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Fig. 1. Perceptual rasterization is a generalization of classic rasterization to the requirements of HMDs such as foveation (top row) and rolling image formation
(bo�om row). On an HMD, most pixels appear in the periphery (a). We rasterize images with continuously-varying pixel density (b). A zoom of the the
foveated area shows how a common same-shading-e�ort image has aliasing (c), while our result benefits from higher pixel density, resulting in super-sampling
(d). In common rasterization, each pixel on the display is e�ectively sampled at the same simulation time (t = 0 for the first frame (e) and t = 1 for the next
frame (f)). When displayed on a “rolling” HMD display, where pixels are illuminated at di�erent points in time, latency is introduced: the rightmost pixel is
outdated by ca. 16ms. Our rolling rasterization (g) allows spatially-varying time: starting at t = 0 on the le� of the image and increasing to 1 on the right.

We suggest a rasterization pipeline tailored towards the needs of HMDs,
where latency and �eld-of-view requirements pose new challenges beyond
those of traditional desktop displays. Instead of image warping for low
latency, or using multiple passes for foveation, we show how both can be
produced directly in a single perceptual rasterization pass. We do this with
per-fragment ray-casting. �is is enabled by derivations of tight space-
time-fovea pixel bounds, introducing just enough �exibility for the requisite
geometric tests, but retaining most of the simplicity and e�ciency of the
traditional rasterizaton pipeline. To produce foveated images, we rasterize
to an image with spatially varying pixel density. To compensate for latency,
we extend the image formation model to directly produce “rolling” images
where the time at each pixel depends on its display location. Our approach
overcomes limitations of warping with respect to disocclusions, object mo-
tion and view-dependent shading, as well as geometric aliasing artifacts
in other foveated rendering techniques. A set of perceptual user studies
demonstrates the e�cacy of our approach.
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1 INTRODUCTION
�e use cases of HMDs have requirements beyond those of typical
desktop display-based systems. Completely subsuming the user’s
vision, the HMD and system driving it must maintain low and pre-
dictable latency to facilitate a sense of agency and avoid serious
negative consequences such as breaks-in-presence [Slater 2002], sim-
ulator sickness [Buker et al. 2012], and reduced performance [Ellis
et al. 1999]. �is challenge is exacerbated by other HMD character-
istics, such as high Field-of-View (FOV) and resolution. Further, as
human vision has varying spatial resolution with a rapid fall-o� in
the periphery, much of this computational e�ort is wasted.

Ray-tracing could cast more rays to the foveal area (foveation) and
update the view parameters during image generation (low latency).
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Regre�ably, ray-tracing remains too slow in large and dynamic
scenes. Traditional rasterization e�ciently draws an image, but
with uniform detail. It does not take advantage of how that image
will be perceived. Here, we suggest perceptual rasterization that
retains most of the e�ciency of traditional rasterization, but has
additional optimizations that are especially bene�cial for HMDs:
low-latency and foveation.

�is is achieved by generalizing common OpenGL-style rasteriza-
tion. Our foveated rasterization can work with HMDs that provide
eye-tracking data, such as the FOVE [2018], allowing rasterization
into a framebu�er with a non-constant pixel density that peaks at
the fovea. Our rolling rasterization gives every column of pixels a
di�erent time and can be used on HMDs with rolling displays, such
as the Oculus Ri� DK2, that illuminate di�erent spatial locations at
di�erent times. �e techniques can be used together.
A�er discussing previous work (Sec. 2), we will, describe our

novel perceptual rasterization pipeline (Sec. 3) before presenting
the speci�c time, space and retinal bounds in Sec. 4. In Sec. 5 we
present image results and analysis and in Sec. 6 we present four user
studies that demonstrate the e�cacy of perceptual rasterization.

2 PREVIOUS WORK
Foveated rendering. �e wide FOVs (100 degrees and more) found

in current HMDs [FOVE 2018; Patney et al. 2016; Toth et al. 2016;
Weier et al. 2017] require higher resolutions and therefore increasing
amounts of memory and bandwidth on the GPU. At the same time,
only a small percentage of the screen falls onto the fovea, where
the highest resolution is required. �is makes foveated rendering
particularly important for HMDs. In-HMD eye tracking [FOVE
2018; Stengel et al. 2015] is required to know the fovea’s location.

Guenter et al. [2012] demonstrate a working end-to-end foveated
system based on rasterization. To achieve foveation, they rasterize
in multiple passes (three in their example) to individual images with
di�erent but uniform pixel densities. We also use rasterization, but
into an image with continuously varying pixel density and in a sin-
gle pass. �e work of Patney et al. [2016] applies blur and contrast
enhancement to the periphery to hide artifacts. In doing so, they
can further reduce the size of the highest resolution foveal region
without becoming noticeable. Reducing shading in the periphery is
discussed by He et al. [2014]. However, this does not increase pixel
density in the fovea, whereas our approach provides substantial
super-sampling of both shading and geometry. When using light
�eld display with focus cues, foveated rendering is increasingly
important [Sun et al. 2017]. Kernelized foveated rendering [Meng
et al. 2018] �rst rasterizes a G-bu�er at foveal resolution, then re-
samples it to the log-polar domain. It is shaded in this domain
before being re-sampled again to the display. �is achieves high
shading and geometry rates, while also supporting the same accu-
rate, physiologicaly-motivated and peaky foveation functions we
use. �e bo�leneck however remains in generating the initial, full-
resolution G-bu�er, which we avoid. Hypothetically, Lens-Matched
Shading (LMS) [Nvidia 2017] could be modi�ed to realize foveated
rendering, as it allows varying the pixel density across the image.
Originally devised to compensate modest and linear changes in pixel
density due to the optics of an HMD, we will show it is less suited to

perform foveated rendering as the exponential foveation function is
not well-approximated using a linear function as required by LMS.

Display latency. In Virtual Reality (VR) systems to date, an impor-
tant delay that contributes to the end-to-end latency is the interval
[ts, te] during which a pixel will be displayed. �e longer the inter-
val, the more “outdated” a stimulus will become: if each pixel holds
a constant value for 1/60 of a second, at the end of the interval te
the image may deviate signi�cantly from the ideal representation
of the state of the virtual world at the time it was rendered (at or
before ts). In combination with head or eye motion, this leads to
hold-type blur [Didyk et al. 2010; Sluyterman 2006].
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Fig. 2. a) Seven frames (24ms) high-speed capture (Casio Exilim EX-ZR1000)
of an HDK 2 HMD (twin) display. Specific locations are illuminated (blue)
at specific points in time. b) Time-varying illumination of a 4mm band
of an Oculus DK2 display captured with a photodiode and a PicoScope
6402B. The yellow box locates the display pixel at which the illumination is
captured. We see, that di�erent spatial areas of the display are illuminated
at di�erent points of time during the display interval (0, 16), i. e., it is rolling.

