,t2,t") = (t1,t2 + 2t1,t")
and hence, since suppv, suppe C {ta < 1}, for t; > 0, t5 > —1, and M > 2t;%, (BM)*v =
(BM)*e = 0. In particular, the the right hand side of is independent of M > 2tf1 when
t1 > 0.

In particular, in t; > 0, to > —1,

267"
(50) v = Z B (B )%e
m=0
solves
[v]o = c[v]E + e, on t; > 0.

We need to show that the sum converges uniformly with all of its derivatives.
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We clearly have
1= b(t)] < el
and hence, for m < M < Qtf17
1B (t)] < (14|t )™ < O < 0.

Therefore, the coefficients on (3™!)*e in are uniformly bounded. Now, e vanishes to all
orders at t; = 0 and is supported in to < 1. Therefore, for all N > 0, there exists ¢y > 0 so that

(B™)*g()] < On [t PN (L4 [t2 + 1+ mty )™ < enfta [V (1 +m) ™.

In particular, the sum converges rapidly and hence defines a continuous function vanishing
to all orders at t; = 0.

Now, By, is a product of at most M terms. Thus, when it is differentiated, in (t9,t'), it pro-
duces at most M choose N terms each of which is bounded by cy|t1]. In particular, differentiation
N times produces at most M sums of the form except that sum number of the factors in
B, and those involving e are replaced by derivatives. Since the derivatives of g satisfy the same
type of bounds as g and the coefficients in each sum are uniformly bounded, we have that andy
finite number of derivatves the sum converges uniformly to a function vanishing rapidly at
t1 =0.

This defines a smooth function v in t; > 0, to > —1 satisfying . The invariance tpv = v
then defines a smooth function v in —2 < ¢; < 2 vanishing in |t1] > 1. On t; > 0, v solves .
Moreover, v = tpv. Therefore, v solves and in particular (46]). O

The final step in the construction of the amplitude functions is to extend them into ¢ > 0.
As with the eikonal equations, we will only do this in Taylor series at ( = 0 and 1 = 0. We do
this by extending gg, g1 arbitrarily as smooth functions and then adding a formal power series at
z1 =0 [TODO]Flesh out.

5. Fourier—Airy Operators






CHAPTER 7

Calderén Projectors — Boundary Integral Operators??
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APPENDIX A

Notation

- Diff" (M) differential operators of order m on a manifold M.
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