To compensate for these negative e�ects, designers use displays
with increasing refresh rates, and lower persistence. Increased
refresh rates reduce apparent latency by limiting the maximum age
of a given pixel. Low persistence displays illuminate the screen
for a time far below the refresh period of the display. �is reduces
artifacts such as blur. Some of these low persistence displays use
a “global scan”, in which the entire display is illuminated at once.
�ese have two complications: the display is much darker, and
global changes in brightness can produce noticeable �icker. Low
brightness is a relatively minor issue for HMDs because the user’s
vision can adapt. However �icker will be very noticeable, as the
human ability to detect �icker is stronger if the target is large (the
Granit-Harper [1930] law). An alternative low persistence display
technology behaves similarly to traditional Cathode Ray Tubes
(CRTs). �at is, pixels are illuminated for a short period as they
are updated. We consider such displays to have a “rolling scan”
(Fig. 2). Drawbacks and bene�ts of such a display are discussed by
Sluyterman [2006]. �ey exhibit less �icker (as the target is smaller
[Granit and Harper 1930]) while remaining resistant to blur. Both
global and rolling scan displays will show outdated stimuli, as there
is still a delay between the time t a pixel is rendered, and ts when it
is displayed.

Our solution is to produce a rolling image, where pixels at di�erent
spatial locations correspond to di�erent points in time [Friston et al.
2016]. �is is analogous to a rolling shu�er sensor which captures
light at di�erent points in time for di�erent sensor locations.
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Ray-tracing. Both rolling and foveated images can be generated
by ray-tracing: rays are free to use a di�erent time value to inter-
sect the virtual world and more rays could be sent to the fovea
[Stengel et al. 2016; Weier et al. 2016]. Low-latency ray-casting
has been demonstrated at interactive rates for simple scenes with
specialized hardware [Friston et al. 2016]. Foveated ray-tracing is
demonstrated by Stengel et al. [2016] in a system that adaptively
sends more rays into perceptually important areas, including the
fovea. Weier et al. [2016] also describe a solution that provides
foveated ray-tracing for HMDs in real-time. Both systems require
scenes that �t the assumptions of interactive ray-tracing.
Signi�cant advances in ray-tracing have been made [Wald et al.

2014], but it is still typically considered too slow for modern inter-
active applications with complex dynamic scenes, such as computer
games. A modern ray tracer, making use of bounding volume hier-
archies (BVH), would handle a more continuous approximation of
frame time by extending bounding volumes with primitive motion:
the bounding volume of a single triangle moving across the scene
will get much larger, i. e., ray-tracing it is much slower. Our tightest
bound provides a be�er �t in space-time to avoid this.

Warping. One source of latency is the time expended between
beginning a render and displaying it. One way to counteract this
is to warp, i. e., deform, the �nal image, accounting for changes
in viewpoint during the render. Early approaches changed which
regions of an image were read out [Oculus VR 2017; Regan and
Pose 1994], or drew points [Chen and Williams 1993] or grids [Mark
et al. 1997]. Modern approaches such as Asynchronous Time Warp
(ATW) [Antonov 2015] incorporate a number of these techniques
to compensate for multiple sources of latency. In particular, ATW,
compensates for rendering latency (the scene is rendered with a
di�erent transform than the one the image starts showing), but also
for display latency (the transform is becoming outdated while the
image is displayed) [Oculus 2018]. �e main drawback of warping
is that it su�ers disocclusion artifacts. Gathering pixels instead of
sca�ering can be faster [Yang et al. 2011], but will neither be able
to resolve occlusion from a single image. Some techniques can help
ameliorate these, such as perceptually improved hole �lling [Didyk
et al. 2010; Schollmeyer et al. 2017]. Alternatively the result can
be improved by changing the images provided to the algorithm
itself [Reinert et al. 2016]. No deformation however can reveal what
is behind a surface. Our images have no disocclusion artifacts, and
also support correct specular shading.

Shading latency. Due to latency, specular shading is also incorrect
as highlights depend on the moving viewpoint that is frozen at the
start of the frame in classic pipelines [Antonov 2015]. �is could
be resolved by ray-tracing, but would still produce problems if
combined with warping. Perceptual rasterization correctly resolves
specular shading.

Non-standard rasterzation. A simple solution to achieve both
rolling and foveated images is to change the vertex shader [Brosz
et al. 2007] from a linear to a non-linear projection, such as �rst done
for shadow mapping [Brabec et al. 2002]. Doing this for latency
compensation or foveation results in holes, in particular if primitives
are large or close to the camera, as primitive edges remain straight

[Brosz et al. 2007]. Our approach is a type of non-linear rasteriza-
tion [Gascuel et al. 2008; Liu et al. 2011]. Toth et al. [2016] suggest
single-pass rendering into spatially neighboring but multiple linear
sub-projections [Popescu et al. 2009] to address the non-uniform
pixel distribution in HMDs, but do not account for eye tracking.
Rasterization has been made more �exible in stochastic rasteriza-
tion [Akenine-Möller et al. 2007; Brunhaver et al. 2010; McGuire
et al. 2010], but we are not aware of an approach to produce rolling
or foveated images directly using rasterization in a single pass. In
particular, we derive non-trivial bounds speci�c to our projection
that drastically improve the sample test e�ciency, i. e., how many
fragments need to be tested against each primitive [Akenine-Möller
et al. 2012; Laine et al. 2011; Pineda 1988].

3 PERCEPTUAL RASTERIZATION
We �rst describe the general perceptual rasterization pipeline before
deriving speci�c bounds enabling its application to foveation, rolling
and both. �e key is to achieve just enough ray tracing-like �exibility
while retaining the e�ciency of rasterization.

Let us �rst recall rasterization and ray-tracing: ray-tracing iter-
ates over pixels and �nds the primitive mapping to them, while
rasterization iterates over primitives and maps them to pixels. Our
technique is a hybrid of these approaches. To decide what pix-
els a primitive maps to, the rasterization essentially performs ray-
primitive intersections [Pineda 1988] followed by a z-test. A correct,
but slow, solution would be to test all primitives against all pixels.
Instead, the approach becomes fast by using tight primitive-pixel
bounds: ideally, a compact, easy-to-compute subset of pixels is found
for the projection of each primitive in a �rst step, and only the rays
going through these pixels are tested against the primitive.
�e idea of perceptual rasterization is to construct such pixel-

primitive bounds for the requirements of HMDs. To this end, we
will next propose di�erent ray-primitive models we use (Sec. 3.1),
before describing the pipeline in detail in Sec. 3.2. �e actual bounds
are then derived in Sec. 4.

3.1 Ray-primitive Models
�e interaction between rays and primitives required on an HMD
are not arbitrary, as, say, in path tracing, but have a very speci�c
layout in time, space and the retina, which we will later exploit to
construct appropriate bounds. Wewill now discuss the ray-primitive
models required for common, as well as our foveated, rolling and
jointly foveated-rolling rasterization.

3.1.1 Foveated. To retain the simplicity of rasterization on a
regular grid, we seek inspiration from cortical magni�cation theory
[Daniel andWhi�eridge 1961] also used in information visualization
[Furnas 1986]: to give more importance to an area, it simply needs
to be magni�ed. So instead of increasing the pixel density in the
fovea, we just magnify it.

Domain. We suggest an image domain where the ray (or pixel)
density depends on a function p(d) 2 (0,

p
2) ! R+, where d is

the distance to the foveation point xf . In common rasterization,
this function is a constant: 1 (Fig. 3 a, constant line). For foveated
rendering, it is higher close to the fovea (d is small) and lower than
1 for the periphery (d is large) (Fig. 3, a, yellow line).
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Fig. 3. Foveation and unfoveation function (a) and domains (b).

p can be any foveation function, whether physiologically based
[Daniel and Whi�eridge 1961] or empirically based [Patney et al.
2016;Weier et al. 2017]. �e size of the foveated region, and therefore
p, must account for non-idealities such as imperfect tracking and
suboptimal frame rates. �ese may also change over time. �erefore
we refrain from using any analytic model and instead assume that
the function is arbitrary, subject to the constraints below, and free
to change every frame.

Given p, we de�ne another function ff (x) 2 (�1, 1)2 ! (�1, 1)2 :
xf +normalize(x�xf ) ·p(| |x�xf | |). �is function essentially scales
x by p, away from the gaze position xf . Near the center, this results
in stretching, as the pixel density is larger than 1. In the periphery,
compression, as fewer pixels are required (Fig. 3, b). We also de�ne
f �1f , to be ff but with p�1 in place of p. p�1 is the inverse of p. �is
necessitates that p is invertible. Any monotonic p can be inverted
numerically in a pre-processing pass, if an analytic inversion is
non-trivial. Note that d is not a scaling factor but an exact distance.
�us p maps an unfoveated distance to a foveated distance, and p�1
maps it back. ff and f �1f use these functions to do the same for pixel
locations. We refer to these pixel transformations as to “foveate”
and “unfoveate”.

Rendering. During shading, each fragment in the non-uniform
bu�er uses the unfoveate function to compute the ray origin. Con-
sequently, more fragments cast rays to the region under the fovea,
e�ectively magnifying it (Fig. 3, b, Foveated).

Display. A�er rendering all primitives, the foveated image If has
to be converted back into an unfoveated Iu one for display. �is
imposes several challenges for �ltering: f �1f is heavily minifying in
the center and heavily magnifying in the periphery. A simple and
fast solution is to create a MIP map for the foveated image If and
then evaluate the display image as Iu(x) = If (ff (x)) using proper
tri-linear MIP mapping and a 3-tap cubic �lter (0.6ms in 1024⇥1024
on an Nvidia GTX 980 GPU). A higher-quality version (1.6ms in
1024⇥1024, same GPU) computes

Iu(x) =
’

�25⇥5
If (ff (x) + y) · r (x � f �1f (ff (x) + y))),

where r an arbitrary, e. g., Gaussian, 2D reconstruction �lter in the
display image domain. Such an operation e�ectively computes the
(irregular-shaped) mapping of the display’s reconstruction �lter
into the cortical domain.

3.1.2 Rolling. Here, the ray direction and position at a certain
pixel depends on the time that pixel is displayed. When testing a
ray through a given pixel, the state of the primitive intersected also
has to be its state at the time the pixel is displayed.

Display. We consider a rolling-scan display to have three proper-
ties: rolling illumination, a short hold-time, and we must be able to
predict the absolute head pose at any point in the interval [ts,te].
First, a rolling scan implies that di�erent parts of the display

are visible at di�erent times. �e term “rolling” is chosen as an
analogy to a camera’s rolling shu�er sensor. A classic CRT is an
example of a rolling scan display. Most LCDs these days perform
a globally synchronized illumination of all pixels at once. OLEDs,
such as those used in the DK2 and other HMDs sometimes use
rolling illumination.

Wewill formalize this as a rolling-function r (x) 2 (0, 1)2 ! (0, 1) :
x · d that maps a (unit) spatial location x to a (unit) point in time at
which the display will actually show it by means of a skew direction
d. d depends on the properties of an individual display. For example
d = (0, .9) describes a display with a horizontal scan-out in the
direction of the x-axis and a (blank) sync period of 10 % of the frame
period. For the DK2, d = (1, 0) based on behavior pro�led with an
oscilloscope (Fig. 2).
Second, the display has to be low persistence (non-hold-type),

i. e., a pixel is visible for only a short time relative to the total
refresh period. A CRT is typically of this type. CRT phosphor has
a decay that typically reduces brightness by a factor of 100 within
one millisecond (Fig. 1 in [Sluyterman 2006]).
�ird, we assume that the model-view transformation can be

linearly interpolated across the animation interval and that conse-
quently vertices move along linear paths x(t) during that time.

Forward map. It is non-obvious, to which 2D image position a
moving 3D point will map on a rolling display. Fortunately, we
can show that this mapping is unique and simple to compute in
closed form. �e problem of �nding where the rolling scan will
“catch up” with the projection of a moving 3D point has similarity
with Zenon’s paradoxon where Achilles tries to catch up with the
tortoise [Wicksteed and Cornford 1929] (Fig. 5, a).
If Achilles starts at xs and moves at constant speed €xs, it will

reach (other than what the paradoxon claims) a tortoise at position
xp with 1D speed €xp at the time t where

xs + t €xs = xp + t €xp, which occurs at t =
xs � xp
€xs � €xp

.

�e same holds for a rolling scan (Achilles) catching up with a vertex
(tortoise). Regre�ably, in our case, the rolling scan moves in 2D
image space, while the point moves in 3D and gets projected to 2D
i. e., it moves in a 2D projective space (horizontal x component and
homogeneous coordinatew) from spatial position x with speed €x
and homogeneous position w with homogeneous speed €w (Fig. 5,
b). �is can be stated as

xs + t €xs =
xp + t €xp
wp + t €wp

,

which is a rational polynomial with a unique positive solution

t = �
(
q
4xs €wp + €x2s � 2 €xswp +w2

p � €xs +wp)
2 €wp

. (1)

�is equation is non-linear, as linear 3D motion becomes non-linear
in 2D under perspective projection.
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Henceforth, to compute the image position fr(x), we �rst compute
the collision time t , from this the position x(t) and �nally project it
to 2D.

3.1.3 Lens distortion. Our approach supports a third aspect of
image generation in HMDs: lens distortion [Oculus VR 2017]. Same
as for foveation, we use a polynomial fl distortion model. Same as
for rolling, and di�erent from foveation, the inverse f �1l does not
need to be applied to the image as this already happens optically i. e.,
the display shows a distorted image that will ultimately be deformed
by the lens. Only the – much smaller – chromatic blur still needs to
be applied, as the e�ort of rasterizing three channels independently
does not appear justi�ed.

3.1.4 Compositions. Our pipeline supports the foveation-rolling-
lens composition f = fl � fr � ff (x) of the three functions above.
Without loss of generality, we will from now on use f , an arbitrary
composition of the three perceptualizations and its inverse f �1.
Order is important: the rolling time coordinate has to depend on
where the pixel will e�ectively be displayed on the display (not the
cortical domain). Lens distortion should happen last.

3.2 Pipeline
An overview of perceptual rasterization is seen in Fig. 4, d–f. We
extend a classic OpenGL-style rasterization pipeline using vertex,
geometry and fragment programs (VP, GP and FP) to produce a
typical deferred shading bu�er from primitives in two steps: bound-
ing and intersecting. We will explain how to bound tightly and
e�ciently for the di�erent models later in Sec. 4.

Bounding. Input to the VP are the world-space vertex positions�s
at the beginning and�e at the end of the frame interval. Additionally,
the VP is provided two model-view-projection matrices Ms and Me

that hold the model and view matrices at the beginning and the
end of the frame interval. �e VP transforms both the start and
the end vertex, each with the start and the end matrix (Ms�s and
Me�e), and passes this information on to the GP. Please note, how
this procedure captures both object and viewer motion. Please also
note, that no projection is required at this step.
Input to the GP is the tuple of animated camera-space vertices

S = (�s,0,�e,0,�s,1,�e,1,�s,2,�e,2), i. e., an animated camera space
triangle. �e GP bounds the projection of this space-time triangle
with a six-sided convex polygon B, such that all pixels that would
be a�ected by the triangle are covered. We describe the bounding
computation in Sec. 4. �e geometry program passes the space-time
triangle on to the fragment program as (flat) a�ributes. Note, that
the bounding primitive B is not passed on from the GP to the FP: It
is only required as a proxy to determine the pixels to test directly
against S (and not B) i. e., what pixels to rasterize. �e fragment
program then performs the intersection test described next.

Intersection. �e fragment program is now executed for every
pixel i a�ected by the primitive. �is happens in three steps.

First, we note that for a �xed pixel i at 2D image position xi , the
time is �xed to ti = r (xi ) as well, and so the space-time primitive
S becomes a common space-only triangle Ti = (�s,0 + ti (�e,0 �
�s,0), . . .). Second, we compute the ray Ri . To this end we construct
a ray through the 2D image location f �1(xi ). �ird and �nally, we
intersect Ri and Ti using a common ray-triangle intersection test.
If the test fails, nothing happens. If the test passes, the fragment is
wri�en with the actual z value of the intersection and with common
z bu�ering enabled. Recall, that the entire space-time triangle, its
normals, texture coordinates and material information, were passed
on as flat a�ributes from the GP and can now be computed using
barycentric interpolation.

Please note, how the depth test will resolve the correct (i. e., near-
est to the viewer) fragment. For every pixel there is a unique time
and fovea location, and hence the distances of primitives mapping
to that pixel are z-comparable. �is is key to make perceptual ras-
terization possible when primitives are submi�ed in a streaming
fashion in an arbitrary order, combining the �exibility of ray-tracing
with the e�ciency of z-bu�ered rasterization.

Shading. Shading has to respect the ray-primitive model as well:
the time at every pixel is di�erent for the rolling and joint model,

ACM Transactions on Graphics, Vol. 38, No. 4, Article 97. Publication date: January 2019.



97:6 • Sebastian Friston, Tobias Ritschel, and Anthony Steed

having the implication that parameters used for shading, such as
light and eye position, should also be rolling and di�er per-pixel.
�is again can be done with linear interpolation. Note that shading
is not a�ected by foveation.

4 BOUNDS
A key technical contribution of this paper is the derivation of tight
and e�ciently computable bounds for the ray-primitive model re-
quired for modern HMDs.

Similar bounds have been derived for other non-linear projections
before [Gascuel et al. 2008; McGuire et al. 2010]. �e non-linearities
we consider here, are di�erent. While previous work was interested
in �sh-eye-like or spherical mappings [Gascuel et al. 2008] as well
as bounds for depth-of-�eld and motion blur [McGuire et al. 2010],
the problem of rolling and foveation has not been addressed from
this angle.

x0

x1
x2

q(x0)

q(x2)
q(x1)

n0,1 n2,0

Δmax

a) b)

c) d)

odd

odd

odd

even

even

even

Fig. 6. Search-and-displace. a) the original straight-edge primitive. b)
curved-edge primitive. c) simple bounds displaces the original straight
edges. d) advanced bound first maps the end-points and then bounds the
displacement. Note the blue area to be smaller than the yellow one.

Bounding is done with respect to the perceptual mapping f that
composes rolling, foveation and lens distortion, mapping straight
primitive edges to curves (Fig. 6 a and b). We would like to �nd a
tight straight-edged polygon to cover this curved-edge primitive.
To this end, we employ a search-and-displace strategy (Fig. 6 c)

where every straight edge is displaced perpendicular along its 2D
normal by the minimal amount required so that the entire curved
edge is below the new straight edge when looking outwards. �is
minimal displacement is found in a search along the straight primi-
tive edge. An advanced adaptive bound is even tighter: It �rst maps
the two end-points and then search-and-displaces relative to this
new straight edge (Fig. 6 d). We will next detail the search (Sec. 4.1)
and displace (Sec. 4.2) steps.

4.1 Search
We use either the original (“Simple”) or the already perceptualized
(“Adaptive”) start and end points of each edge. We explain both
options next.

Simple. Here, we suggest to bound by �nding the maximum posi-
tive signed distance along the normal from a primitive edge joining

x0 and x1

�max = max
s 2(0,1)

{�(s) = (�s (s) � �c (s)) · n(�s (0),�s (1))}

�s(s) = x0 + s(x1 � x0) and �c(s) = f (x0 + s(x1 � x0)),

where n creates a direction orthogonal to the line between its two
arguments.
�is is shown for all three edges in Fig. 6,c. We consider signed

instead of unsigned distance. Unsigned distances could not tell apart
a curve that is bending in from a curve that is bending out in respect
to the straight edge. While an out-bending edge now will extend the
bounds, an in-bending should not (the maximal positive distance is
zero, at both end points). An example of such an in-bending edge is
the lowest edge in Fig. 6, c.

As the distance is a convex function, the o�set �(s) can be mini-
mized over s using a ternary search. �is procedure starts by eval-
uating � on both ends s = 0 and s = 1 as well as in the middle
s = .5, followed by a recursion on the le� or right segment. �e
approach converges to a pixel-precise result in log(n) steps, if n is
the number of possible values, here, the number of pixels on the
edge. Consequently, for a 4 k image example, bounding requires
3 ⇥ 2 ⇥ log(4096) = 96 multiply-adds and dot products per triangle
at most, but typically much less as triangle edges are shorter.

Adaptive. In the adaptive case, the straight edge does not join the
original, but the perceptualized end-points

�s(s) = f (x0) + s(f (x1) � f (x0)).

�is is seen in Fig. 6, d, where displacement is relative to edges
that join vertices that were already mapped by f . �e bound is
more tight as seen when comparing the yellow to the blue area. In
particular, the lower edge moved up, and, bending in, produces a
much tighter bound.
Note, how this adaptive bound is only possible thanks to our

perspective Zenon mapping (Eq. 1) that can predict where moving
3D vertices fall on a rolling 2D display.
Please also note, that the normal for a di�erent straight edge is

also di�erent, as f is a nonlinear function: an edge joining a point
close to the origin and a point farther from the origin will change
its slope as both are scaled di�erently.

4.2 Displace
Displace moves the 2D edge by the minimal required distance along
its normal. Our bounding geometry will always consist of a con-
vex polygon with six vertices, and does not require a convex hull
computation. Every even pair of vertices is produced by bounding
a single edge of the original triangle. Every odd pair joins the start
and end of a bounding edge produced from a primitive edge.
We also compare to a simpler strategy, that bounds the percep-

tualized primitive using the 2D bounding box of all pixels on all
curved edges.
For primitives intersecting the near plane we proceed similar to

McGuire et al. [2010]: all primitives completely outside the frustum
are culled; primitives completely in front of the camera (but maybe
not in the frustum) are kept, and those that intersect the near plane
are split by this plane and a box is used for bounding.
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Fig. 7. Foveation results. The first column shows the result we produce, fovea marked in yellow. The second to fourth columns shows the foveated region
using non-foveated rendering, our approach, and a 4 ⇥ 4 super-sampling reference. �antitative evaluation is found in Fig. 12.

5 RESULTS
We discuss qualitative (Sec. 5.1) and quantitative (Sec. 5.2) results.

5.1 �alitative
Foveation. Results of our foveated rasterization approach are seen

in Fig. 7. Our image was produced by foveating the center using a
simple power-fallo� p(x) = x2 foveation function. �e inset shows
a 32⇥32 patch. �e reference was produced by 4⇥4 super-sampling.

We see that the amount of detail varies across the image in the �rst
column. While the center is sharp, yet super-sampled, the periphery
has less detail, yet blurred with a high-quality cubic �lter. In the
unfoveated condition (second column) the �ne hairs of the hairball
lead to almost random results without super-sampling, while our
result remains smooth and similar to the reference. �e same is
true for the �ne geometric details in the car’s grill. In the C�������
scene, the super-sampling of shading is salient.

�e common images were produced using the same memory, the
same shading e�ort and not less than half the compute time than
ours (third column), yet the di�erences are visible. At the same
time, the reference (fourth column), uses 16 times more memory
and shading e�ort and is more than twice the compute time than
ours, yet the di�erences are subtle.

Rolling. Images produced by our rolling rasterization approach
can be seen in Fig. 8. A non-rolling image is seen in the �rst column.
�e second and third columns contain rolling images where the
camera has both translated and rotated during a rolling scan-out
from le� to right. �e second column shows image warping using
a pixel-sized grid, where triangles that have a stretch that di�ers
by more than a threshold are culled entirely [Mark et al. 1997].
Disoccluded areas are marked with a checkerboard pa�ern. �e
third column shows the results produced by our approach. �e
fourth and ��h columns show insets from the second and third
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Fig. 8. Results of our rolling rastrization approach. Di�erent rows show di�erent scenes. The first column shows the input image. The result of warping is
shown in the second, where disocclusions were filled with gray. The third column shows our approach. The fourth and fi�h columns shown the inset areas
from columns two and three. �antitative evaluation is found in Fig. 12. Please, see the supplemental video for animated versions of these results.

row. Our images are identical to a ray-traced reference, which is
not shown.
We see that rolling images contain the expected non-linear pro-

jection e�ects: long edges that are straight in 3D appear as curves in
the image. As this mapping is consistent, other e�ects such as shad-
ows and specularities appear consistent for all approaches. Warping
however has di�culties with disocclusions, edges and �ne details.
We see that large parts of the background are missing. �e biggest
challenge are areas occluded in the input image. Large parts are
missing in warping, e. g., the sky background in H��������� con-
dition, that are easily resolved by our approach. Current Warping
techniques always have di�culties with edges, where a pixel can
only be either warped or not, resulting in jagging artifacts such
as on the edges of C�������. When motion, occlusion and �ne
edge structures come together, such as in the area around the H��
��������’s rotor, the warped images bear li�le resemblance to the
reference.

Rolling+foveation. Results for joint rolling+foveated images are
show in Fig. 9. We see both the expected improvement in the foveal
inset and the global rolling: the car and fence have straight 3D
edges that turn into curves under viewer motion. �ose scenes have
around 100 k faces and render in less than 50ms.

Lens Distortion. Results for lens distortion are seen in Fig. 10.

Rolling shading. Here we compare rolling shading, included in all
the above results, to rolling rasterization without rolling shading
in Fig. 11. Specular inconsistencies will result in popping artifacts
over time [Antonov 2015], where a highlight does not slide across
the side of the car but judders between frames.

5.2 �antitative
Here we compare alternatives to our approach for both foveation
and latency compensation, in terms of image similarity and speed.

Competitors. For foveation, we compare our technique to LMS
[Nvidia 2017] and log-polar warping [Meng et al. 2018] called ”Ker-
nel”. We report both the speed assuming LMS is as fast as common
rasterization, and the very upper-bound speed LMS could have if it
was able to rasterize four images at the speed of one when using
GL NV clip space w scaling and NV viewport array2. We also
evaluate the performance of a three-layered method [Guenter et al.
2012], but assume image similarity is ideal. For latency compensa-
tion, we compare to traditional image warping. We compare three
variations of our technique with di�erent bounds. We also compare
to a traditional rasterization as a benchmark (Common) rendered
with the same resolution as ours.
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Fig. 9. Rolling+foveated, perceptual rasterization for three scenes. The insets compare rolling+foveation and rolling-only results.

Fig. 10. This stereo image is both rolling and foveated, in addition it will
appear undistorted in space and chroma when observed through the lenses
of an HMD.

Common
shading

Rolling
shading

Fig. 11. Rolling rasterization without rolling shading (le�) lacks some spec-
ular e�ects. Rolling shading (right) produces highlights that change across
the image due to the change in view over time.

Methods. Image similarity is measured with an adapted SSIM
[Wang et al. 2004]. All techniques were compared to an ideal
reference, which was a ray-traced image for rolling and an 8⇥8
super-sampled rasterization for foveation. �e SSIM ignores all
disoccluded pixels, providing an upper bound on quality to what
any hole �lling, however sophisticated, could do [Didyk et al. 2010;
Schollmeyer et al. 2017]. For foveated comparisons, the SSIM is
computed for the 64 ⇥ 64 foveal pixels. While SSIM is not designed
to compare non-aligned images, we use it as unfortunately, no be�er
technique is available either. Performance was measured as the ras-
terization and shading execution times on an NVidia�adro K6000.
We state the ray-tracing time of a reasonably implemented GPU
traversal of an SAH-optimized BVH.

Similarity and Speed. Performance and similarity measures for
foveation and rolling are shown are shown in (Fig. 12), along with

the Sample Test E�ciency (STE) measures of our three boundings.
�e column “Total” is the compute time sum in millisecond (less is
be�er) of the second column “Rasterization” and the third column
“Shade”. �e fourth column is STE (more is be�er) and the ��h
similarity (more is be�er). A white diagonal in a bar indicates the
time exceeds the range of the plot. �e �rst three rows are foveation,
the next are rolling, followed by combined techniques. Each row is
a di�erent scene.
For foveation, our approach is more similar in appearance to

the reference than common rasterization (Fig. 12, a). �ality is
lower both for “Kernel” and “LMS”, even when operating both at
their optimal foveation se�ings according to the experimentation
in Fig. 14. Kernel foveated rendering performs be�er as it is a
be�er �t to the foveation shape than a a linear function of LMS.
Furthermore, our approach achieves speed that is roughly half as
fast rasterizing multiple layers and very similar to rendering at full
resolution (Fig. 12, b). LMS is shown in two variants: the optimum
one is shown solid, the one we were able to measure is shown in
transparent. �e measured LMS is always four times slower than
common and between 10 % and 50 % faster than ours. Kernel speed
is limited by having to rasterizing a large image before resampling
it. Shading e�ort (SSAO and IBL) is the same for ours and common,
while it is three times larger for layered and 16 times larger for the
reference (Fig. 12, c). �e following rows of “Shading” are greyed as
they repeat the �rst row. Finally, we see that re�ned bounds increase
sample test e�ciency as well as actual compute time (Fig. 12, d).

We see that rolling and common non-rolling images are substan-
tially di�erent according to the SSIM metric. When warping the
image, the similarity increases but remains behind ours (Fig. 12, e).
Note, that our SSIM is always 1 as our rasterization has been veri�ed
to be identical to ray-tracing a rolling shu�er image. Common ras-
terization is fastest, but warping requires two primitives per pixel
[Mark et al. 1997] and turns out slower (Fig. 12, f). Di�erences in
STE between our method and other are even more pronounced for
rolling (Fig. 12, g). We also note that scenes with many polygons,
such as C������� (1.4M) are feasible, but noticeably slower, likely
due to the straightforward convex hull implementation used in the
GP. LMS is not applied to rolling in our tests.
For both foveation and rolling, ray-tracing – while very con-

venient and clean to implement – is slower than all versions of
rasterization. Note, that the ray-tracing numbers do not include
the SAH building time required, which is likely substantially larger
(Fig. 12, h).
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In combined foveation and rolling, our method again provides
much be�er quality at slightly lower speed compare to the two
alternatives LMS and Kernel (Fig. 12, i).
Finally, for foveated shadow mapping, all methods come out at

similar speed (Fig. 12, j), but again ours provides the highest quality.
Overall, perceptual rasterization achieves quality similar to a

super-sampled reference, while being slower than highly-optimized,
�xed-pipeline rasterization by a moderate factor, but much faster
than ray-tracing and super-sampling.

Foveation. Fig. 14 compares our technique, LMS and log-polar
warping at di�erent foveation strengths. �e application of LMS
[Nvidia 2017] to foveation is hypothetical and not described in any
publication we are aware of.
We tested di�erent linear functions, as used in LMS in Fig. 14

and observed that none surpass the similarity to a reference that
we achieve (blue vs. orange line, top plot). We note that both high
and low foveation performs worse, as expected from ��ing lines of
di�erent slope to a non-linear function: One is the best, but still not
a good, �t (around 2.0, orange maximum) all others deviate more.
At the same time, using four linear projections requires four passes
and four times the compute. Still due to its simplicity, performance
is competitive to ours for a high level of foveation (the orange and
blue curves almost cross in the top plot of Fig. 14). When LMS is
available and if it operates with zero overhead, the compute time
should be reduced by a factor of 4 (do�ed orange line in Fig. 14).
�e second alternative is log-polar warping [Meng et al. 2018].

Here an entire image is �rst rasterized at foveal resolution, then
warped and sub-sampled into an alternative polar cortical domain.
Shading is done in this reduced domain and the image is transformed
back. �is does not reduce rasterization time, but does reduce
shading time, similar to our approach. Rasterizing the entire image
at the foveal resolution is simple but requires excessive amounts of
memory: If the fovea is oversampled at 16⇥16, the approach needs
64 times more memory and �ll-rate. For an upper bound on quality,
our implementation of this method shades the full high-resolution
image and samples this using a log-polar mapping. For timing, we
only measure rasterization of the full-fovea resolution image, again,
an upper bound. �is is as implementing screen-space shading in
the log-polar domain appears substantially non-trivial: the most
foveal pixel �lls the entire le� column, etc. It also appears likely
that the idea of �rst rasterizing with uniform resolution and then
shading in a warped domain could be explored in future work using
our cortical mapping, which does not require polar coordinates
and is a be�er �t to screen space shading as it preserves topology.
Besides higher memory requirements, the approach is fast, saving
substantial shading cost (green curve lower than blue in second plot
of Fig. 14) at almost the same quality as ours (green line below blue
line in �rst plot in Fig. 14). Still, we found the results to be slightly
more blurry, due to the di�culty of �ltering the highly anisotropic
log-polar map. For no foveation, this results in a slight blur, that
in this example happens to produce a result closer to the reference
(green curve higher than any other at 0 in top plot at Fig. 14).

We conclude that a linear foveation function does not provide
the speed and quality of a non-linear function, and that log-polar
re-sampling uses prohibitive amounts of memory, while still not

providing the optimal approximation of the true foveation function.
It is �nally to be noted, that neither method has demonstrated rolling
or combination with rolling or lens distortion, which our method
o�ers without overhead.

Sample Test E�ciency. We also compute the STE [Akenine-Möller
et al. 2007; Fatahalian et al. 2009; Laine et al. 2011; McGuire et al.
2010], de�ned as the ratio of pixels belonging to a primitive to the
number of pixels tested. An STE of 100 % would mean that only nec-
essary test were made, i. e., the bounds were very tight. A low STE
indicates that unnecessary tests occurred. Comparing the bounding
approaches in Fig. 12 and Fig. 12 (STE fourth column), it can be seen
that investing computational e�ort into tight bounds, pays o� with
a higher STE and is ultimately faster overall. Visualizations of the
STE for rolling rasterization are seen in Fig. 15.

Scalability. Dependency of speed and image similarity on external
variables is plo�ed for di�erent approaches in Fig. 13.

�e �rst plot shows how image resolution a�ects computation
time (Fig. 13, a). We see that our approach is, as expected, slower
than common rasterization, which is highly-optimized in GPUs. At
the same time warping does not scale well with resolution due to
the many pixel-sized triangles to draw. At high resolutions, the
warping method is worse both in terms of speed, as well as image
quality.
Next, we analyze computation time as a factor of the transfor-

mation occurring during the scan-out (Fig. 13, b). We quantify this
as view rotation angle around the vertical axis. We see that clas-
sic rasterization is not a�ected by transformation at all. Warping
adds an almost-constant time overhead that only increases as larger
polygons are to be drawn. Our approach is linearly dependent. �e
amount of pixel motion is expected to be linear in small angles.
Our tighter bounds can at best reduce the magnitude of the linear
relationship. For large motions our approach is approximately half
as fast as �xed-function rasterization plus warping, or six times
slower than �xed-function rasterization alone.
Next, we analyze similarity (higher is be�er) depending on the

transformation, again parametrized as an angle (Fig. 13, c). We
�nd that our approach, as expected, has no error relative to the
ray-tracing reference. �is is as we use the same ray-primitive in-
tersection, the only di�erence is that one is classic BVH-accelerated
ray-tracing starting at pixels, while our approach conservatively
bounds the pixels on-screen and tests against the same primitives
using the same code. With no user motion, common rasterization
has no error either, while warping still introduces sampling arti-
facts. As motion becomes more extreme warping reduces error with
respect to common rasterization, but similarity still decreases, as
disocclusions cannot be resolved from a single image.
Finally, we see the dependency of similarity and compute time

on foveation strength � (Fig. 13, d), in the power foveation function
p(d) = d� . We �nd that similarity is a convex function, peaking
around the value � = 2 that we use. Too low-a foveation does not
magnify enough to bene�t from the super-sampling. Too high-a
values magnify so much, that only the central part of the fovea
bene�ts, reducing SSIM again. Compute time is a linear function
of foveation strength, as polygonal bounds to increasingly curved
triangles are decreasingly tight.
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Fig. 12. Measurements of time (less is be�er; total, and split in rasterizaiton and shade), STE (more is be�er) and similarity (more is be�er) (horizontal
blocks) resulting from di�erent methods (columns)) for di�erent perceptualizations (vertical blocks) in di�erent scenes (rows). See the text for discussion.

Head Pose Estimation. Finally, we investigate the e�ect of head
pose prediction error on our approach. Before (e. g., Fig. 13, c),
we have seen that the image error is proportional to the error in
transformation. �erefore, we sampled head motion using the DK2
at approximately 1000Hz. At each time step we used the SDK’s
predictor - the same that drives the rolling rasterization - to predict

the pose one frame ahead. We use these captures to determine
how the linearly interpolated pose and a time-constant pose di�er
from the actual pose. For 3,459 frames of typical DK2 motion, we
we found the ������ prediction to have an error of .001 meter in
translation and .25 degree in rotation while the error of a ��������
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prediction is much larger, at .05 meter and 1.3 degrees, indicating a
linear model already removes most of the overall error.

STE 100% (fast)STE 1% (slow)

Quad Simple Ours

Fig. 15. Sample test e�iciency of di�erent rolling bounds in H���������. We
see that quads are not a tight bound and while the simple bound improves
it overestimates motion bounds in areas of vertical motion. Our bounds is
most tight as it be�er localizes in time and rolling display space.

6 PERCEPTUAL EVALUATION
To quantify the perceptual e�ect of our technique, we conducted
three user studies. Detailed apparatus, stimuli and analysis, includ-
ing signi�cance statements are found in the supplemental materials.

Foveation strength. �e �rst is a threshold estimation experiment
to establish the optimal foveation in an eye-tracked desktop se�ing.
Subjects were asked to adjust foveation � to their preference in three
scenes. We could establish, that users prefer an average foveation
of � = .23. �is is lower than the physiologically-expected 2.0, but
in agreement with previous studies of foveation using a desktop
[Patney et al. 2016]. Please see the blue lines in Fig. 14 for an example
of what such a foveation looks like, its compute time and memory
budget as well as the SSIM in respect to a reference.

Foveation preference. �e second is an image judgment experi-
ment comparing images with no foveation and our foveation to
referenced images, again in an eye-tracked desktop se�ing. Here,
subjects clearly (in 90.0 % of the cases) prefer our treatment over no
foveation.

Object tracking. �e third is an object tracking experiment with
and without rolling rasterization, performed on a HMD. Subjects
were asked to track moving objects, rendered using our technique,
warping and no latency compensation. In natural viewing condi-
tions, humans would lead the target. �is e�ect was strongest when
using our method.

7 DISCUSSION
Rendering latency vs. display latency. �ere are good reasons to

decouple display and rendering frequencies when the rendering
frequency is below the display frequency. In this “rendering latency”
cases, warping is adequate. Rolling rasterization however, does not
address rendering latency, but assumes the rendering is faster than
the display. It compensates for “display latency”: the amount of
time a pixel is outdated when shown on screen.

�e di�erences between an ideal ground truth zero-latency raster-
izer, rendering latency compensated by warping and our approach
to compensate display latency are illustrated in Fig. 16. �e ground
truth approach without rendering or display latency (orange), would
instantaneously produce an image that at every position in space-
time will match the view transform. Normal rasterization preceding
warping (light blue) will render frame n + 1 with the transform
known at time t1. By t3, the end of frame n + 1, the display im-
age will be severely outdated (di�erence E1). �is will not change
by making a renderer faster, but is a property of the display rate.

ACM Transactions on Graphics, Vol. 38, No. 4, Article 97. Publication date: January 2019.



Perceptual Rasterization for Head-mounted Display Image Synthesis • 97:13
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Fig. 16. Conceptual di�erences of our approach andwarping to ground truth
when producing frame n + 1. Time is the horizontal axis and the vertical
axis is view transformation. Di�erences in images, and by this the perceived
error, are likely proportional to di�erences in view transform (do�ed lines).
The ground truth view transform is shown as a single function curve for
frame n and n + 1. Di�erent methods are encoded as colors. Colored
horizontal blocks are working time, colored lines are approximations of the
view transform for images on display.

Warping (dark blue), will move pixels to compensate for the transfor-
mation at t2, but can still not mitigate the image to become outdated
during n + 1, (di�erence E2) and it has no way to remedy disocclu-
sions occurring between t1 and t2. Our approach (green) also starts
work at t1, but using the transformation predicted for continuous
points in time on frame n + 1, removing all occlusion and shading
error and leaving only the transformation prediction error E3 but
no error due to display latency. Even when assuming a hypothetical
and unpublished competitor that rasterizes using a predicted view
transform (do�ed light blue line) and a rolling form of warping (dark
blue do�ed line), there remains an appearance error E4 at t4 that
can not ever be resolved by rasterizing outdated (i. e., non-rolling)
occlusion and shading.

Fast Rendering. It is tempting to just hope faster rendering will
make rolling rasterization obsolete. But any common non-rolling
method will never reduce latency below the scan-out duration, typ-
ically 8.3-16 ms. Even if a fast non-rolling rasterization takes only
1ms (a short light-blue bar in Fig. 16), the scan-out still takes 16ms,
and the latency will remain to be 17ms by the end of the display
period.

Our method slightly increases image synthesis time, but this does
not ma�er, as long as it terminates before the bu�er swap. Assuming
image synthesis to take 10ms, our approach might increase it to
14ms, but both are below cut-o� at 16ms, so there is no drawback
here. However, our image will not have any latency for the next
16ms during display, while a common image, computed 4ms faster
for no reason, will accumulate up to 16ms by the end of the display
interval.

Prediction. Like any method that has to �nish before the scan-out
starts, we require a prediction of scene and viewer motion during
scan-out. Grossmann et al. [1988] have measured the velocity and
acceleration of head motions. �eir results show that rotational and
translational head velocity can be substantial, indicating that the
rendering with a view transform that changes during the display
interval is useful. �ey also �nd, that the acceleration i. e., derivation

form a linear model, is small as it requires force. �is indicates
that our �rst order-model, with substantial velocity but limited
acceleration, is physiologically plausible.

Eye/head/render/display constraints. Please also note, that while
there are pros and cons of decoupling the display and rendering rate
to compensate display and rendering latency, foveated rendering
puts certain additional limits on how decoupled they can become:
if foveated rendering should be tightly coupled with (predicted)
eye position, there is no reason to not also tightly couple rolling
rasterization and (predicted) head pose. Our work jointly does both,
and while it is possible to decouple both, it is di�cult to imagine
how to decouple only one of them. Hence, as foveated rendering
has the same coupling requirements rolling rasterization has, it is
appropriate and e�cient to do both jointly, as we suggest here.

Streaming. Friston et al. [2016] update the view matrix for each
scan-line and ray-trace a simplistic scene in a period far below that
of the display’s scan out. It would not be clear how to ray-trace a
complex scene in this time. Geometry in animated scenes changes
for every scan line, which would require very high frequency BVH
rebuilds. In our case of streaming OpenGL rasterization, which
maps primitives to pixels, we have no guarantees on the space
or time layout of the primitive stream. Consequently, we need to
predict the head pose across the scan-out. Prediction is essential
and cannot be omi�ed. Even if a sensor could give the absolute
viewpoint continuously, there is still the delay due to rendering the
image from this viewpoint, and therefore an interval between the
rasterization and the actual scan-out. We further assume the change
in transformation is small enough that the transform matrices can
be linearly interpolated; an optimization that could be replaced with
a more advanced interpolation.

Speed. We demonstrate a prototypical implementation using a
GPU, which has speed comparable non-rolling or non-foveated im-
plementations. Our current implementation runs at interactive rates,
suggesting a full hardware implementation (with optimizations such
as tiling, etc. [Akenine-Möller et al. 2007]) could achieve speeds
similar to a traditional rasterizer.

Joint analysis. We have derived bounds for joint foveated-rolling
rasterization and show example results in Fig. 9, but did not conduct
a perceptual (stereo) experiment for this combination.

Periphery. Similar to other methods [Guenter et al. 2012; Pat-
ney et al. 2016; Stengel et al. 2016] our foveated rasterization can
create temporal aliasing in the periphery, where humans are unfor-
tunately particularly sensitive. Future work will investigate special-
ized spatio-temporal �lters to circumvent this issue.
Note, that our �ltering from the cortical to the display domain,

used both for kernelized rendering and ours, employs non-linear
�lters, that properly handle the complex anisotropic shape (curved
ellipsoid) to which a display maps in the periphery of the cortical
domain.

Screen-space e�ects. Screen space shading needs to be adapted to
support perceptual rasterization and kernelized foveated rendering
[Meng et al. 2018]. We have done so for SSAO by multiplying all
image distances by the pixel density p(x).
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8 CONCLUSION
In this paper we introduced a new e�cient rasterization technique
that exploits the spatio-temporal-retinal relationship of rays and
primitives found in HMDs. It prevents the artifacts and overhead
of warping and works in a single pass while supporting moving
objects, viewer translation and rotation as well as specular shading
and lens distortion - all of which are challenging for warping. �e
main technical contribution is the derivation of tight and e�ciently
computable primitive bounds.

Future investigations could extend the rolling concept to physics
and other simulations, and would also need to seek be�er under-
standing of the relationship between latency and motion blur, focus
and the role of eye and head motion, and the behavior with other
types of stereo display.
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Eisemann, Steve Grogorick, André Hinkenjann, Ernst Kruij�, Marcus Magnor, et al.
2017. Perception-driven Accelerated Rendering. Comp. Graph. Forum 36, 2 (2017),
611–43.

P.H. Wicksteed and F.M. Cornford. 1929. Aristotle. Physics. W. Heinemann.
Lei Yang, Yu-Chiu Tse, Pedro V Sander, Jason Lawrence, Diego Nehab, Hugues Hoppe,

and Clara L Wilkins. 2011. Image-based bidirectional scene reprojection. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6 (2011), 150.

ACM Transactions on Graphics, Vol. 38, No. 4, Article 97. Publication date: January 2019.


	Abstract
	1 Introduction
	2 Previous Work
	3 Perceptual Rasterization
	3.1 Ray-primitive Models
	3.2 Pipeline

	4 Bounds
	4.1 Search
	4.2 Displace

	5 Results
	5.1 Qualitative
	5.2 Quantitative

	6 Perceptual Evaluation
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

